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The optical biomedical sensor industry has grown enormously over the past few years and is expected to grow more in

the forthcoming days because of the extensive need for point-of-care testing devices. Researchers all over the world are

working on the implementation of highly sensitive, reliable, portable, and inexpensive biomedical appliances, which can

revolutionize this market. Optical biosensing is a vast topic, and numerous optical sensing techniques have been

presented over the years.These techniques and corresponding technological platforms enabling the manufacturing of

optical biomedical sensors of different types.the most representative cases are integrated optical biosensors, vertical

grating couplers, plasmonic sensors, surface plasmon resonance optical fiber biosensors, and metasurface biosensors,

Photonic crystal-based biosensors, thin metal films biosensors, and fiber Bragg grating biosensors ， these optical

biomedical sensors might enable the identification of symptoms of deadly illnesses in their early stages; thus, potentially

saving a patient’s life. 
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1. Background

The design and development of functional biosensors are one of the ways to meet the rising need for highly reliable and

successful medical analytical tools. According to the recent report released by Global Market Insights, the global

biosensors market is projected to hit USD 42 billion by 2027 . Biosensors are expected to see significant growth in

demand over the next six years due to their ability to resolve numerous analytical issues in diverse areas such as

medicine, pharmaceutical industry, food safety, and environment protection, among others . During the forecast

period, the overall biosensors market is projected to be driven by the rising demand for unique detection techniques for

early diagnosis in the healthcare field. Furthermore, the growing importance of biosensors in the real world has prompted

an increase in R&D activities around the world . Since Clark demonstrated the original idea of an oxygen electrode

biosensor in 1956 , and ever since then, scientists have made significant advances in biosensing methods, which have

since been implemented in clinical practice. For optical measurements, several techniques have been effective, including

absorption , fluorescence , refractometry , and polarimetry . Many optical biosensors use evanescent field

detection as their primary detection concept . Because of their extraordinary response to the change in the regional

refractive index (RI) in the vicinity of WG, evanescent field biosensors have drawn growing attention for instantaneous and

label-free biomolecular recognition .

In cancer studies, biosensors are utilized to evaluate modifications in cell protein content . Cancer cells consume the

body’s calories and change the mechanism of energy produced by the food in the body, and transmit impulses to

surrounding organs, nerves, and blood vessels, among other things, as they multiply. Human fluids, for instance, blood,

tears, saliva, and urine, can be treated as analytes in biomedical care, with various components of the chosen analytes

being analyzed . A good example is monitoring the glucose levels, typically connected with the necessity of taking a

blood sample and resulting in an obvious discomfort of the patients, while tears may be utilized as an alternative analyte

also reflecting the glucose concentration in the blood . Each illness has a higher possibility of being cured when

identified sufficiently early. Traditional disease detection methods are time-consuming and are, in most cases, expensive.

Modern biosensors are more efficient, of comparable reliability, and typically offer higher detection speeds than many

standard techniques, according to researchers . Nano- or microfabrication technologies might be deployed to

manufacturing such biosensors, enabling utilizing several optical, electrical, and mechanical transducers in these

biosensors with simultaneous mitigation of the manufacturing costs. Figure 1 shows the most important of these

groupings along with the market demand for biosensors in the present time and forthcoming years.
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Figure 1. Biosensor’s insight and market.

2. Integrated Photonic Biosensing Platform

In this segment, we have reviewed the three most commonly studied integrated photonic biosensors based on Mach–

Zehnder interferometer (MZI) , Young’s interferometer (YI) , and micro-ring resonator (RRs)  structures.

2.1. MZI and Young’s Interferometer Biomedical Devices

Interferometer-based biomedical sensors are one of the best responsive compact optical devices since they combine two

highly sensitive methods: waveguiding and interferometry techniques. A Y-junction divides the propagating light into two

single-mode WG paths in a standard interferometric biosensor, one of which contains the sample and is referred to as a

sensing arm, while the other is referred to as a reference arm. The sensing arm’s evanescent field interacts with the

sample and detects a RI variation at the surface, triggering an optical phase change. The beams recombine, after

propagating a certain length, resulting in constructive or destructive interference at the output, with the intensity

modulation corresponding to the RI change between the sample and reference arm.

Heideman et al. published the first biosensing application utilizing integrated MZIs in the early 1990 s . Ever since, a

major advancement has been made in the manufacturing of MZI sensors. Various structures have been successfully

developed using a range of fabrication materials, like Si N  , TiO  , Si , and polymers  with a detection limit

(DL) of 10–  to 10  RIU. Alternatively, chip-incorporated Young’s interferometers (YIs) demonstrated the aptitude to

detect biomolecules, resulting in a DL that was comparable to the MZI sensor . In a continuation study in 2000,

Brandenburg et al. used Si oxynitride as WGs to reduce the DL of YI sensors to 9 × 10  RIU . Schmitt et al. reported

Ta O -based YIs to further boost sensing capacity with the lowest possible DL of 9 × 10  RIU . Polymeric materials

have also been used in YI sensors in recent years, providing a low-cost, mass-production-ready process with acceptable

sensitivity .

An exceedingly receptive label-free MZI biosensor created on Si nitride slot WG was demonstrated . The sensing arm

of the MZI structure was made of a slot WG, whereas the reference arm was made of a standard ridge WG, unlike typical

MZI sensors. Higher sensitivity could be obtained utilizing the slot WG as a sensing region due to the slot WG’s property

of providing strong optical intensity in the low RI slot region, enabling high light-matter interaction. With a 7 mm long slot

WG sensing arm, the bulk RI sensitivity of the slot WG MZI sensor was obtained at 1864/RIU, which is higher than the

traditional MZI sensor based on the Si nitride platform. The biotin-streptavidin binding was used to investigate the

biosensing capability of the newly formed slot WG MZI. The system’s sensitivity was proven to be as small as 18.9 fM or 1

pg/mL of the streptavidin solution . The schematic of the proposed MZI biosensor is shown in Figure 2a, whereas the

microscopic image of the fabricated sample is given in Figure 2b .
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Figure 2. Biosensors based on slot WG configuration: (a) graphical representation of the slot-WG-based Mach–Zehnder

interferometer (MZI) biosensor consisting of a reference arm and a sensing arm joined with two Y-junctions. Reprinted

with permission from ref. ; (b) microscopic image of the fabricated MZI biosensor. Reprinted with permission from ref.

; (c) graphical illustration of the slot YI and the measurement setup; (d) SEM picture of the cross-section of the slot

WG. Reprinted from ref. ; (e) SEM picture of the cross-section of the reference ridge WG. Reprinted from ref. .

In , a RI sensor based on the slot WG YI was reported. The interferometer, which works at a visible wavelength of 633

nm, was built on a polymer platform. The phase shift of the interference model was determined using both TE (transverse

electric) and TM (transverse magnetic) polarization states with varying concentrations of glucose-water solutions. A RI

difference of 6.4 × 10  RIU was detected by the sensor in an experiment. Moreover, it was revealed that the slot YI

compensated for temperature fluctuations. The findings showed that a polymer slot YI, which could be manufactured

using a simple molding process, could provide high-performance sensing capability. The graphical illustration of the

principle of the slot YI is displayed in Figure 2c, and the SEM pictures of the manufactured device are displayed in Figure

2d,e .

2.2. Silicon μ-RR Biosensors

Si photonic sensors have been extensively explored to be employed in important areas like fundamental medical research

and diagnosis, bioterrorism detection, smart home healthcare diagnostics, and gas detecting . High sensitivity is

desired in these devices, which robustly relies on device size, optical loss, light polarization, and light-matter interaction.

Nonetheless, these performance values may not all be improved instantaneously; there is constantly a compromise.

Consequently, there is a demand to construct such devices, which are low-cost and straightforward to implement, based

on currently available technology. Optical RRs have gained a lot of interest in the latest years as one of the most

promising biological sensors . This type of sensor assesses variations in light behavior by the interaction of an EM

wave with biological molecules such as proteins, bacteria, cells, or DNA samples to determine the target molecules . An

interesting review on label-free biochemical sensing utilizing whispering gallery mode optical RRs was presented in .

The contact between the evanescent field and the bioparticles in the enveloping medium caused the change of light

behavior. The presence of bioparticles in the medium altered the effective refractive index of the medium, causing a

deviation in the resonator’s resonance conditions. The resonance wavelength deviation of the resonator, which is

associated with the number of bioparticles in the medium, was a product of such an interaction. An active polymer layer

could be deposited on the top to enable the resonator’s periphery to absorb bioparticles. This layer could mechanically

absorb or chemically react with the target bioparticles, causing a change in the effective index of the resonating mode .

In recent times, several eye-catching RR schemes have been demonstrated for lab-on-chip biosensing applications. The

sensitivity of RRs that is ∆λ/RIU depends on the degree of contact of the evanescent field with the analytes. The major

portion of the optical power propagated in the high index WG core in the strip WG design, while only a minor portion

traveled in the sample. The light-matter interaction could be enhanced by employing slot WGs. A slot-WG is made up of

two high-index rails isolated by a subwavelength wide low index slot area . With appropriate configuration, this double

core arrangement functions as a single WG, supporting only the lowest order TE and TM modes, with a substantial portion

of the electric field of the TE mode transmitting in the low index slot. In , an array of optical slot-WG RR sensors,

combined with microfluidic sample managing in a miniature unit, for multiplexed label-free biosensing was proposed, as

shown in Figure 3a. The elevated sensitivity of the slot-WG RRs merged with on-chip referencing, and physical modeling

offered a volume RI DL of 5 × 10  RIU and a surface mass density DL of 0.9 pg/mm  . Subwavelength grating (SWG)

WGs were highly desirable as they could tailor the effective index and dispersion characteristics of the driven mode. SWG
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WG-based RRs were highly sensitive due to the enhanced light-matter interaction . In , a 30 μm diameter

SWG RR was realized for biosensing applications. It offered a high sensitivity of 490 nm/RIU and a device DL of 2 ×

10  RIU. The SEM picture of the fabricated RR is displayed in Figure 3b along with a magnified image of a segment,

which is shown in the inset of the figure. Several interesting results were obtained by employing a double SWG WG RR

configuration . A non-contact piezoelectric (inkjet) method for the quick and effective printing of bioactive proteins,

glycoproteins, and neoglycoconjugates onto a high-density Si μ-RR biosensor array was demonstrated as shown

in Figure 3c . This method proved the accessible manufacture of multiplexed Si photonic biomedical sensors for lab-on-

a-chip functions and was additionally related to the functionalization of any semiconductor-based biomedical sensor chip

. A brightfield micrograph displaying an array of Si photonic RR biosensors is presented in Figure 3d. Further, the SEM

image of a range of three exposed μ-rings and one temperature reference μ-ring is revealed in Figure 3e. Electrical

thermo-optic tuning of ultrahigh-Q μ-toroid resonators was demonstrated and proposed for biomedical applications .

The SEM picture of the RR is exhibited in Figure 3f.

Figure 3. Different micro-ring resonator (RR) designs: (a) a packaged optical slot-WG RR sensor array for multiplex label-

free assays in labs-on-chips. Reprinted from ref. ; (b) sub-wavelength grating for enhanced RR biosensor. Reprinted

from ref. ; (c) three-dimensional (3D) graphical illustration of several adjacent devices on a Si photonic μ-RR biosensor

array. Reprinted with permission from ref. ; (d) a brightfield micrograph showing an array of Si photonic μ-RR

biosensors. Reprinted with permission from ref. ; (e) SEM image showing an array of three exposed μ-rings and one

temperature reference μ-ring. Reprinted with permission from ref. ; (f) microtoroid resonator. Reprinted with permission

from ref. .

2.3. Vertical Grating Coupler (VGC)

Vertical grating coupler (VGC) is a photonic device that is formed by a finite number of periodic perturbations of the WG

height of a shape chosen appropriately to vertically in- and out-couple optical signals to/from WGs via chip facet. In its

conventional form, well-known from SOI-  and SiN-  integrated photonics technologies, VGCs are deeply patterned

(i.e., having a perturbation depth like the WG height) structures and offer large coupling angle tolerances and wide 1dB

bandwidth (typical values of 40 nm in the case of SOI gratings). This type of VGCs can be used as an efficient coupling

structure between integrated photonic WGs and optical fibers or free-space optical components as well as in vertical chip-

to-chip optical signal coupling. Although the operation of such grating depends on the effective refractive index of the

mode guided in the patterned WG (affected by the ambient), the wide bandwidth of this type of grating prevents it to serve

as a sensor.

On the contrary, the shallowly patterned gratings, especially when fabricated in sol-gel-derived WG films, seem to be a

very attractive candidate for being used as a photonic sensor device. Such VGCs were reported in this application for the

first time by Lukosz et al. . The research groups, led by Szendrö, also significantly contributed to the development of

this topic , leading to the commercial implementation of this device . VGCs sensors were also developed by the

group led by Karasiński  and by several other researchers . The operation of such a sensor is

depicted schematically in Figure 4. Inspired by .
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Figure 4. Schematic operation of a vertical grating coupler (VGC)-based sensor. Adapted from ref. .

The quasi-parallel light beam was inserted from the bottom to the VGC structure, and, in the case of the optimal coupling

angle, it was coupled to the WG layer. The optimal coupling angle Θ depended on the effective refractive index of the

guided mode in the WG layer that was affected by the material indices of the substrate (n ), WG film (n ), and the

ambient above the grating (n ). Typically, VGCs sensors were read out in a goniometric setup using a fixed-wavelength

laser source, where the optimal coupling angle varied with the fluctuation of the refractive index change of the measured

material above the grating. An exemplary schematic of such a setup is shown in Figure 5 .

Figure 5. Schematics of the measurement setup for VGC sensors. Reprinted from ref. . PS—planar structure, GO—

goniometer, SM—stepping motor, LD—laser diode, P—polarizer, PR—polarizer rotator, G—generator, D—detector, NH—

homodyne nanovoltmeter.

The shallow pattern of the sensor VGC resulted in a tight in-coupling resonance condition; this was not very profitable for

the input coupler efficiency (that was not an issue in the case of the sensor device) but made the readout of the exact

optimal coupling angle more precise. An example of the angular modal spectra of the SiO :TiO  VGC taken from  is

shown in Figure 6.

Figure 6. Angle modal spectra of the surface grating coupler used in the experiment (a) and a close-up on the in-coupling

peak TM0 (full width at half-maximum (FWHM) = 0.024°); (b) Reprinted from ref. .
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Consequently, the VGC sensors fabricated in SiO -TiO  WG films demonstrated a high sensitivity of about 16°/RIU with a

detection limit for ambient refractive index sensing as low as 5.0 × 10  RIU . One of the fundamental advantages of

VGC sensors is their fabrication simplicity. Typically, VGC-based sensor devices are fabricated on glass substrates in sol-

gel-derived titanium oxide (TiO ) based or polymer WG films. Fabrication of such a sensor device starts with the WG film

deposition using a spin or dip-coating technique. Further, the grating pattern is directly imprinted on the non-hardened WG

film. Finally, the WG film is hardened. No additional expensive technological steps such as lithography or etching are

required for the fabrication of such sensor structures. This process is schematically shown in Figure 7.

Figure 7. Schematic representation of VGC sensor fabrication by direct imprinting on WG film.

The possibility of multichannel operations of such sensor devices leading to prospective multiparameter sensing was

highlighted in . Additionally, in this case, the sensor device fabrication was limited to imprinting a single grating coupler

on the WG film.

3. SPR-Optical Fiber-Based Biosensors

Localized surface plasmon resonance (LSPR) and propagating surface plasmon polaritons (SPPs) are two categories of

SPR . When the size of a metallic nanostructure is smaller than the incident wavelength of light, LSPR occurs, resulting

in collective but non-propagating oscillations of the surface electrons in the metallic nanostructure . The LSPR is

considerably affected by the RI of the surrounding medium, making colorimetric plasmonic sensors possible . The

incident EM field is also concentrated around the nanostructure by LSPR. Plasmon-enhanced fluorescence (PEF) ,

surface-enhanced Raman scattering (SERS) , and surface-enhanced infrared absorption spectroscopy (SEIAS) 

 are all examples of how the local EM field can affect optical effects like fluorescence, Raman scattering, and infrared

absorption. The LSPR-related EM field stretches into the ambient medium (usually 30 nm) and deteriorates exponentially

for a dipole.

SPPs, in distinction to LSPR, are charge oscillations circulating on the surface of thin metal films. SPP cannot be excited

by free-space radiations; as an alternative, resonance excitation requires momentum matching, for instance, by periodicity

in a nanostructure. The RI of the ambient medium modulates SPP, which then transduces the sensor’s signal. In PEF and

SERS, SPP can also be used to modulate radiation. The evanescent EM field of SPP decomposes with a longer length

(usually 200 nm) than that of LSPR, permitting the SPP to be modulated by modification at a distance greater than that of

LSPR. For label-free biomolecule identification, SPP modes were utilized in sensing applications. Since SPP propagated

hundreds of μm along the surface, it varied from LSPR for sensing. This had a unique benefit in that the incident laser

could prevent physical contact with the sample under observation. This prevented interference from heavy background

noise as well as disruption to the sample from the high-energy laser .

SPR-based optical fibers operate on the theory of the guided EM wave . The biggest portion of the EM-wave

propagates through the core of the optical fiber, but a minor fraction of it extends from the cladding as an evanescent field,

which collides with the plasmonic metal surface, and excites the free electrons . When the frequency of the incident

photon and the free electrons are complemented, the electrons begin to vibrate, and an SP wave is formed at the metal-

dielectric boundary. At the resonance state, a sharp loss peak occurs, which is highly responsive to the RI of the ambient

medium. SPR sensors based on optical fibers were first commercialized utilizing silica optical fibers (SOFs), then polymer

optical fibers (POFs). These devices did not need expensive optical apparatus and could be used to create a dense

miniaturized device with remote sensing capabilities. Temperature , pressure , environmental monitoring ,

food safety , and biomedical applications , among others, all benefited from SPR-based optical sensing in

recent years. An interesting review on plasmonic fiber optic biochemical sensors was recently published in , which

addressed the recent developments in optical fiber-based, label-free recognition devices based on SPR effects.
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For both labeled and label-free approaches, the use of optical-fiber devices as sensors provided several advantages such

as size, cost, light path manipulation; nevertheless, those benefits were better reflected in label-free solutions because

they offered total cost-saving and accessibility factors. Fiber-optic sensors, either as a hand-held probe or as a set of

distantly controlled devices along a fiber-optic cable, might be placed into the media to be sensed, such as environmental

monitoring applications . In applications like pharmaceutical science, where many experiments must be conducted

simultaneously, fiber-based diagnostics were not viable with bulk optic laboratory equipment like microplate array

systems. Nevertheless, there appeared to be some promising applications where the fiber sensors’ low cost and

accessibility might guide to general adoption, for instance, testing for viral or bacterial diseases , testing for toxins in

food handling plants, and examining the water quality in urban water supply structures or the atmosphere containing

toxicogenic activities, and resource mining processes.

Various plasmonic sensors based on fiber-optics have lately been depicted based on the transmission probe, where noble

metals were mounted on the etched cladding section, for instance, single-mode fibers (SMFs) , multi-mode fibers

(MMFs) , wagon wheel fibers , U-shaped fibers , D-shaped fibers , and Bragg grating fibers , among

others . Biochemical reactions usually result in small RI changes in the ambient medium, and SPR-optic fiber

devices are extremely vulnerable to these minor RI variations. As a result, these sensors became common in a variety of

biosensing applications. An SPR-based optical fiber biomedical sensor for the recognition of CRP in serum was proposed

. Figure 8a illustrates a schematic of an SPR-optic fiber-based biosensors. When incident light passed through the

fiber core with an incident angle larger than the critical angle, the evanescent field produced by the absolute reflection of

the incident light revealed through the metal film at the same time. Strong light absorption happened as the parallel part of

the incident light wave vector matched that of the SP wave. As a consequence, the output signal showed an SPR dip at a

certain wavelength, defined as the resonance wavelength. The photo of the fabricated SPR sensor is shown in Figure 8b.

An SPR-optic fiber DNA biosensor was proposed in 2013 for the selection of DNA aptamers against the main peanut

allergen protein, Ara h 1, which provided an alienation constant of 353 ± 82 nM . In 2015, researchers demonstrated

an extremely sensitive, label-free, and selective SPR-optic fiber-based glucose measuring device. It had a sensitivity of

1.514 nm (mg/mL)  and could detect concentrations ranging from 0.1 to 2.5 mg/mL . An SPR-optic fiber-based

biochemical sensor for evaluating infliximab concentrations in the serum of inflammatory bowel illness patients was

recently demonstrated, which provided a DL of 0.3 ng/mL .

Figure 8. Surface plasmon resonance (SPR)-based fiber optic sensing technique: (a) graphic illustration of the

experimental arrangement. Reprinted from ref. ; (b) picture of the manufactured fiber optic SPR sensor. Reprinted from

ref. .

In 1978, the photonic crystal fiber (PCF) concept was proposed for the first time. It was proposed that a fiber core be clad

with Bragg grating, which is like one-dimension (1D) . The first PCF was reported in 1996 at the Optical Fiber

Conference (OFC) , and it was composed of a 2D-PC with an air core. PCFs have a core and cladding that are

identical to traditional optical fibers, but PCFs have a periodic air-hole in the cladding region that controls light

propagation. Changing the geometry of air holes and the number of rings can be used to control the light propagation .

In , the first fiber-based plasmonic phenomenon was demonstrated by substituting graphene for the metal film and

using thermal chemical vapor deposition (CVD) to produce a thin layer of graphene. An improvement in the sensing

capability of SPR sensors with a graphene layer on top of Au/Ag was also demonstratable as compared to corresponding

SPR sensors without the graphene layer . The use of Au as an active plasmonic medium, as well as the

selective penetration of the PCF core with a high RI to achieve the reconciliation of positive and negative index effects,

was investigated . D-shaped PCF sparked a lot of interest in SPR sensing due to its ease of production and utilization.

The top surface of the fiber cladding was tailored to make it smooth, like how the metal layer and sample were mounted
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on top of the flat fragment in a D-shape. The metal layer in D-shape PCF could be placed close to the core, promoting

close contact with the sample and improving system efficiency. Many D-shaped PCF sensors were developed to date for

a variety of applications .

Sensing with PCF SPR is a promising and successful technology. These sensors, on the other hand, are still in the early

stages of device production technology. Mainly, the findings in the studies used a proof-of-concept approach, as well as

theoretical and computational models. Due to fabrication challenges, the usage of proven theoretical models for sensor

application was inadequate. Even though a few experimental procedures were published in the literature, their

implementations are limited . As a result, the empirical performances of the modeled sensors remain unexplored.

Future research must concentrate on proving proof-of-concept for real PCF SPR sensor processing and analyte

recognition for a wide variety of chemical and biological samples. One future advancement path for the PCF SPR sensors

was transportable and instant lab-on-chip analyses for point-of-care diagnostics. The aim should be to switch existing

fluorescence detecting with label-free PCF SPR detecting, enhancing the capability to detect a variety of analytes, reduce

test expenditures, and conserve time by lowering sample formulation time. Unlike fluorescent sensors, the PCF SPR

could be engineered to be redundant for purposes that need constant monitoring. As a result, PCF SPR device

configurations should be made straightforwardly and cost-effectively.

A brief explanation concerning the metals employed in fiber SPR and LSPR technologies was discussed. Using well-

recognized technologies like electroless deposition , electroplating , or sputtering , thin noble metal layers

could be effectively placed on optical fibers. The last of these is most frequently used, and it delivers exceptionally high-

quality metal thin films. A 5 nm to 10 nm chromium or titanium buffer layer is frequently inserted between the optical fiber

surface and gold layer to enable adhesion. An alternative is to thermally anneal the gold coating, which adjusts its

morphology and increases its durability . It is crucial to remember that obtaining exceptionally uniform metal layers at

the thickness needed for optimal SPR excitation (~50 nm) is difficult, and consequently, rugosity or fragments can form

instead of smooth layers. Since the effective complex permittivity of the metal layers differed from that of the bulk values,

this impacted the SPR properties (which were often used in the design of the sensors) . The utilization of non-metal

layers for plasmonic applications, for example, some forms of semiconductors and oxides, has been significant; current

progress on the materials side, as discussed recently , still has to be investigated in fiber-based structures, although

they exemplified promising research directions. An interesting review of alternative plasmonic materials beyond gold and

silver was presented in .

Microstructured optical fibers (MOFs) are described by a sequence of air holes that run along the length of the fiber 

. The geometry, size, and relative location of the air holes define the optical properties of this type of fiber. MOFs

with high evanescent fields in the air holes can be built and manufactured by varying these parameters. The use of MOF

in biochip applications was demonstrated for the first time in 2006 . An optic-fluidic coupler chip made of PMMA

polymer and fabricated with a CO  laser contained a 16 mm long fragment of MOF. The developed chip configuration

allowed continuous liquid flow control and instantaneous optical characterization via the MOF. The MOF was

functionalized to catch a particular single-stranded DNA string when inserted into the chip by immobilizing a sensing layer

on the microstructured internal surfaces of the fiber. The sensing layer comprised a DNA string that was paired to the

target DNA string, permitting extremely selective DNA hybridization. The evanescent wave sensing theory was used to

detect the captured DNA optically. The presented method permitted the analysis of sample volumes as small as 300 nL

and the production of miniaturized transportable devices due to the tiny chip size .

4. Metal-Insulator-Metal WG-Based Biosensors

Over the past few years, metal-insulator-metal (MIM) WG configuration has been widely studied due to its

appropriateness for conducting SPP waves. SPPs are optical waves that travel along with a dielectric-metal boundary,

making them interesting for several purposes . SPPs are strictly constrained to dielectric-metal interfaces

penetrating ~10 nm into metal (identified as skin depth) and usually more than 100 nm into dielectrics (depending on the

wavelength). These WG structures can be combined with different shapes of air cavities to create a compact and dense

RR configuration, which can be used in several applications , out of which biochemical sensing, for

example, the solution concentration and pH value, which can be evaluated through RI variations is the most widely

studied topic. Compared to the other optical sensors, these structures have superior parameters of sensitivity and

precision as well as much smaller dimensions. Several attempts were made to improve the size and shape of the

resonator cavity, which could lead to better sensitivity and transmission, which in turn determined the quality factor (Q-

factor) and figure of merit (FOM) of the sensor.
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Recently, we presented several RI plasmonic sensor designs based on SPP waves to effectively use them in biomedical

applications . There were several other biomedical applications, such as photothermal

therapy , blood group detection , glucose sensing , cancer cells , bacillus bacteria  that were

also studied based on MIM WG configuration. Figure 9a–f shows unique sensor designs proposed by different

researchers for RI sensing applications . These sensors exhibit outstanding sensing performance,

which incorporates high sensitivity (S), high-quality factor (Q-factor), and noteworthy figures of merit (FOM). The

sensitivity (S) can be expressed as S = ∆λ/∆n, where ∆λ is the change in λ , and ∆n is the variance of the ambient RI. A

noteworthy factor in a wavelength filter is the ability to have elevated wavelength selectivity, which signifies a high-quality

factor (Q-factor). The Q-factor can be donated as Q = λ /FWHM, where FWHM is the full width at half-maximum of the

transmittance spectrum. Likewise, FOM is determined as S/FWHM. A compact plasmonic coupled device based on a MIM

WG has a single resonance cavity, as well as a clear and broadband tunable spectrum for sensing applications. As a

result, optimizing the sensor configuration for the best performance is a critical problem in designing a plasmonic MIM WG

RI sensor .

Figure 9. Recently proposed metal-insulator-metal (MIM) WG plasmonic sensors for biochemical applications: (a) RR

coupled to a MIM WG containing tapered defects. Adapted from ref. ; (b) tunable plasmonic band-pass filter with dual

side-coupled circular RRs. Reprinted from ref. ; (c) nanodots arranged MIM semi-RR cavity for biochemical sensing

applications. Reprinted with permission from ref. ; (d) multiple Fano-like MIM plasmonic arrangement established on

triangular resonator for refractive index (RI) sensing. Reprinted from ref. ; (e) MIM WG-coupled T-shape cavity with

metal nanorod defects. Reprinted from ref. ; (f) plasmonic Bow-Tie configuration. Reprinted from ref. .

The expansion of analytical and numerical simulation software, for instance, COMSOL and Lumerical, which are

commercially available, offered a better chance of understanding the optical characteristics of plasmonic sensor

structures. Several systems, such as E-beam and ion beam lithography, could be used to fabricate nanostructures for

plasmonic sensors, allowing for the lucrative fabrication of plasmonic devices over sizable regions. Furthermore, wet

chemical etching or vapor deposition methods might be used to simply manufacture metal nanoparticles. Nevertheless,

the objective of this paper was not to go over these processes in-depth. As a substitute, we recommended a few review

papers providing detailed knowledge on this important topic . Two recent reports on the development of plasmonic

sensors established on MIM WGs were provided  for the readers interested in obtaining detailed knowledge on

their working mechanism, suitable materials, fabrication process, and applications.

5. Metasurfaces for Biosensing

Veselago anticipated the development of synthetic materials by manipulating their permittivity and permeability in 1968

. This was finally discovered by the works of Pendry et al.  and Smith et al. , which made Veselago’s

hypothesis come true and revolutionized our perception of electromagnetics. These so-called metamaterials are artificial

composite nanostructures with special characteristics for manipulating light and display a variety of stimulating novel

optical effects and functions that natural materials cannot accomplish . Metasurfaces (MSs) are structures

that take advantage of the miniature footprint of metamaterials. They are fairly straightforward to produce and have a

reduced size than traditional optical elements. They are made up of optical elements decorated on a surface with

subwavelength sizes that form the wavefront of light to present an anticipated optical phase spatial profile which has

directed to the invention of ultrathin optical elements with different capabilities that outperform their bulkier rivals .

Additionally, this new optical phenomenon demonstrates the EM spectrum spanning from visible to terahertz (THz)

frequencies . These MS-based flat systems constitute a new type of miniature, flat, and lightweight optical elements.

Intensive research was conducted to employ MSs for biomedical applications .
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All-dielectric asymmetric MSs, which are made up of groups of meta-atoms with broken in-plane inversion symmetry, have

recently been discovered to have high-quality resonances resulting from the exciting physics of bound states in the

continuum . Dielectric MSs and hyperspectral imagining were merged in an intriguing approach to creating an

ultrasensitive label-free analytical platform . This method could collect high-throughput digital sensing data at an

extraordinary level of fewer than 3 molecules/μm  by using smart data-processing tools and could collect the spatially

solved spectra from millions of image pixels. This unique sensor architecture allowed spectral data extraction from a

single image without the use of spectrometers, concreting the path for compact analytical applications. The potentials of

dielectric MSs to analyze biological entities and atomic-layer thick 2D structures over wide areas were extended thanks to

a fruitful amalgamation of nanophotonics and imaging optics. Spectral data recovery from a single image, devoid of

applying spectrometers, supported by this exceptional sensor layout was demonstrated, paving the way for transportable

diagnostic applications. Dielectric MSs could now analyze biological units and atom-layer thick 2D materials over wide

areas thanks to a fusion of nanophotonics and imaging optics. A new category of RI sensor established on all-dielectric

gradient MS was proposed and analyzed. A unique approach of optical data processing, which was established on

intensity distribution over several diffraction orders, was proposed. The intensity of 4450%/RIU and the phase sensitivity

of 1200 /RIU were demonstrated . The sensor design based on gradient MS is demonstrated in Figure 10a,b .

Figure 10. (a) The design of sensor-based on gradient metasurface (MS). Reprinted with permission from ref. ; (b)

possible optical sensing scheme. Reprinted with permission from ref. .

Endoscopic optical imaging with high resolution is a well-known technique in biological imaging for analyzing inner organs.

Optical coherence tomography (OCT) is an imaging procedure that can acquire tissue microstructures at millimeter depths

in the tissues and has been employed for clinical diagnosis in head and neck cancer, cardiovascular disorders, and

dermatology. OCT detects changes in the sample’s RI using a low-coherence light interferometry setup and, thus,

provides morphological details. A medical endoscopic optical imaging system established on OCT with a metalens was

developed . It discussed the problems of spherical and chromatic aberration, all of which were unacceptable. There

were some other notable works on MSs based flat optics  and endoscopic optical imaging . MS

biosensors were also used to identify cancer biomarkers, such as breast, liver, and oral cancer. For the recognition of

breast cancer biomarkers, an optofluidic MS biosensor was created . Another example was the assessment of

biomarkers for liver cancer . The apoptosis of oral cancer cells was analyzed using an electromagnetically induced

transparency (EIT) like MS .

Wearable sensor technology is a critical connection to personalized medicine in the future. It is important to acquire a full

picture of human health; however, tracking several analytes within the body at the same time is difficult. The researchers

depicted a wearable plasmonic-electronic sensor with universal molecular identification capability . Since the practical

task of preserving the plasmonic activities of the fragile nanostructures under different distortions was resolved, a

compliant plasmonic MS with SERS-activity was established as the basic sensing module in a wearable device. The

proposed sensor, when used in conjunction with a versatile electronic sweat removal system, could noninvasively extract

and fingerprint analytes within the body established on their spectral SERS spectra. The variety of trace-amount drugs

within the body was effectively tracked, and an individual’s drug metabolic profile was obtained as a proof-of-concept

illustration. By offering a universal, responsive molecular examining means to evaluate human health, the sensor filled a

void in wearable sensing technology . An attractive design of a wearable electronic nose for armpit odor testing was

suggested in  by utilizing an economical chemical sensor array incorporated in a ZigBee wireless communication

network. Figure 11a describes the model of the fabricated wearable e-nose. The mask kept the sensor surface from

rubbing but permitted the free passage of the air and odors. The body odor could be easily gathered from the armpit area

using this sensor. The sensor resistance as a function of the displayed VOCs and their concentrations were used to verify

the odor data. The system used ZigBee technology to transmit data from the sensor to the computer, which is well known
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as a low-cost wireless network communication . In , a wearable and adaptable pressure sensor design was

proposed, which was critical for the continuous monitoring of a person’s health. It showed an excellent performance with

the accord of numerous qualities, containing high sensitivity for a broad pressure range and an ultralow energy intake

level of 10  W. Furthermore, pressure sensors might be incorporated onto robots as artificial skins, allowing them to feel

pressure and the dispersal of pressure through the synthetic skin. The sensor was attached to the artery vessel at the

wrist, as shown in Figure 11b, to reveal their potential of detecting human vital physiological signals . The optical

images of the assembled unit are revealed in Figure 11c,d, and the pressure provided excellent versatility. After being

decorated with single-walled nanotubes, the sheet resistance of paper sheets decreased to about12.6 kΩ, which was

adequately conductive to be used as an active layer in a pressure sensor .

Figure 11. (a) Model of a wearable e-nose established on the adaptable inkjet-printed chemical sensor array incorporated

in ZigBee wireless network. Reprinted from ref. ; (b) pressure sensor was attached to a human wrist for heart pulse

detection. Reprinted from ref. ; (c) photograph of a manufactured pressure sensing device connected with Al wires.

Reprinted from ref. ; (d) photograph of a bent pressure sensing device. Reprinted from ref. .

6. Photonic Crystals-Based Biosensors

Biomarkers have been detected using sensitive biosensing technologies such as SPR, electrochemical biosensors, and,

more newly, inverse opal photonic crystal (PhCs) biosensors . The invention of PhCs in 1987 by Yablonovitch

 and John  sparked a lot of interest. EM waves propagated inside the PhC, and disruptive interference occurred for

certain wavelengths, resulting in a photonic bandgap (PBG), which was close to the energy bandgap of electron waves in

a semiconductor. It might be possible to control light propagation due to the likelihood of producing PBG. Light bending

, optical diode , negative refraction , and self-collimation  were only a few of the notable

applications of PhCs. Currently, PhCs biosensors were employed to identify a wide range of biological analytes selectively

and sensitively, including DNA, cells, bacteria, proteins, and antibodies. This allowed for improved sensing efficiency

concerning limit-of-detection (LOD) .

Various studies in PhC bioassays and their usage in bio-systems have been published to date, with an emphasis on the

physical and optical activity of PhCs . In , a detailed description and understandings of the inverse opal bio-

sensing procedures for detecting biological factors such as viruses, proteins, and DNA were presented. Photonic Bragg

diffraction planes could be formed in inverse opal structures with periodic arrays because of high and low dielectric zones.

The photonic band’s optical properties contributed to their use in bio-sensing systems. By binding biomarkers to pore

surfaces or flowing liquids through inverse opal pores, the detection process in inverse opal configurations was associated

with a shift in RI in the pores and voids of inverse opal films. These variations preceded the blue/red shift in PBG in

reflected wavelength spectra and color modifications in inverse opal thin-films . The porous structure of the inverse
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opal created a large surface area for small molecule recognition. The optical properties of the exceedingly ordered inverse

opal were supposed to be fine. Optical investigations revealed that different pore sizes in inverse opal resulted in different

reflection or transmission spectra .

Due to their potency in portable point-of-care-testing tools and color metrics for graphical biosensor applications, inverse

opal label-free materials are appealing and appropriate sensing systems for the recognition of proteins. Inverse opals may

be used to diagnose biological particles without the use of advanced research tools because of their intuitive structural

color . The detection of alpha-fetoprotein (AFP), a liver cancer biomarker, was proposed using a photoelectrochemical

biosensor founded on ZnO inverse opal with a LOD of 0.01 ng/mL. ZnO inverse opal and quantum dots were used on the

photoelectrochemical electrode surface in this analysis . In another study, an inverse opal biosensor based on inverse

opal-Ag S NPs was proposed for the detection of AFP . The ZnO inverse opal/Ag S composite resulted in the

production of long-wavelength light absorption. The LOD for AFP detection was 8 pg/mL, which was nearly 1.5 times

higher than the former process. This outcome was due to better photo-generated electron conduction in ZnO inverse

opal/Ag S structures due to the successful matching of energy levels among the transmission bands of Ag S and ZnO

inverse opal . Apart from the TiO  based inverse opal, IOH nonporous arrangements could be employed in label-free

and selective recognition of the IgG antibodies . With increasing IgG concentration, the color of the IOH structure

shifted from green to orange, which could be seen with the naked eye, as well as a 50 nm bandgap shift in absorbance

spectra.

Utilizing self-assembled Au nanoparticles conjugated with biotinylated anti-gp120 polyclonal antibodies to particularly

capture and identify HIV, a nanoplasmonic-based platform was designed . Via impedance spectroscopy of viral lysate

samples, an electrical sensing process was established to identify captured HIV-1 on magnetic beads coupled with anti-

gp120 antibodies . PhC biosensors, for example, use dielectric permittivity variations at the interface of a transducer

substrate and a liquid media to provide a fast and precise optical recognition procedure for biomolecules, cells, and

viruses . In this case, optical detection using PhC biosensors for instantaneous monitoring of virus infection can be

more valuable than laborious pathogen-specific molecular recognition methods such as polymerase chain reaction (PCR)

and enzyme-linked immunosorbent assay (ELISA). The unharmed virus particles in actual test samples were detected

using instant and responsive viral PhC sensing procedures that did not involve labeling or multiple chemical alteration

methods. By immobilizing antibodies on the periodic arrangements of the PhC surface, a reflectometric 2D PhC biosensor

was developed for the recognition of the influenza virus in human saliva with a LOD of 1 ng/mL .

Early discovery of the virus applying non-invasive, high-sensitivity, and innovative bio-sensing methods was highly

successful in keeping the individual safe from viral infections . As shown in Figure 12a, the periodic composition of

dielectric material on a PhC sensor caused the formation of an optical resonance at a specific wavelength, at which EM

standing waves spread into the liquid media in contact with the PhC surface. The PhC nanostructures were created by

replica molding of a low index polymer, which was then covered with a high index TiO  dielectric layer to form a periodic

surface structure. When lit up with a paralleled broadband light at a normal incidence angle, the PhC configuration

reflected only a small resonant band of light with practically 100% efficacy, whereas all other wavelengths were

transmitted. When biological samples like proteins, viruses, or cells connected to the PhC, the peak wavelength value

(PWV) of the reflected resonant continuum moved to a greater value, as shown in Figure 12b.
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Figure 12. Schematic of PhC-based virus recognition platform. (a) The bottom surface of PhC biosensor microplate wells

is made up of a nanostructured subwavelength grating that is covered with TiO . Reprinted from ref. ; (b) binding

occurrences inside the immediate proximity of the sensing area alter the bulk RI; therefore, the peak wavelength value

(PWV) of the reflected light is changed. The swing in the peak wavelength (DPWV) is in direct proportion to the

attachment of molecules and/or bioagents onto the biosensing surface Reprinted from ref. .

7. Photonic Biosensing with Thin Metal Films

Sample handling, biological detection and amplification, transduction, and electronic signal processing are all areas where

thin films are used in biosensor systems . Several planar microelectrochemical chips on Si or glass substrates with

thin-film electrodes of various shapes and arrangements have been developed and utilized in voltammetric and

potentiometric sensors. Bilayer lipid membranes (BLMs) are thin-film materials that are flexible and can be used in

biosensors . The use of thin-film electrodes to develop BLMs on a planar chip revealed new possibilities to

produce miniaturized biosensors along with basic research into the electrical and mechanical properties of biological

membranes. It was 30 years ago that the first effort to build BLMs was made . However, the solvent was held in the

structure of the membranes, and the results cannot be replicated. Methods for making solvent-free lipid membranes were

also presented, but their main downside was that these films were extremely brittle and susceptible to collapse when

subjected to mechanical or electrical shock . The literature documented methods to enhance the constancy of these

lipid films, such as interconnected membrane bubbles in organic solvents without a substrate aperture or the so-called

monolayer technique .

Biosensors of the current generation are analytical lightweight instruments made of thin films. The main benefits of these

biosensors are their sensitivity, accuracy, rapid response time, accessibility, and small cost. All these characteristics are

closely linked to the thickness of the films used in the sensor fabrication . The interaction of the biological analyte with

the surface-modified thin film is the key basis for a biosensor’s detection principle. The thin film functions as a

physiochemical-optical, mechanical, magnetic, and electrical transducer, converting the signal produced by the biological

analyte recognition into another observable signal . SPR spectroscopy is a well-known analytical method for

quantifying molecular interactions at an interface without using labels. The technique works by identifying slight variations

in RI of a dielectric medium in contact with a thin metal film on the nanometer scale. Gold (Au) has historically been used

as the metal layer because of its elevated plasmonic activity and chemical inertness. Further, metals such as chromium

(Cr), copper (Cu), and aluminum (Al), on the other hand, are receiving more attention as plasmonic materials. Al has a

higher electron density and a higher negative permittivity than Ag or Au, making it remarkably interesting . Al is

plasmonically active from the UV to the near IR regions due to this attribute, which causes plasmonic resonance over a

broad wavelength range . Al is also attractive for industrial applications because of its abundant supply, low cost, and

ease of incorporation into manufacturing processes like CMOS.
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In , SPR biosensing with Al thin-films was demonstrated employing the traditional Kretschmann structure that had

formerly been overshadowed by Au films . In both bulk and surface samples, Al films displayed excellent sensitivity

efficiency in both classifications. In comparison to Au, the Al/Al O  layer had a significant effect on controlling nonspecific

binding in blood serum. When used for SPR imaging research, Al film had a higher sensitivity and a broader working

range than Au films, according to further characterization. The Al thin-film, when combined with its cost and processing

advantages, can become an extremely beneficial plasmonic substrate for a large range of biosensing functions in SPR

formations. In , the cholesterol sensors comprising of a blend of cholesterol oxidase (ChOx) and zinc oxide (ZnO)

nanoparticles were cultivated on ITO/glass substrates by thermal evaporation technique, and their sensing attributes are

analyzed in air.

In , an ellipsometry study on gold nanoparticles (AuNPs) coated on Au thin film was demonstrated for biosensing

applications. The SPR dip could be tuned from the visible to near-IR merely altering the AuNP concentration. Figure 13a

reveals the SEM photograph of the distribution of the AuNPs on the gold surface after a 1-min treatment of the amine-

functionalized gold substrate. These samples were placed on the dove prism using a microfluidic flow cell to comprehend

the optical properties of different AuNPs’ distribution immobilized on the Au substrate in water. Figure 13b depicts the

architecture of the experimental setup in the TIR arrangement. With this system, the optical response of various samples

was measured using ellipsometry signals (Ψ, Δ). Bulk sensitivity tests were performed to calibrate the SPR unit based on

ellipsometric signals (Ψ and Δ) and by infusing glycerol-water mixtures of different concentrations with different RI values

onto the sensing surface via the microfluidic flow cell as indicated in Figure 13c,d. A refractometer was utilized to measure

the RI values of various glycerol-water mixtures.

Figure 13. (a) Distribution of AuNPs on the Au surface after 1-min treatment of amine-functionalized Au substrate.

Reprinted from ref. ; (b) graphical illustration of the experimental setup with optical components showing the

polarization of the incident and reflected light within the prism for a sample attached perpendicular to the sample stage.

Reprinted from ref. ; (c,d) spectral response of the ellipsometric parameters Ψ, Δ for glycerol-water mixtures having

different refractive indices introduced on 30 min treated AuNPs-coated Au substrate. Reprinted from ref. .

8. Fiber Bragg Grating Biosensors

Researchers have so far investigated fiber grating sensors, some of which are now commercially available. Fiber Bragg

grating (FBG), long-period grating (LPG), chirped fiber grating (CFG), tilted fiber Bragg grating (TFBG), etched fiber Bragg

grating (EFBG), and sampled fiber grating (SFG) are the different kinds of fiber gratings, with FBG being the most

common in sensor design . FBGs may be photo imprinted onto fibers, and the resulting FBG sensors are usually

strain and temperature-sensitive. High sensitivity, multiplexing capability, compact size, multi-modal sensing ability,

tolerance to EM intervention, and low production cost are all advantages of optical fiber grating-based sensors. Owing to

their label-free design of quantifying RI, optical grating sensors such as LPG, EFBG, and TFBG sensors are becoming

more common in the development of chemo- and biosensors . Some of these FBG biosensor configurations have

been tested in the hopes of improving thrombin biosensors . Thrombin is involved in both normal and abnormal

coagulation, and its normal concentration ranges from nanomolar to low micromolar during blood coagulation .

Thrombin levels can rise when tumor cells cause blood coagulation both extra- and intravascularly. Thrombin is implicated

[223]

[224]

2 3

[225]

[226]

[226]

[226]

[226]

[227][228]

[229]

[230][231]

[232]



in a variety of diseases, including atherosclerosis, thromboembolic disease, cancer, and inflammatory disease, so finding

it in the blood is crucial for both study and clinical applications . Because of its clinical significance, there has been a

lot of research into detecting thrombin, with the bulk of it focusing on aptamers.

An FBG sensor, on the other hand, cannot conduct RI-based sensing because the optical field is limited to the fiber core

. For this purpose, the evanescent field must interact with the ambient medium, which can be accomplished by

polishing , etching , or tapering the fiber . The wavelength response of the Bragg grating, which is determined

by the bulk RI, will appear when the FBG is immersed in a sample liquid. In , hydrofluoric acid (HF) was used to etch

the fiber cladding at the Bragg grating points, which amplified the light-matter interaction. For RI bulk sensing, a thinned

FBG sensor was presented . The experiment used glycerin solutions with well-recognized RIs to assess sensor

sensitivity. A highly sensitive etched-core FBG sensor was proposed, which detected any external RI change by

measuring the shift in λ . The sensitivity value was 1394 nm/RIU when the fiber core was reduced to a diameter of 3.4

μm, and the RI of the surrounding area was like that of the fiber core . Higher-order modes yielded higher sensitivity in

detection when the RI of the surrounding was less than that of the fiber core, e.g., the second-order mode yielded a

sensitivity of 404 nm/RIU compared to the fundamental mode’s sensitivity of 171 nm/RIU. Finally, the FBG sensor was

used to detect DNA molecule hybridization. The hybridization of target DNA molecules was observed, and a wavelength

shift of 73 pm, equivalent to a RI change of 2.5 × 10 , was measured. The in-situ monitoring of bioprocesses was

possible with this FBG sensor .

FBG biosensors can be employed as a cost-effective and comparatively simple-to-realize option to well-established

biosensor platforms for superior sensitivity biological sample measurements in situ or probably in vivo . A fiber

biosensor employs an in-fiber 12  tilted Bragg grating to stimulate a robust evanescent field on the sensor’s surface over a

wide range of outer medium RIs. Human acute leukemia cells with different intercellular densities and RIs ranging from

1.3342–1.3344 were unambiguously distinguished in situ by utilizing the differential transmission continuum between

orthogonal polarizations. An amplitude deviation sensitivity, wavelength variation sensitivity and LOD were 1.8 ×

10  dB/RIU, 180 nm/RIU, and LOD of 2 × 10  RIU were obtained, respectively. A microfluidic chip that allows the

measurement of nL-volumes of biosamples was used to precisely monitor the detection process, as shown in Figure 14a

. The proposed in-fiber polarimetric biosensor was an appealing solution for rapid, sub-μL dose highly sensitive

detection of analytes at low concentrations in medicine, chemical, and environmental monitoring. Figure 14b shows a

graphical representation of a TFBG biosensor probed with tunable linearly polarized light .

Figure 14. Polarimetric tilted fiber Bragg grating (TFBG) sensing system: (a) micro-fluidic chip for biosample

measurements. Reprinted with permission from ref. ; (b) schematic diagram of polarimetric TFBG biosensor

interrogated with tunable linearly polarized light. Reprinted with permission from ref. .
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