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The term “data fusion” can be defined as “the process of combining data from multiple sources to produce more

accurate, consistent, and concise information than that provided by any individual data source”. Other stricter

definitions do exist to better fit narrower contexts. This type of approach has been applied to agricultural problems

since the first half of the 1990s, and there has been an increase in the use of this approach. Arguably, the main

challenge involved in the use of data fusion techniques involves finding the best approach to fully explore the

synergy and complementarities that potentially exist between different types of data and data sources.
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1. Introduction

The number (and quality) of sensors used to collect data in different contexts have been steadily growing. Even

complex environments, such as agricultural areas, are now being “sensed” via a wide variety of equipment,

generating vast amounts of data that can be explored to provide useful information about the area being observed.

As a result, the number of studies attempting to explore the wealth of information contained in the sensed data

have increased . However, it is often challenging to translate the advancements achieved in experiments to

the conditions found in practice. There are two main reasons for this. First, the studies described in scientific texts

are usually limited in scope, because the data used in these experiments usually do not cover all of the variabilities

associated with the problem at hand. As a result, while the results reported in those articles may seem

encouraging, they often reveal nothing about the performance of the proposed technique under real, unconstrained

conditions. Second, even if the data adequately cover the variable conditions found in practice, the adopted

sensing technology may not be capable of acquiring enough information to unambiguously resolve the data and

provide enough information. For example, even powerful artificial intelligence models fed with RGB digital images

are often unsuccessful in recognizing plant diseases from their symptoms, because different disorders can produce

similar visual signs .

One way to reduce the gaps caused by data limitations is to apply data fusion techniques. The term “data fusion”

can be defined as “the process of combining data from multiple sources to produce more accurate, consistent, and

concise information than that provided by any individual data source” . Other stricter definitions do exist to better

fit narrower contexts. This type of approach has been applied to agricultural problems since the first half of the

1990s , and there has been an increase in the use of this approach. Arguably, the main challenge involved in the

use of data fusion techniques involves finding the best approach to fully explore the synergy and complementarities
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that potentially exist between different types of data and data sources. This is particularly true with data having

significantly disparate characteristics (for example, digital images and meteorological data).

It is difficult to find a formalization for the data fusion process that fits all agricultural applications, given the variety

of data sources and approaches. The formalization presented by Bleiholder and Naumann , although derived in a

slightly different context, adopts a three-step view of the data fusion process that is applicable in most cases. In the

first step, the corresponding attributes that are used to describe the information in different sources need to be

identified. Such a correspondence can be easily identified if the data sources are similar, but it can be challenging

as the different types of data are being used. This is one of the main reasons for the existence of the three types of

data fusion described in the following paragraph. In the second step, the different objects that are described in the

data sources need to be identified and aligned. This step is particularly important when data sources are images,

because misalignments can lead to inconsistent representations and, as a result, to unreliable answers. Once the

data are properly identified and consistent, the actual data fusion can be applied in the third step. In practice,

coping with existing data inconsistencies is often ignored . This situation can be (at least partially) remedied by

auxiliary tools, such as data profile techniques, which can reduce inconsistencies by extracting and exploring the

metadata associated to the data being fused .

The most common categorization divides data fusion techniques into three groups : (a) raw data level (also

denoted “low-level” and “early integration”), in which different types of data (raw or preprocessed) are simply

concatenated into a single matrix, being used in cases in which pieces of data are of the same nature and were

properly normalized. (b) Feature level (also denoted “mid-level” and “intermediate integration”), in which features

are first extracted from different types of data and then concatenated into a matrix, being mostly used when pieces

of data can be treated in such a way they generate features that are compatible and complementary. (c) Decision

level (also denoted “high level” and “late integration”), in which classification and regression algorithms are applied

separately to each type of datum and then the outputs generated by each model are combined, being more

appropriate when data sources are too distinct to be combined at an earlier stage. An alternative classification of

data fusion methods was proposed by Ouhami et al. : probability-based, evidence-based, and knowledge-based

(Figure 1).
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Figure 1. Categorization of data fusion approaches.

In the specific case of agriculture, data can be collected at three different scales—proximal, aerial, and orbital

(satellites) (Figure 1). Applications that use proximal data include navigation systems for autonomous vehicles

, fruit detection , plant disease detection , delineation of homogeneous

management zones , soil analysis , plant phenotyping , among others. Aerial

data (collected using UAVs) is used mostly for detection of certain objects (e.g., certain plant species and fruits)

and for estimation of agricultural variables (e.g., soil moisture and nitrogen content) . Satellite data are

used for mapping variables as diverse as soil moisture , crop type , crop phenological

states , evapotranspiration , nitrogen status , biomass , among others.

While most data fusion approaches only use data in the same scale, a few studies have applied data originating

from different scales .

Table 1. Categories adopted for the data fusion techniques and the data being fused.

2. Proximal Scale

[11]

[12][13][14][15][16][17] [18][19][20][21] [22][23][24]

[25][26][27][28][29] [30][31][32][33][34][35][36] [37]

[38]

[39][40][41]

[42][43][44] [45][46][47][48][49][50]

[51][52] [40][53][54][55][56][57][58] [59][60][61][62] [63][64]

[10][26][28][31][38][40][51][52][64][65][66][67][68][69][70][71]

No. Classes of Data Fusion Technique No. Classes of Data Being Fused

1 Regression methods 1 RGB images

2 STARFM-like statistical methods 2 Multispectral images

3 Geostatistical tools 3 Hyperspectral images

4 PCA and derivatives 4 Thermal images

5 Kalman filter 5 Laser scanning

6 Machine learning 6 SAR images

7 Deep learning 7 Spectroscopy

8 Decision rules 8 Fluorescence images

9 Majority rules 9 Soil measurements

10 Model output averaging 10 Environmental/weather measurements

11 Others 11 Inertial measurements

    12 Position measurements

    13 Topographic records and elevation models

    14 Historical data

    15 Others
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The majority of studies dedicated to the proximal scale are concentrated in three main areas: prediction of soil

properties, delineation of homogeneous zones, and robotic navigation and control. Applications, such as disease

and fruit detection, prediction of water content and water stress, estimation of phonological state and yield

prediction, are also present. Ten of the references also explored satellite data, and five studies combined proximal

and aerial data. Data sources included cameras (RGB, multispectral, thermal, hyperspectral) spectrometers,

conductance and resistivity sensors, GPS, inertial sensors, weather data, among many others. With such a variety

of sensors available for field applications, efforts to explore their complementarities have been steadily growing

(Table 2), but most problems still lack reliable solutions .

Table 2. Proximal scale. L, M, and H mean low-, mid-, and high-level data fusion, respectively. The numbers in the

fourth column are those adopted in Table 1 for each “fused data” class.

[72]

Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Estimation of soil indices SF (L), MOA (H) 7 0.80–0.90

Sustainable greenhouse
management

Decision rules (L) 10 N/A

Human—robot interaction LSTM-NN (L) 11 0.71–0.97

Delineation of homogeneous zones
in viticulture

GAN (L), geostatistical tools (L) 2, 9 N/A

Delineation of homogeneous zones
Kriging and other geostatistical tools
(L)

2, 9 N/A

Estimation of crop phenological
states

Particle filter scheme (L) 2, 6, 10 0.93–0.96

Fruit detection LPT (L) and fuzzy logic (L) 1, 4 0.80–0.95

In-field estimation of soil properties RK (L), PLSR (L) 3, 9 >0.5

Delineation of homogeneous
management zones

Kriging (L), Gaussian anamorphosis
(L)

9, 15 0.66

Delineation of homogeneous
management zones

Kriging (L), Gaussian anamorphosis
(L)

9, 15 N/A

Delineation of homogeneous
management zones

Kriging (L),Gaussian anamorphosis
(L)

9, 15 N/A

Crop nutritional status determination PCA (L) 7, 8 0.7–0.9

Detection of olive quick decline
syndrome

CNN (M) 1 0.986

[30]

[73]

[72]
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Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Monitoring Agricultural Terraces
Coregistering and information
extraction (L/M)

5 N/A

Prediction of canopy water content of
rice

BPNN (M), RF (M), PLSR (M) 2 0.98–1.00

Localization of a wheeled mobile
robot

Dempster–Shafer (L) and Kalman
filter (L)

11, 12 0.97

Immature green citrus fruit detection
Color-thermal probability algorithm
(H)

1, 4 0.90–0.95

Delineation of management zones K-means clustering (L) 2, 9, 14 N/A

Segmentation for targeted
application of products

Discrete wavelets transform (M) 1 0.92

System for agricultural vehicle
positioning

Kalman filter (L) 11, 12 N/A

System for agricultural vehicle
positioning

Kalman filter (L) 11, 12 N/A

Yield gap attribution in maize Empirical equations (L) 15 0.37–0.74

Soil environmental quality
assessment

Analytic hierarchy process, weighted
average (L)

15 N/A

Predict soil properties PLSR (L) 7, 9, 13 0.80–0.96

System for agricultural vehicle
positioning

Discrete Kalman filter (L) 11, 13 N/A

Estimating soil macronutrients PLSR (L) 7, 9 0.70–0.95

Citrus fruit detection and localization Daubechies wavelet transform (L) 1, 2 0.91

Estimation of agricultural equipment
roll angle

Kalman filtering (L) 11 N/A

Predicting toxic elements in the soil PLSR, PCA, and SPA (L/M) 7, 8 0.93–0.98

Review: image fusion technology in
agriculture

N/A N/A N/A

Heterogeneous sensor data fusion Deep multimodal encoder (L) 10 N/A

Agricultural vulnerability Binary relevance (L), RF (L), and 10,14 0.67–0.98

[65]
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Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

assessments XGBoost (L)

Prediction of multiple soil properties
SMLR (L), PLSR (L), PCA/SMLR
combination (L)

7, 9 0.60–0.95

Prediction of environment variables
Sparse model (L), LR (L), SVM (L),
ELM (L)

10 0.96

Estimation of biomass in grasslands Simple quadratic combination (L) 2, 15 0.66–0.88

Plant disease detection Kohonen self-organizing maps (M) 3, 8 0.95

Water stress detection
Least squares support vectors
machine (M)

3, 8 0.99

Delineation of water holding capacity
zones

ANN (L), MLR (L) 7, 9 0.94–0.97

Potential of site-specific seeding
(potato)

PLSR (L) 2, 9 0.64–0.90

3D characterization of fruit trees
Pixel level mapping between the
images (L)

4, 5 N/A

Measurements of sprayer boom
movements

Summations of normalized
measurements (L)

11 N/A

Review: IoT and data fusion for crop
disease

N/A N/A N/A

Prediction of wheat yield and protein
Canonical powered partial least-
squares (L)

7, 10 0.76–0.94

Wheat yield prediction
CP-ANN (L), XY-fused networks (L),
SKN (L)

2, 7 0.82

Topsoil clay mapping PLSR (L) and kNN (L) 7, 9, 13 0.94–0.96

Fruit detection CNN (L); scoring system (H) 1, 2 0.84

3D reconstruction for agriculture
phenotyping

Linear interpolation (L) 1, 10 N/A

Delineation of site-specific
management zones

CoKriging (L) 2 0.55–0.77

Orchard mapping and mobile robot
localization

Laser data projection onto the RGB
images (L)

1, 5 0.97

[35]

[82]

[64]

[23]

[83]

[84]
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[10]
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[37]
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3. Aerial Scale

Studies employing UAVs to solve agricultural problems are growing in number, but they are still outnumbered by

proximal and orbital approaches. Most studies are dedicated to crop monitoring and object detection (weed, crops,

etc.), although applications, such as phenotyping and water management, are also present. Almost all techniques

are based on some kind of digital image (RGB, multispectral, thermal, hyperspectral). Many approaches explore

the complementarity of aerial images with proximal (four articles) and orbital (six articles) data. Only eight studies

employed the aerial data alone (Table 3).

Table 3. Aerial scale. L, M, and H mean low-, mid-, and high-level data fusion, respectively. The numbers in the

fourth column are those adopted in Table 1 for each “fused data” class.

Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Modelling crop disease severity 2 ANN architectures (L) 10, 15 0.90–0.98

Tropical soil fertility analysis
SVM (L), PLS (L), least squares
modeling (L)

2, 8 0.30–0.95

Internet of things applied to
agriculture

Hydra system (L/M/H) 9, 10, 15 0.93–0.99

Review: data fusion in agricultural
systems

N/A N/A N/A

Soil health assessment PLSR (L) 7, 9 0.78

Prediction of Soil Texture SMLR (L), PLSR (L) and PCA (L) 7, 8 0.61–0.88

Rapid determination of soil class Outer product analysis (L) 7 0.65

Navigation of autonomous vehicle
MSPI algorithm with Bayesian
estimator (L)

11, 12 N/A

Detection of cotton plants Discriminant analysis (M) 2, 7 0.97

Map-based variable-rate manure
application

K-means clustering (L) 2, 9 0.60–0.93

Navigation of autonomous vehicles Kalman filter (L) 11, 12 N/A

Robust tomato recognition for robotic
harvesting

Wavelet transform (L) 1 0.93

Navigation of autonomous vehicle
Self-adaptive PCA, dynamic time
warping (L)

1, 11 N/A

Recognition of wheat spikes Gram–Schmidt fusion algorithm (L) 1, 2 0.60–0.79

[24]

[91]

[92]

[70]

[36]

[93]

[94]

[16]

[38]

[95]

[17]

[96]

[97]

[98]Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Root zone soil moisture estimation
NN (M), DRF (M), GBM (M), GLM
(M)

2,11 0.90–0.95

Gramineae weed detection in rice
fields

Haar wavelet transformation (L) 1, 2 0.70–0.85

Monitoring agricultural terraces
Coregistering and information
extraction (L)

5 N/A

Spectral–temporal response
surfaces

Bayesian data imputation (L) 2, 3 0.77–0.83

Phenotyping of soybean PLSR (L), SVR (L), ELR (L) 1, 2, 4 0.83–0.90

Soybean yield prediction
PLSR (M), RF (M), SVR (M), 2
types of DNN (M)

1, 2, 4 0.72

[99]

[100]

[65]

[66]

[101]

[39]
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4. Orbital Scale

A large portion of the articles employing satellite images aimed to either compensate for data gaps present in a

primary data source by fusing it with another source of data (for example, combining optical and SAR images)

, or increase the spatial resolution of the relatively coarse images collected by satellites with

high revisit frequencies . In the latter, the fused results usually inherit the details of

the high spatial resolution images and the temporal revisit the frequencies of their counterparts, although the

quality of the fused data usually do not match that obtained through actual missions, especially when surface

changes are rapid and subtle . As argued by Tao et al. , different sensors and image processing algorithms

lead inevitably to data with some level of inconsistency, which can make rapid changes difficult to detect.

Landsat and MODIS images and products still dominate, but other satellite constellations, such as Sentinel,

Worldview, GeoEye, and others, are being increasingly adopted. Data fusion has been applied to satellite images

for quite some time, and well established techniques, such as STARFM and its variants, are still often used, but the

interest for machine learning techniques, especially in the form of deep learning models, has been growing

consistently. Water management in its several forms (evapotranspiration estimation, mapping of irrigated areas,

drought detection, etc.) is by far the most common application. Yield estimation, crop monitoring, land cover

classification, and prediction of soil properties are also common applications.

A major challenge associated with the orbital scale is the existence of highly heterogeneous regions with a high

degree of fragmentation . Solutions to this problem are not trivial and, as stated by Masiza et al. , “…

successful mapping of a fragmented agricultural landscape is a function of objectively derived datasets, adapted to

geographic context, and an informed optimization of mapping algorithms”. However, there are cases in which target

Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Crop monitoring
PLSR (M), RF (M), SVR (M), ELR
(M)

1, 2 0.60–0.93

Evapotranspiration estimation MSDF-ET (L) 1, 2, 4 0.68–0.77

Review: IoT and data fusion for crop
disease

N/A N/A N/A

Arid and semi-arid land vegetation
monitoring

Decision tree (L/M) 3, 5 0.84–0.89

Biomass and leaf nitrogen content in
sugarcane

PCA and linear regression (L) 2, 5 0.57

Review: data fusion in agricultural
systems

N/A N/A N/A

Navigation system for UAV EKF (L) 11, 12 0.98

Detection of cotton plants Discriminant analysis (M) 2 0.97

Vineyard monitoring
PLSR (M), SVR (M), RFR (M), ELR
(M)

2 0.98

[52]

[40]

[10]

[102]

[41]

[70]

[103]

[38]

[71]

[6][45]

[47][48][49][51][104][105]

[42][43][44][55][57][58][106][107][108][109]

[110] [111]

[108][112] [113]
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areas can have sizes smaller than the pixel resolution of the satellite images . In theses cases, pairing the

images with images or other types of data obtained at higher resolutions (aerial or proximal) may be the only viable

solution. Satellite data were fused together with proximal and aerial data in ten and six studies, respectively (Table

4).

Table 4. Orbital scale. L, M, and H mean low-, mid-, and high-level data fusion, respectively. The numbers in the

fourth column are those adopted in Table 1 for each “fused data” class.

[53]

Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Soil moisture mapping ESTARFM (L) 2 0.70–0.84

Crop type mapping
2D and 3D U-Net (L), SegNet (L), RF
(L)

2, 6 0.91–0.99

Estimation of surface soil moisture ESTARFM (L) 2 0.55–0.92

Delineation of homogeneous zones Kriging and other geostatistical tools 2, 9 N/A

Estimation of crop phenological
states

Particle filter scheme (L/M) 2, 6, 10 0.93–0.96

Evapotranspiration mapping at field
scales

STARFM (L) 2 0.92–0.95

In-field estimation of soil properties RK (L), PLSR (L) 3, 9 >0.5

Estimation of wheat grain nitrogen
uptake

BK (L) 2, 3 N/A

Surface soil moisture monitoring
Linear regression analysis and Kriging
(L/M)

2, 15 0.51–0.84

Crop discrimination and
classification

Voting system (H) 2, 6 0.96

Review on multimodality and data
fusion in RS

N/A N/A N/A

Crop Mapping Pixelwise matching (H) 2, 6 0.94

Review on fusion between MODIS
and Landsat

N/A N/A N/A

Mapping crop progress STARFM (L) 2 0.54–0.86

Generation of spectral–-temporal
response

Bayesian data imputation (L) 2, 3 0.77–0.83

[42]

[45]

[43]

[26]

[51]

[53]

[31]

[59]

[44]

[46]

[9]

[47]

[110]

[106]

[66]



Data Fusion in Agriculture | Encyclopedia.pub

https://encyclopedia.pub/entry/21433 10/22

Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Delineation of management zones K-means clustering (L) 2, 9, 14 N/A

Mapping irrigated areas Decision tree (L) 2 0.67–0.93

Evapotranspiration mapping
Empirical exploration of band
relationships (L)

2, 4 0.20–0.97

Delineation of management zones K-means clustering (L) 2, 9, 14 N/A

Yield gap attribution in maize Empirical equations (L) 15 0.37–0.74

Change detection and biomass
estimation in rice

Graph-based data fusion (L) 2 0.17–0.90

Leaf area index estimation STARFM (L) 2 0.69–0.76

Evapotranspiration estimates STARFM (M) 2 N/A

Classification of agriculture drought
Optimal weighting of individual indices
(M)

2 0.80–0.92

Mapping daily evapotranspiration STARFM (L) 2 N/A

Mapping of cropping cycles STARFM (L) 2 0.88–0.91

Evapotranspiration partitioning at
field scales

STARFM (L) 2 N/A

Review: image fusion technology in
agriculture

N/A N/A N/A

Crop monitoring PLSR (M), RF (M), SVR (M), ELR (M) 1, 2, 4 0.60–0.93

Mapping of smallholder crop
farming

XGBoost (L/M and H), RF (H), SVM
(H), ANN (H), NB (H)

2, 6 0.96–0.98

Estimation of biomass in grasslands Simple quadratic combination (L/M) 2, 15 0.66–0.88

Evapotranspiration estimation MSDF-ET (L) 1, 2, 4 0.68–0.77

Semantic segmentation of land
types

Majority rule (H) 2 0.99

Eucalyptus trees identification Fuzzy information fusion (L) 2 0.98

Review: IoT and data fusion for
crop disease

N/A N/A N/A

[28]

[114]

[54]

[28]

[67]

[63]

[107]

[55]

[115]

[56]

[20]

[116]

[68]

[52]

[113]

[64]

[40]

[117]

[118]

[10]
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Ref. Application Fusion Technique Fused
Data

Mean
Accuracy

Wheat yield prediction
CP-ANN (M), XY-fused networks (M),
SKN (M)

2, 7 0.82

Drought monitoring RF (M) 2, 15 0.29–0.77

Crop type classification and
mapping

RF (L) 2, 6, 13 0.37–0.94

Time series data fusion
Environmental data acquisition
module

10 N/A

Evapotranspiration prediction in
vineyard

STARFM (L) 2 0.77–0.81

Daily NDVI product at a 30-m
spatial resolution

GKSFM (M) 2 0.88

Crop classification Committee of MLPs (L) 2, 6 0.65–0.99

Multisource classification of
remotely sensed data

Bayesian formulation (L) 2, 6 0.74

Fractional vegetation cover
estimation

Data fusion and vegetation growth
models (L)

2 0.83–0.95

Land cover monitoring FARMA (L) 2, 6 N/A

Crop ensemble classification
mosaicking (L), classifier majority
voting (H)

2 0.82–0.85

Review: data fusion in agricultural
systems

N/A N/A N/A

In-season mapping of crop type Classification tree (M) 2 0.93–0.99

Building frequent landsat-like
imagery

STARFM (L) 2 0.63–0.99

Evapotranspiration mapping SADFAET (M) 2 N/A

Temporal land use mapping Dynamic decision tree (M) 2 0.86–0.96

High-resolution leaf area index
estimation

STDFA (L) 2 0.98

Monitoring cotton root rot ISTDFA (M) 2 0.79–0.97

Monitoring crop water content Modified STARFM (L) 2 0.44–0.85

[69]

[112]

[48]

[119]

[57]

[108]

[49]

[6]

[111]

[120]

[121]

[70]

[50]

[122]

[58]

[123]

[124]

[125]

[109]
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Another important challenge is the difficulty of obtaining/collecting reference data for validation of the techniques

applied. This problem can be particularly difficult if the reference data need to be gathered in-loco. It is also

important to consider that, even if reference data can be collected, differences in granularity and the positions of

the sample points can make the comparison with the fused data difficult or even unfeasible .
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