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The growing demand and diversity in the application of industrial composites and the current inability of present

non-destructive evaluation (NDE) methods to perform detailed inspection of these composites has motivated this

comprehensive review of sensing technologies. NDE has the potential to be a versatile tool for maintaining

composite structures deployed in hazardous and inaccessible areas, such as offshore wind farms and nuclear

power plants. Therefore, the future composite solutions need to take into consideration the niche requirements of

these high-value/critical applications. Composite materials are intrinsically complex due to their anisotropic and

non-homogeneous characteristics. This presents a significant challenge for evaluation and the associated data

analysis for NDEs. For example, the quality assurance, certification of composite structures, and early detection of

the failure is complex due to the variability and tolerances involved in the composite manufacturing. Adapting

existing NDE methods to detect and locate the defects at multiple length scales in the complex materials

represents a significant challenge, resulting in a delayed and incorrect diagnosis of the structural health. This paper

presents a comprehensive review of the NDE techniques, that includes a detailed discussion of their working

principles, setup, advantages, limitations, and usage level for the structural composites. A comparison between

these techniques is also presented, providing an insight into the future trends for composites’ prognostic and health

management (PHM). Current research trends show the emergence of the non-contact-type NDE (including digital

image correlation, infrared tomography, as well as disruptive frequency-modulated continuous wave techniques) for

structural composites, and the reasons for their choice over the most popular contact-type (ultrasonic, acoustic,

and piezoelectric testing) NDE methods is also discussed. The analysis of this new sensing modality for

composites’ is presented within the context of the state-of-the-art and projected future requirements.

non-destructive testing (NDT)  prognostic and health management (PHM)  eddy current (EC)

shearography  infrared thermography (IT)  computed tomography (CT)  ultrasonic testing (UT)

acoustic emission (AE)  digital image correlation (DIC)  frequency-modulated Cont

1. State-of-the-Art Review of NDE Methods

NDE methods utilise variable portions of the frequency spectrum to perform characterisation of defects and flaws.

The choice of a particular range of the frequency spectrum to utilise in any particular NDE application depends on

a number of factors, including penetration, resolution, and contrast. Based on the operating frequency and the
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technique involved, different types of NDE methods can be categorised into imaging technique-based, chemical

spectroscopy-based, electromagnetic spectrum-based, and acoustic wave-based (see Figure 1).

Figure 1. Different types of NDE methods mapped to their frequency domain.

The popular NDE methods under each category are discussed as follows.

1.1. Mechanical Vibration-Based NDE

This method involves different modes of emitted energy emissions which propagate into the solid . The most

popular techniques used in this type of analysis are electrostatic transducer-based ultrasonic testing, piezoelectric

transducer-based ultrasonic testing, and acoustic emissions testing. These methods are discussed briefly below.

1.1.1. Electrostatic Transducer-Based Ultrasonic NDE

This ultrasonic testing method comprises electrostatic transducer tools, that act as a transmitter and receiver unit

separately, and a display device. The information achieved from the signals is based on defect size, orientation,

crack location, and other features. The working principle is depicted in Figure 2, wherein the transducer mounted

on the specimen receives the signal associated with the internal flaw and displays its location on the monitoring

detector unit. The application of this technology is in assembly line testing, wherein copies of design parts must be

tested frequently . Ultrasonic NDE has two types which are generally used for various applications: “pulse echo”

and “through transmission” approaches. The ultrasonic testing of these two types uses sound waves with higher

frequency in the order of 1 to 50 MHz to identify inner defects pre-set in the system . Ultrasonic testing is carried

out in three different modes: back scattering, reflection, and transmission, all of which use a transducer, a range of

frequencies, and a coupling agent .
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Figure 2. The working setup and principle of electrostatic transducer-based ultrasonic NDE of composites (Labels:

T —Transmitter, R —Receiver, T—Thickness of material, and D—Depth at which defect is detected).

The pulse echo ultrasonic technique can freely identify flaws in homogeneous material. In this technique, the

concerns of the operator are about the wave transit time and the loss of energy due to the wave scattering and

attenuation on defects. The recorded variations in the wave propagation assist in locating the irregularity in the

material . The velocity measurements of ultrasonic pulses result in the detection of defect locations, large (~5 mm

width) defects, quality control, and imaging purposes .

The “through transmission” ultrasonic technique differs from the conventional technique as the transducer and

receiver have a non-contact configuration and are maintained at a set distance from the material. This method is

particularly valuable when the intricate geometries are unable to contact the conventional transducers and

receivers to the surface of the sample. The wave propagation velocity and energy or amplitude loss are the most

frequently used indicators of properties .

Ultrasonic testing has advantages of flaw detecting capabilities, good resolution, short scan time, and is portable

enough to be deployed in the field. The disadvantages of this technology include: complicated to setup, required

accurate part scanning skills, and the desired test specimen requirements (low effectiveness in thin materials,

relatively smooth surface is needed to couple transducer) to assure precise examination. There are still some

limitations encountered in ultrasonic testing while detecting discontinuities in non-homogenous materials due to

multi-reflections and high wave scattering, for example, in sandwich panels and composite laminates. This

technique is not suitable for composite flaws at depths greater than ~50 cm from the material interface, where

lesser resolution is attained when compared to the same thickness of steel. This is due to ultrasonic wave

attenuation, which is sourced from absorption in porous resin and fibre scattering . For that reason, it requires the

use of lower ultrasonic frequencies in composite testing to decrease the attenuation coefficient in comparison with

the homogenous materials . Therefore, the depth of penetration is decreased so that ultrasonic testing is often

x x
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not suitable for the characterisation of defects which exist far below the surface of the composite structure. In

addition, the limited capability of electrostatic transducers affords the overall capacity of defect detection within 1–5

mm . Additionally, the attenuation coefficient in ultrasonic waves can also be influenced by the shape, size, and

spatial distribution of voids in composite materials. As a result, significant measurement errors of order ±25% are

typically observed . The other limitation of ultrasonic testing is encountered while testing aerospace

composites, which is defined as the shadow effect. The cause of the shadow effect is any delamination or large

defect which is present near the surface. These large defects reflect most of the ultrasonic energy and result in low

visibility below the discontinuity, hence resulting in a shadow .

1.1.2. Piezoelectric Transducer-Based Ultrasonic NDE

This ultrasonic technique is useful in inspection of non-porous and homogeneous materials . Additionally, it is

highly efficient in the inspection of laminated structures during quality control of delaminated areas, because of the

capability of ultrasonic waves to be concentrated in small regions. The piezoelectric transducer is considered an

important tool for these inspections, that can operate either as a source or a detector of ultrasound signals

simultaneously, which makes it very popular compared to the electrostatic transducer-based ultrasonic

measurements. The ability of performing both functions equally is because of the reversibility of piezoelectric

effects and the independent reflection and transmission constraints concerning the direction of the working defects

. Herein, the commonly used ultrasound techniques are through transmission and pulse-

echo techniques . The through transmission technique involves two piezoelectric transducers, with one acting

as a receiver and one as an emitter, mounted on opposite sides of the samples. When the ultrasonic signals reach

the defects, they will be partly reflected and received by the transmitter, wherein a reduced signal is received by the

receiver. The internal defect examination is performed by the proportion of these two signals. The pulse-echo

technique requires one transducer, which serves both as a transmitter and receiver of reflected signals . The

simplest construction of a piezoelectric transducer is shown in Figure 3 and consists of a cylindrical shaped

piezoceramic element, which is aligned normal to the parallel faces in the single-direction axis of polarisation.
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Figure 3. The working setup and principle of piezoelectric transducer-based ultrasonic NDE of composites (Labels:

T—Thickness of material and D—Depth at which defect is detected).

Piezoelectric transducers operate via high-frequency ultrasonic vibrations generated by reactions to short electrical

pulses in the piezoceramic element. Conversely, reflected high-frequency sound signals are received, which are

then transformed into electrical signals. The generated vibrations of the end face of this piezoceramic element are

similar to piston-like motions, with sufficient directivity and fine separation of harmonics if the cylinder diameter is

adequately large, in comparison with thickness. Conversely, large thickness would be required if the frequencies

required are lower so that the cylinder or disc becomes inconveniently large. Sandwich-type piezo active elements

can be used for this purpose, as these elements are made from several thinner discs, stick together, and have

opposite polarisation directions, and are then tightly attached on a steel cylinder playing the function of a backing

material.

Piezocomposites have many advantages for NDE applications due to their flexibility and wide bandwidth. It is

useful to have high flexibility of piezocomposites in inspecting curved composite pipelines or steam pipes for

monitoring pipe curvatures, and this can result in wave loss, significantly decreasing the signal-to-noise ratio. The

piezoelectric transducers have better resolution than electrostatic transducers and hence can be used for

identification of critical defects of relatively large (up to 25 mm) size . However, there are also key challenges of

piezoelectric material in the operation of NDE methods, of which the most important is the material survival in a

high-temperature application. The applications of traditional piezocomposites are being limited in high-temperature

and high-power applications because of the naturally high thermal expansion of polymer fillers, low mechanical

quality factors, and low thermal conductivity. The high thermal expansion coefficient of polymer fillers can cause

debonding and cracking in the composite structure itself, resulting in structural failure at high temperatures. Low

thermal conductivity of polymer can decrease the thermal dissipation to neighbouring environments and cause a

localised hot spot near the piezoelectric pillar in composites, which results in polymer melting. Low mechanical

quality factors can result in internal heating and power loss when working under high powers at resonance 

.

1.1.3. Acoustic Emission-Based NDE

In this method, the mechanical vibrations are generated by defects encountered in the material: localised

delamination, fibre breakage and pull-out, matrix micro-cracking, or matrix and fibre debonding . These types

of defects result in stress waves, which spread out from their sources concentrically and are identified by a

tremendously sensitive piezoelectric array. Acoustic emission (AE) is effective for the imperfection analysis in

composite materials or structures. The schematic arrangement for this method is shown in Figure 4. This

technique is different in two characteristics from most other NDE methods. The first feature is the source of the

signals. This technique is centred on the release of sound energy within the material under test, instead of

supplying energy to the material. The ability to distinguish the development of dynamic faults, in addition to

inactive, non-critical defects, is its key impact .
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Figure 4. The working setup and principle of acoustic emission testing-based NDE of composites.

Every AE event represents a discrete stress wave which can neither be stopped nor reproduced. It implies that the

nature of the signal source cannot be reproduced by any particular test. For example, slower crack growth

produces weak acoustic emission signals, whereas fast crack growth with the same source size generates

transient signals . Furthermore, the AE signals in composite structures will acquire considerable changes when

travelling through the transmission pathway, and they are recorded by the receiving AE sensors. AE sensor

coupling is also necessary, and the procedures have little descriptive value with regards to discontinuity in the data

.

AE has various other advantages of quick and overall testing by means of multiple sensors, high sensitivity, sensor

mounting for process control, and no requirement of disassembling and sample cleaning . In addition, the

technique is helpful in detecting various defect types resulting from fatigue loading. The fatigue damage-type

defects detected by AE testing are fibre/matrix debonding, fatigue cracks, matrix micro-cracks, delamination, and

fibre fractures. Only the defects from sub-millimetre to up to 5 mm can be effectively studied . The negative

aspect of AE testing is that it requires high skill for correlating collected data to an explicit damage mechanism type

.

1.2. Imaging Technique-Based NDE

The imaging technique-based NDE identifies the difference in the captured images before and after a defined

time/deformation, which highlights the changes due to a flaw or defect. Some of the popular imaging NDE

techniques are shearography testing, computed tomography, and digital image correlation, etc. The principles of

these popular imaging technique-based NDE methods are discussed in this section.

1.2.1. Shearography-Based NDE

Shearography is a laser-based method, the basic layout of which is shown in Figure 5. A laser source is used to

illuminate the sample, which is imaged with the charge-coupled device (CCD) camera via the beam shearing

element. The laterally shifted subsequent images of the sample surface that are continuously captured are
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coherently superimposed in the image plane by the optical beam shearing element. This captured lateral shift is

termed as image shear and the created superposition is called a shearogram. The shearogram is an interferogram

created over the reference object wave with the superimposition of a sheared object wave over it. With variable

loading conditions, multiple images for shearograms are similarly recorded, wherein the induced deformation or

variations are captured. The difference in the deformation state due to loading variations is then correlated with the

interference fringe pattern resulting from the absolute difference recorded in subsequent shearograms. This

resulting differential image is further termed as a “D-Image”. When processed, rather than providing deformation

(as in holographic interferometry), the fringes provide the rate of change of the deformation. The surface and

subsurface defects tend to modify due to the applied loading, resulting in minor alterations or major disturbances in

the recorded loading fringe pattern, which is expected to appear more or less uniform for the no defect case.

Hence, this principle is used for classifying and categorising various defects, depending on the extent of alterations

or disturbances recorded in the shearographic fringe pattern. The simplified working principle of shearography

testing is shown in Figure 5. Although, it is essential to induce deformation in the sample as applied by vibration

, mechanical loading , thermal expansion or contraction , vacuum force , and microwave heating

, and it could be applied in a static or dynamic way. The CCD camera captures the interferometric pattern, which

leads to an edging image and consists of structural information .

Figure 5. The working setup and principle of shearography testing-based NDE of composite components.

A loading system is used to stimulate deformation or to change the state of deformation of the sample surface,

which is required in shearography testing. The loading systems which are normally used in shearography comprise

of thermal pulse shearography, vibration shearography, and vacuum shearography. Thermal pulse shearography is

efficient for inspecting impact damages or cracks that are barely visible to the naked eye. When the image

shearing direction is not perpendicular to the orientations of cracks, the detected defect direction has sensitivity

which is comparatively greater than the perpendicular image shearing . Vibration shearography is effectively

utilised for the inspection of foam on the external tank of NASA’s space shuttle , and also to disclose flat-bottom
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holes of variant sizes and locations at various depths in composite laminate . Vacuum shearography is efficient

for imaging fibre debonding in composite laminate , aluminium honeycomb panel , and also in the composite

element panel of the helicopter (honeycomb core with two outer layers of epoxy and graphite) and in the tail unit

 for core damages, core splice-joint separation, and delamination . There are other popular methods, such as

thermoelastic stress analysis, that involves an infrared camera (replacing the laser source and CCD camera, as

shown in Figure 5) for picking any variations, which is very similar in principle with shearography  and widely

used for continuous monitoring of composites.

The advantage of shearography includes that by easily highlighting stress concentrations around the specific

defect, it highlights the type and criticality of that defect, and since composite failure normally occurs by stress

concentration, the degree of stress makes a lot of difference . The other advantage of shearography includes it

being less prone to noise than other different types of NDE. This feature is useful because it does not require

highly skilled operators for the inspection and determination of component usability without long-term training,

since just comparing the deformed and undeformed shearograms becomes a lot easier. It has been found as very

useful method for honeycomb and foam composite structures, with the ability to detect defects up to 2–3 mm in

depth or sometimes even more . The major drawback associated with shearography is the difficulty of inspecting

defects other than delamination. For that reason, it is sometimes combined with other NDE types which can help in

identifying specific flaws .

Another noteworthy shearography limitation is the requirement of applying appropriate external loading increments

to the testing sample during examination. Therefore, appropriate loading systems are required. Furthermore, the

alteration monitored in the displacement pattern derivative reduces with the defect depth or with an increase in its

diameter. Therefore, the efficient digital shearography application for defects characterisation is difficult and is still

dependent upon various factors, for example depth and defect type, material type, and laser illumination .

Hence, this is another reason why shearography is sometimes coupled with other techniques of testing to detect

flaws other than delamination .

Overall, there are two major drawbacks associated with shearography. The first is the difficulty of detecting defects

other than delamination. For this reason, it is sometimes combined with other NDE techniques to help in identify

other types of flaws . Secondly, shearography requires applying external loading to the testing sample during

examination, and consequently, an appropriate loading system is required. Furthermore, the alteration monitored in

the derivative of the displacement pattern reduces with the subsurface depth of the defect or with the increase in its

diameter. Consequently, application of shearography for defects’ characterisation is often challenging as it is

dependent upon various factors, including the depth and type of defect (delamination, impact, crack, etc.), material

type, and laser intensity .

1.2.2. Computed Tomography-Based NDE

Computed tomography (CT) is an advanced form of conventional X-ray radiography, which is used for non-

destructive 3D imaging of internal features of solids. The working setup of CT-based NDE is schematically

presented in Figure 6. This is an outstanding imaging technique to examine the details in terms of size and volume
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of structures with very high precision, and also in three dimensions, which is especially valuable for the inspection

of structural integrity of complex geometries . The resolution of the technique depends inversely on the volume

measured. Consequently, standard CT, microCT, and nanoCT techniques have been developed for increasing the

resolution of feature sizes at the cost of the 3D volume that can be imaged.

Figure 6. Working setup and process of computed tomography-based NDE of composite components.

The extraction of information from a computational tomography dataset involves a series of steps. The data are

acquired from multiple radiographs obtained as the sample is rotated relative to the X-ray source. A reconstruction

algorithm combines all the angle-dependent radiographs into a 3D reconstructed image of the sample . Most

computational tomography systems apply a filtered back projection (FBP) reconstruction algorithm, because of its

predictable nature with regards to reconstruction times and computational cost . The accurate representation of

an object using FBP can be attained by projecting the X-ray integrals for each X-ray path back through the object.

This projection method has high accuracy with the additional feature of low noise of the projected images, although

alternative iterative reconstruction techniques have considerable advantages in more problematic settings .

Iterative algorithms utilise a linearised forward model of the X-ray acquisition method and use optimisation

algorithms to reverse this model. Image viewing and processing techniques can be used to extract valuable

information once a computational tomography volume is reconstructed, and this is called visualisation. The

extremely high resolution achieved in nanoCT scans can detect details up to 0.2 µm for low absorbing materials

. The obtained image quality is generally dictated by the variable control of spatial resolution , contrast, noise,

and artificial features, called artifacts , such as scatter and beam hardening .

The limitation associated with computational tomography is the sample size, which greatly affects the details

obtained by the current generation of computational tomography systems . The resolution is restricted by the

pixel size of the detector, which depends on the component geometry and is often 2 to 3 times the pixel size .

The affected region which the detector covers is normally 2000–4000 pixels wide , and therefore, the test object

[48]
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size is restricted by it. Other shortcomings are field of view limitation, in situ monitoring, and attenuation contrast.

Comparing standard CT to microCT and nanoCT systems, the pixel size limitations indicated above can be

translated into dimensions, i.e., millimetres, micrometres, or nanometres, which are more tangible and relevant

than pixel size.

1.2.3. Digital Image Correlation-Based NDE

Digital image correlation (DIC) is a non-contact method to examine defects and has applications in structural

composites. The sensing mechanism can perform inspections on active and passive structures. It is an optical

technique which uses pattern matching and image registration methods for exact two- and three-dimensional

calculations of change in the object shape which is being inspected . The DIC technique is useful to

determine deformation, stress, strain, and displacement. This method has a number of applications in engineering

and manufacturing techniques to determine the changes and provide measurements for finite element analysis,

material and structural analysis, and quality control .

The three-dimensional digital image correlation works on the principle of combined methods of image correlation

with the photogrammetric location. Photogrammetry works on the triangulation principle, which is used for three-

dimensional coordinate measurements , as shown in Figure 7.

Figure 7. Working setup and principle of digital image correlation method-based NDE of composites.

Objects being examined are targeted in photogrammetry and a series of photographs are taken from different

angles for recreation of dimensional target locations of the object. The accurate location of every target can be

acquired by triangulation with various different target views of the object being examined . Prior knowledge of

the orientation and position of cameras for the images taken is important, and triangulation is dependent on these

factors in photogrammetry. There are two cameras in 3D DIC, mounted at each end of a tripod camera (base) bar;

therefore, the relative orientation and position of cameras is known with respect to each other. The cameras have

[61][62][63]
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the same working distance in this way, and therefore are easily removed from photogrammetry location

measurements as a variable .

When the load is applied, the pattern is deformed as the object being inspected is deformed. The structural

deformation under specified loading conditions is captured and recorded by two DIC cameras. Unique correlation

areas, which are called facets, are defined by initial image processing across the whole imaging area, and normally

range from 5 to 20 square pixels in size . Every consecutive pair of images is tracked with sub-pixel

precision from the measurement point located at the centre of each facet. The movements of these facets are

tracked by an image correlation algorithm by using mathematical techniques to achieve maximum similarities

determined from consecutive photographs . The software of image correlation is essentially designed with the

purpose of pattern matching, which can be performed on both curved and flat surfaces . The locations of each

facet in three-dimensions can be determined before and after every loading stage while examining in this way, and

therefore resulting in three-dimensional displacements, the plain strain tensor, and the three-dimensional shape 

. Data of full-field displacement can be acquired from the measurement facet point tracking in the applied

regular target patterns.

1.3. Electromagnetic Spectrum-Based NDE

Electromagnetic testing techniques utilise an electric current, magnetic field, or both to induce a response from a

test piece, and the received electromagnetic response is observed to identify and examine defects, fractures, etc.

Some of the popular electromagnetic techniques that include eddy current testing, infrared thermography, and

FMCW are discussed herein. Other variants that are also used under the electromagnetic spectrum but are not

discussed in length herein are: electrical impedance spectroscopy used for measuring the impedance response

from CFRP composites , broadband dielectric spectroscopy used for damage assessment by measuring the

dielectric response of composites , and electrical impedance tomography used in filament wound composites for

NDE sensing .

1.3.1. Eddy Current-Based NDE

Eddy current testing utilises an electrical coil through which a magnetic field is generated, and if the sample is a

conductive material, a circular electric current is created. This circular current helps to identify the crack existence,

surface damage, the difference in sample composition, and even the identification of material variations itself. The

working principle is presented in Figure 8. This method falls under electromagnetic testing and is one of the oldest

characterisation techniques . In this method, the changing magnetic field is produced by passing an alternating

current through the coil. The magnetic field induces an eddy current or circular current if the coil is located near the

conducting material, wherein the presence of any defect would modify this generated field. The ability to monitor

phase and magnitude changes in the concentrated eddy current over the sample gives this sensing method the

ability to detect cracks and corrosion damages, and measure coating thickness, material thickness, and material

conductivity to identify the overheating damages, and is also very useful to monitor the heat treatments .
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Figure 8. The working setup and principle of eddy current testing-based NDE of composites.

The advantage of eddy current testing includes superior sensitivity (compared to methods such as acoustic and

ultrasonic testing) to small surface cracks and the other defects which are located over and below the surface

layer, since the concentration of the eddy current is quickly recorded in such cases. It can also examine complex

parts, in terms of their surface contours and the nominal material preparation time that is required with the

capability of portable equipment . However, there are also some limitations, which include: only materials with

electrical conductivity can be examined (such as carbon fibre-reinforced polymer (CFRP) composites), rough

finishes can obstruct the examination, the surface must be reachable by a probe, requires exceptional inspecting

skills and experience by the operator, and its unsuitability for large-area examination . The setup of this

technique requires a testing coil, alternating current source, and a suitable display, as shown in Figure 8.

There are also more advanced techniques of eddy current testing, such as eddy current holography. This method

characterises the conductive composite structure integrity with different types of discontinuities, for example

corrosion and delamination, and surface and close to surface defects. The eddy current holography method is

utilised to visualise the delaminated areas in quasi-isotropic composite structures, and delamination generated by

impact energies can be efficiently inspected . Recent versions of high-speed non-contact eddy current

measurements have made the rapid assessments of unidirectional CFRP structures for delamination defects

feasible, at an increased rate of 4 m/s .

Eddy current testing has faced some further limitations when used for NDE of carbon fibre composite structures 

. There is difficulty in interpreting the measured signals, for example, determination of interlaminar crack

delamination. The depth of penetration is minimal for the detection of most surface and subsurface flaws. The

method is limited to composite structures which are composed of conductive fibres, for example, carbon fibre, and

most of the time requires modifications for lower conductive materials. Furthermore, in industries, the application of

eddy current testing is still limited because of the many intrusion aspects, for example, the resulting eddy current is
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easily influenced by any conductive component in the vicinity. Finally, the lift-off effect is required to be considered,

which includes the variation in the mutual inductance between the test sample and excitation coil because of the

changes in distance between the test sample, probe, and surface conditions .

1.3.2. Infrared Thermography-Based NDE

Also known as thermal imaging, thermography testing is a thermal radiation-based technique, which is recorded

using the infrared camera and emitted by the surface of the sample. The working principle for infrared

thermography is shown schematically in Figure 9. The presence of defects and flaws, such as impact damage or

delamination, changes the material thermal behaviour, leading to localised differences in the emitted, transmitted,

or reflected infrared emission of the sample, which can be detected by thermography measurements . When

the defect is deep below the surface (up to 4 mm) in thin components, less heat fluctuation is produced than the

heat produced by the defects which are located close to the sample surface. As a rule, the presence of defects in a

structure that have a smaller dimension (length, width, or diameter) than their depth is not able to be detected by

this testing method. Thermography is popular for detecting impact damage, delamination, cracks, structure

debonding, and water ingress in honeycomb structures .

Figure 9. The working setup and principle of thermography testing method-based NDE of composites.

Thermography can be operated in either a passive or an active mode. Passive thermography directly measures the

surface temperature for evaluation, since the region of interest will exhibit an abnormal hot spot when compared to

the surroundings and wherein an abnormal temperature profile indicates a potential problem. Active thermography

measures the surface temperature for evaluation after applying some thermal excitation, wherein the defects can

be detected by an anomalous heat transfer response evolving after a certain applied excitation time. Passive

thermography is normally utilised for materials which are not thermally balanced and possess temperature

contrasts with the neighbouring environment, for example this can be used for examination of water ingress after
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the landing of aircraft because of the considerable temperature difference between the aircraft material and water

. However, in active thermography, the material is exposed to thermal energy externally to induce the

temperature difference between the required areas by utilising various heat sources or even cold sources , or

both energy sources applied simultaneously on opposite regions , or both sources applied subsequently on the

same region . Active thermography is the most widely used technique for NDE of composite aerospace parts 

, and it can be subdivided into acoustic/ultrasonic-stimulated thermography , eddy current-stimulated

thermography , indirect material-based thermography (metal-based, carbon nanotube-based, and shape

memory alloy-based) , and optically stimulated thermography (pulsed/flash, lock-in/amplitude modulated,

step-heating, long pulse, frequency modulated, laser-spot, and laser-line type thermography) 

.

1.3.3. Frequency-Modulated Continuous Wave-Based NDE

Frequency-modulated continuous wave has been adopted in ultrasonic fields for NDE applications over the last

decade  and has been previously utilised for radar and optic applications . The ultrasonic techniques

coupled with FMCW systems have two types with respect to more standard approaches, which are pulse-echo 

and pulse compression . FMCW systems display unique features which have practical advantages in

real-world applications. The simplest scenario of FMCW radar sensing, as mentioned in  and as shown in

Figure 10, consists of a wave generator, transmitting and receiving unit, and processing and display unit.

Figure 10. Setup of frequency-modulated continuous wave radar system-based method for NDE of composites.

In this method, the FMCW system consists of a radar horn antenna that acts as a transmitter and receiver. The

process of measurement begins with the emitting ultrasound transducer excitation with the periodic chirp signal,

reaching to the defined frequency interval in a time achieved by a digital to analog (D/A) converter fed with a proper
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digital sequence within the signal generator. The emitted ultrasonic signal travels within the exposed medium and

reaches the receiving transducer, and acquires information about the medium, such as propagation delay .

It was also recently presented for characterisation of single-layer dielectrics . The FMCW transceiver,

specifically with regards to industrial applications, can obtain a kilohertz measurement rate at a higher integration

level. The sensor bandwidth and the layers’ refractive index are used to determine the inherent FMCW radar

resolution limit, for instance, the thickness of a few millimetres and below of the FMCW systems can be resolved

with the bandwidths of 40 to 90 GHz . The MHz bandwidth of the FMCW radar within 300 MHz to 300 GHz is

found useful to study defects in the range of 1000–1 mm respectively .

Though FMCW has recently been applied as a stand-alone system for NDE of WT blades for studying the

delamination, cracks, and water ingress , the literature shows that there is a wide area of applications for

FMCW-based NDE of composites. Due to its nature of interaction with dielectric materials, it can also be used to

identify variable materials present in a composite material , and the concept can even be extended for a

micron-level nanoparticle agglomeration study, which is a critical aspect in bespoke polymer nanocomposites 

. However, similar to other methods, it also has some limitations, which include a limited depth of

penetration against other methods involving ground penetrating radar, X-ray, Gamma, and neutron , in addition

to spatial resolution, which is limited by the bandwidth and low power, which limits the penetration depth in the

target composite .

The resolution limitation of MHz FMCW is widely overcome by shifting to a higher bandwidth of the microwave

spectrum, which is called continuous wave terahertz imaging, or popularly categorised as the THz NDE method

. This method is known to easily provide a resolution of up to the sub-millimetre range, with a proven

performance of identifying embedded wire of 35 µm in diameter and water ingress . Though the resolution

attained herein is higher, as the bandwidth is increased from GHz to THz, there is a corresponding significant

reduction in target material penetration.
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