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The quantum computer has been claimed to show more quantum advantage than the classical computer in solving some

specific problems. Many companies and research institutes try to develop quantum computers with different physical

implementations. Currently, most people only focus on the number of qubits in a quantum computer and consider it as a

standard to evaluate the performance of the quantum computer intuitively. However, it is quite misleading in most times,

especially for investors or governments. This is because the quantum computer works in a quite different way than

classical computers. Thus, quantum benchmarking is of great importance. Currently, many quantum benchmarks are

proposed from different aspects.
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1. Overview of Quantum Benchmarks

In this research, the researchers classify the benchmarks into three categories: the physical benchmarks, the aggregated

benchmarks, and application-level benchmarks. Most news and reports place emphasis on the number of qubits in a

quantum processor, which is mostly misleading for those who are not familiar with quantum computing. Definitely, the

number of qubits can directly decide the quantum computing power of a quantum computer. Some people intuitively think

that the quantum computing power of a quantum computer grows exponentially with the number of qubits. For instance, in

2019, Google first demonstrated “quantum supremacy” with a Sycamore quantum processor having 53 qubits. However,

apart from the number of qubits, the noise and the quantum property of the qubits can greatly affect the correctness of the

results. Thus, apart from the number of qubits, there are other physical properties that most people are concerned about.

Physical benchmarks include tools, models, and algorithms to reflect the physical properties of a quantum processor.

Typical physical indicators of quantum computers include T1, T2, single qubit gate fidelity, two qubit gate fidelity, and

readout fidelity. The aggregated benchmarks can help the user to determine the performance of a quantum processor with

only one or several parameters. The aggregated metrics can be calculated with randomly generated quantum circuits or

estimated based on the basic physical properties of a quantum processor. Typical aggregated benchmarks include

quantum volume (QV) and algorithmic qubits (AQ). The application-level benchmarks refer to the metrics obtained by

running real-world applications on the quantum computer. Many existing works propose using real world applications to

benchmark the quantum computer’s performance because they assume that random circuits cannot reflect a quantum

computer’s performance accurately. An overview of the existing quantum benchmarks is shown in Figure 1.



Figure 1. Overview of the quantum benchmarks.

2. Physical Benchmarks

Different physical implementations are concerned with different aspects of a quantum computing system. For instance, the

trapped ion-based quantum computer focuses more on the stability of the trap frequency, the duration of a gate operation,

and the stability of the control lasers. The superconducting quantum computers’ performance is affected by the

controllability and scalability of the system. Mostly, they are affected by the precision of the Josephson junction,

anharmonicity, and gate duration .

In general, the quantum computation systems are concerned with the quantum correlations and controlling operation

precision. In a superconducting quantum computer, generally researchers from the background of quantum information

focus more on physical properties of quantum computers, such as the T1, T2, number of qubits, connectivity, single qubit

gate fidelity, two qubit gate fidelity, and readout fidelity.

The indicators for quantum computers of IBM’s online quantum cloud (Table 1, from ) is shown in the following table.

Table 1. IBM quantum cloud’s performance metrics. Avg stands for average; N/A means not applicable.

Name Number of Qubits QV Avg.T1 (μs) Avg.T2 (μs) Avg.Readout Fidelity Avg.CNOT Fidelity

brooklyn 65 32 77.1686 74.6345 0.9682 0.9746

manhattan 65 32 110.1959 101.6078 0.9761 0.9543

hanoi 27 64 123.3959 93.4341 0.9837 0.991

sydney 27 32 266.1433 256.6081 0.9833 0.9898

peekskill 27 N/A 97.4474 107.0911 0.9821 0.9896

cairo 27 64 76.01 97.6543 0.9796 0.989

toronto 27 32 180.3614 155.1329 0.9869 0.9814

kolkata 27 128 70.3363 75.2432 0.9698 0.9536

mumbai 27 128 117.2574 92.1067 0.9484 0.9526

montreal 27 128 81.004 104.678 0.938 0.4972

guadalupe 16 32 132.6257 40.5357 0.977 0.9896

lagos 7 32 158.6 57.702 0.9697 0.9912

jakarta 7 16 74.214 104.008 0.9728 0.9895

perth 7 32 155.0078 92.217 0.9118 0.9894

casablanca 7 32 82.2681 96.0744 0.9696 0.9883

nairobi 7 32 86.5337 107.1733 0.9428 0.9878

quito 5 16 130.2629 100.9629 0.9859 0.9932

santiago 5 32 105.2286 98.9143 0.9633 0.9909

manila 5 32 100.56 101.29 0.9739 0.99

lima 5 8 84.0278 84.4122 0.9829 0.9891

belem 5 16 75.936 94.722 0.9676 0.9828

bogota 5 32 92.454 124.096 0.959 0.9794

armonk 1 1 118.1 149.22 0.967 N/A

3. Aggregated Benchmarks

Each metric can reflect one aspect of the one or two qubit’s performance. However, the quantum processor consists of

many qubits connected with different topology. To better evaluate the performance of a quantum computer, people try to
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propose an aggregated metric to directly reflect the performance of a quantum processor.

3.1. Quantum Volume

When building a larger-scale quantum computer, its performance is susceptible to many factors, such as the number of

qubits, connectivity of qubits, and error rate when applying quantum gates. To this end, IBM proposed the quantum

volume (QV) , a metric used to represent the performance of a quantum computer. Quantum volume is calculated as 2 ,

where k is the largest number of a quantum circuit consisting of k qubits and k-layer gate operations taken from the Haar-

random SU(4) unitaries. The QV considers both the number of qubits and the quality of gate operations and

measurement. After running the k-layer quantum circuits, the “correct” measured results (heavy output) should be above a

certain threshold . Thus, it means that the higher gate fidelity can lead to larger QV.

After the first proposal of quantum volume, many researchers address the flaws of QV. For instance, the quantum circuit

used by the quantum volume is a “square”, since it constrains the minimum circuit depth and number of qubits. For some

algorithms, the quantum circuit is not “square”. In the factorization algorithm (Shor algorithm), the width of the quantum

circuit is n, but the depth is n  . So, QV may not necessarily be the widely accepted quantum benchmarking indicator.

Moreover, the QV can be very large in some cases. For instance, the scale of QV reaches almost 4 million for an ion-trap

quantum computer . However, for superconducting computers, the QV generally only reaches 128 maximally. This is

mainly because the gate fidelity of superconducting quantum computers is below the gate fidelity of the trapped-ion

quantum computers. Additionally, the QV is calculated as 2 to the power of the number of high-quality qubits. Thus, the

QV can be quite large in trapped-ion quantum computers. Although QV has drawbacks, it is a great endeavor to draw

people’s attention to the problems in a quantum computer, instead of only focusing on the number of qubits in a quantum

computer .

3.2. Algorithmic Qubits

The QV metric will become very large because it is exponential to the number of effective width and length for a given

circuit. Since the IonQ’s quantum computer has comparatively high gate fidelity, the QV numbers will grow quickly. To

address the shortcomings of quantum volume, IonQ introduces a new benchmark—algorithmic qubits. The number of

algorithmic qubits (AQ) determines how big a quantum circuit can be executed on a quantum computer. AQ considers

error correction and is directly related to the number of qubits. The IonQ’s roadmap for their future quantum computers is

based on the AQ metric . IonQ also publishes an online tool for allowing users to calculate the AQ value of a quantum

computer, given its basic properties .

3.3. Mirroring Benchmarks

Proctor et al. concluded that the standard error metrics obtained through random disordered program behavior cannot

accurately reflect the performance for some real-world problem . To provide direct insight into a processor’s capability,

Proctor et al. built the benchmarks starting from the quantum circuits of varied sizes and structures and transformed the

circuits to the mirror circuits that can be efficiently verifiable. In ref. , the quantum benchmarks include: the volumetric

circuit benchmarks (referring to the IBM quantum volume ), the randomized mirror circuits (alternating the layers of

randomized Pauli gates and Clifford gates chosen from a sampling distribution), and the periodic mirror circuits (consisting

of iteratively germ circuits that can amplify the errors). Proctor et al. assumed that the mirror benchmarks are more

efficient, reliable, and scalable for predicting the performance of quantum computing in solving real world problems. The

randomized mirror circuit benchmarks are evaluated on twelve processors of IBM quantum computers and Rigetti

quantum computers. Their experimental results show that current quantum computing hardware suffers from complex

errors. The errors in the structured quantum circuits of real-world applications are quite different from the standard error

metrics from random benchmarking techniques. The capability of a quantum processor can be reflected by a similar

approach, such as quantum volume. The results also imply that whether a quantum circuit can be successfully run on a

quantum processor depends on the circuit’s shape and the exact arrangement of the quantum gates.

3.4. CLOPS

In , Wack et al. identified three key attributes for evaluating the performance of a quantum computer: quality, speed,

and scale. The quality is measured by the quantum volume deciding the maximum size of quantum circuit that can be

executed. The scale can be represented by the number of qubits. The speed is measured by the circuit layer operations

per second (CLOPS). The CLOPS metric considers the interaction between classical computing and quantum computing

because real-world applications include both the classical processing and the quantum processing. The CLOPS is defined

as the number of QV layers executed per second. The CLOPS benchmark includes 100 parameterized templated circuits.

[3] k

[4]

3 [5]

[6]

[7]

[8]

[9]

[10]

[10]

[5]

[11]



It allows the system taking all optimizations during the data transfer of circuits and results, run-time compilation, latencies

in loading control electronics, initialization of control electronics, gate times, measurement times, reset time of qubits,

delays between circuits, parameter updates, and results processing.

Limitations of the benchmark: The CLOPS mostly focuses on the quantum computing part. The computation accounts

only for the runtime compilation and optimization. Thus, in CLOPS, the classical computation serves as assistance to the

quantum computing. Improvement in the performance of the classical part can barely contribute to the improvement of

CLOPS. For an extreme case, when all applications are executed in a classical computer, the CLOPS will be zeroed,

since no quantum circuits are executed. Moreover, the CLOPS only considers the time for executing an application, but

the quality of qubits and gate operations is reflected in other parameters. From the experimental results of , the

researchers can see that the quantum circuit execution time only takes quite a small proportion (less than 1%) of the total

execution time.

4. Application-Based Benchmarks

The physical properties of a quantum computer can affect its performance. However, it is difficult to determine whether a

quantum computer outperforms another only based on these properties. For instance, a quantum computer “A” has less

qubits, but the qubits’ quality of another quantum computer “B” is higher. If a quantum application needs more qubits, then

“A” is preferred. If a quantum application requires the qubits’ quality to be higher, then “B” is preferred. Therefore, some

researchers propose to evaluate the performance of a quantum computer with a real-world quantum application.

A summary of the application-based quantum benchmarks is shown in Table 2. In Table 2, the researchers can see that

most quantum benchmarks consider the typical combinational optimization problems and use variational quantum circuits

(VQC) to solve the problem. This is mainly because the combinational optimization problems can be widely used in many

real-world scenarios, such as traffic engineering and flight scheduling. Moreover, the variational quantum solutions, such

as quantum approximation optimization algorithm (QAOA) and variational quantum eigensolver (VQE) are popular, due to

the possibility to obtain a useful result on NISQ devices. Thus, most people believe that, in the NISQ era, the variational

quantum solution will remain the most effective solution.

Table 2. Summary of the application-based quantum benchmarks.

Reference Benchmark
Name Problems Solution Metrics

Qpack

Max-Cut,
dominating set,
and travelling

salesman problem
(TSP)

VQC

Runtime, best
approximation error,
success probability,

and performance
scaling

Q-Score TSP and Max-Cut VQC Q-Score

F-VQE Max-Cut VQC N/A

Variational
quantum

factoring (VQF)
and fermionic

simulation

Variational
quantum factoring

(VQF) and
fermionic
simulation

VQC
The effective

fermionic length of
the device

Machine learning
application

Approximating an
unknown

probability
distribution from

data

Data-driven quantum circuit learning
algorithm (DDQCL).

qBAS (bars and
stripes) score

3 application-
motivated

quantum circuit
N/A

The quantum circuits include: the deep class
of the quantum circuit is taken from the state
preparation in the VQE (variational quantum
eigensolver) algorithm; the shallow class of

quantum circuits refers to the circuits whose
depths increases slowly with the growth of
width (number of qubits); square is inspired

by the quantum volume benchmark.

Heavy output
generation probability,

cross-entropy
difference and l1-

norm distance
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Reference Benchmark
Name Problems Solution Metrics

Application-
oriented

performance
benchmarks

N/A

The quantum circuits of the benchmark
include: shallow simple Oracle-based

algorithms, quantum Fourier transform
(QFT), Grover’s search algorithm, phase and
amplitude estimation, Monte Carlo sampling,
variational quantum eigensolver (VQE), and

Shor’s order finding.

The quality and
execution time

Quantum
LINPACK

Dense random
matrix in a

quantum problem

RAndom Circuit Block-Encoded Matrix
(RACBEM). N/A

Quantum
chemistry

benchmark

Electronic
structure

calculation
instances

reduced unitary coupled cluster ansatz
(UCC, a state preparation circuit) and
hardware-efficient ansatz (Variational

Quantum Eigensolver, VQE).

Performance and
accuracy

QASMBench N/A

Quantum circuits are taken from chemistry,
simulation, linear algebra, searching,

optimization, arithmetic, machine learning,
fault tolerance, cryptography.

circuit width, depth,
gate density, retention

lifespan,
measurement density

and entanglement
variance
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