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1. Introduction

Groundwater constitutes a vital source of freshwater, accounting for roughly 95% of the total available freshwater

resources on Earth . It is utilized not only for daily water needs but also for agricultural irrigation, industrial purposes,

ecological recharge, and power generation . Therefore, groundwater holds significant value as a resource and plays a

critical role in the environment. The degradation of groundwater quality represents a significant issue within the context of

global environmental and climate change today. Since the Industrial Revolution, there has been widespread concern over

the deterioration of groundwater quality . Among the various groundwater quality issues, the release of high

concentrations of heavy metals has had a significant impact on groundwater quality, and serious consideration must be

given to its potential risks and hazards to human health. In particular, As is considered by the United States Agency for

Toxic Substances and Disease Registry (ATSDR) to be the pollutant that poses the highest potential risk to human health

due to the release from natural sources and the resulting high geogenic concentrations in groundwater . The sources of

As in groundwater primarily include natural origins such as geological formations, volcanic activity, and hydrothermal

processes, as well as anthropogenic activities including mining, coal combustion, and petroleum extraction . The

majority of global health issues caused by As are linked to the consumption of water with high As concentrations. Due to

the wide range of negative effects of high As concentrations on human health, the World Health Organization (WHO), the

United States, and the European Union (EU) have lowered the Maximum Contaminant Level (MCL) of As in drinking water

from 50 μg/L to 10 μg/L as a safe limit for As concentration in drinking water . High-As groundwater is defined as

groundwater with As concentrations above the WHO drinking water standard. The enrichment of high-As groundwater is

primarily influenced by a combination of natural sources and hydrogeochemical conditions, with the majority of natural

high-As groundwater primarily being a result of geological arsenic contamination . Despite the established risks, many

countries, such as Bangladesh, Nepal, Pakistan, Mexico, and Argentina, continue to adopt the 50 µg/L standard for

arsenic concentration in their national drinking water guidelines, due to a lack of professional expertise, economic

considerations, and the low-level arsenic detection technology .

Human exposure to As occurs through direct and indirect pathways. Direct exposure involves drinking water with a high

As concentration, contact with skin, and inhalation of gasses with a high As concentration. Indirect exposure mainly

occurs through the food chain; this includes eating crops, vegetables, and fruits cultivated in As-contaminated soil or

irrigated with As-rich groundwater, as well as consuming meat products from animals raised in such environments.

Prolonged exposure to As, regardless of the route, can result in serious health disorders affecting the skin, blood vessels,

and nervous system. Extended periods of high As exposure also notably increase the risk of developing cancers in organs

like the lungs, liver, kidneys, and skin  (Figure 1).
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Figure 1. Different pathways of arsenic exposure in groundwater and effects on humans (MMA-Monomethylarsenite;

DMA-Dimethylarsenite).

Environmental As exists in groundwater in both organic and inorganic forms, with varying levels of toxicity associated with

different forms. The three primary forms of inorganic arsenic are as follows: pentavalent arsenate [As(V)], trivalent

arsenite [As(III)], and metallic arsenic. Arsenic in organic form often occurs as various organic arsenic compounds such as

Monomethylarsenite (MMA) and Dimethylarsenite (DMA) . Among these, inorganic arsenic is more toxic to humans,

and the toxicity significantly differs between the oxidation states of As(III) and As(V). The toxicity of As(III) is more than 60

times higher than that of As(V) and 70 times higher than that of methylated arsenic . The heightened toxicity of As(III) is

partially because of its reactivity towards biologically relevant molecules . The methylated arsenic forms, including

MMA and DMA, exhibit moderate toxicity, while other organic forms, such as arsenobetaine (AsB) and arsenocholine

(AsC), are generally considered non-toxic . In aqueous solutions, As(III) and As(V) primarily exist as oxyanions due to

the high charge and small ion radius of As  and As . The presence and dispersion of distinct arsenic compounds within

hydrological systems are markedly influenced by both the redox potential and pH levels prevailing in aquatic environments

. Under circumstances characterized by moderate-to-high redox potentials, As tends to stabilize into the As(V) form

(H AsO , H AsO , HAsO , or AsO ). Conversely, in environments featuring predominantly acidic or weakly alkaline

reducing conditions, and lower redox potentials, As(III) tends to be prevalent as the uncharged H AsO  molecule .

2. Global Distribution of Geogenic High-Arsenic Groundwater

High-As groundwater is widespread worldwide. According to statistics, 107 countries are affected by high-As groundwater,

with the highest number in Asia (32) and Europe (31), followed by Africa (20), North America (11), South America (9), and

Australia (4) . The most affected countries are Bangladesh, India, Pakistan, China, Nepal , Laos , Cambodia ,

Myanmar , Vietnam , and the United States. The world map (Figure 2) displays the global distribution of geogenic

high-As groundwater, predominantly found in inland basins and river deltas in South Asian, East Asian, and South

American countries. Major countries are shown in Table 1. Generally, the river-marine sedimentary shallow (Holocene)

aquifers in the river deltas are the main areas where high-As groundwater occurs naturally, and it occurs mainly under

reducing aquifer conditions .

Figure 2. Main countries worldwide affected by geogenic high-arsenic groundwater (≥10 μg/L) (taking the maximum

arsenic concentration), see Table 1 for specific data.

Globally, the problem of geogenic high-As groundwater is particularly prominent in South and Southeast Asia, especially

in Bangladesh and India . In Bangladesh, 61 areas have been identified as having high-As groundwater. The potential

population at risk is approximately 20 million people . According to the National Drinking Water Survey of Bangladesh,

around 8% of the water samples had As levels exceeding the Bangladesh standard of 50 μg/L, while around 18% of the
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samples were above the WHO guideline of 10 μg/L . The concentration of As in groundwater is higher in Bangladesh

compared to other countries, and some tube wells even contain As concentrations as high as 4730 μg/L . In India,

high-As groundwater has already affected twenty states and four union territories, and about 100 million people are under

threat from the toxicity of high-As groundwater . The impact of high-As groundwater in India is concentrated on

the Ganges–Yarlung Tsangpo Plain, seen on the neo-alluvial (Holocene) floodplains of the rivers in the Himalayas .

Approximately 50–60 million individuals in Pakistan consume high-As groundwater (>50 μg/L) in vulnerable areas . A

meta-analysis of groundwater affected by As in Pakistan showed that 73% of these groundwater samples contained

arsenic above 10 µg/L . China is also one of the world’s most representative areas of high-As groundwater, with more

than 20 provinces/autonomous regions having high-As groundwater problems. These high-As groundwater provinces are

mainly located in the fluvial/alluvial-lacustrine plains and basins (Yinchuan Plain, Hetao Plain, Guide Basin, Hohhot Basin,

Junggar Basin, Datong Basin, etc.) located in arid/semi-arid regions and alluvial plains/basins and river deltas in

humid/semi-humid regions (Yangtze River, Yellow River Delta, Pearl River Delta, Delta, Huaihe River, Alluvial Plain, Yellow

River, Yuncheng Basin, Taiyuan Basin, Songnen Plain, etc.) . The population affected by high-As groundwater

contamination in China was estimated to be about 19.6 million according to a statistical risk assessment model developed

by Rodríguez-Lado et al. .

Table 1. The occurrence of high-As groundwater reported by major countries in the world.

Country Study Area
Max As
conc.
(µg/L)

Samples Environmental Condition and/or Enrichment
Mechanism References

Afghanistan Ghazni and maidan
Wardak provinces 990 746 The weathering and leaching action

Argentina

Santiago del Estero
Province 14,969 40 Volcanic ash sedimentary environment;

agricultural irrigation

La Pampa 5300 44 The geological factors; weathering of
volcanic ash and loess; oxidizing condition

Australia Stuarts Point coastal 85 140
Desorption of As from Al-hydroxides and

As-enriched Fe-oxyhydroxides; high
concentrations of HCO  and PO

Bangladesh Noakhali 4730 52,202 Eroded by flood plain rivers

Bolivia   364 24 The alteration of volcanic rocks;
evaporation and redox reactions

Botswana Botswana 116 20 Delta; evaporation concentration; weakly
alkaline environment; pH 6.29–8.60

Brazil   2980   Anthropogenic; volcanic activity and
weathering of rocks

Burkina
Faso   1630 45 Zones of gold mineralization in volcano-

sedimentary rocks
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Country Study Area
Max As
conc.
(µg/L)

Samples Environmental Condition and/or Enrichment
Mechanism References

China

Datong Basin 1932 1022
The weak alkaline reductive environment;

high HCO  concentration; water–rock
interactions

Hetao Basin 572 63
The reducing conditions; the dissolved
organic; the competitive effects of other

anions

Jianghan Basin 2330 34

The high HCO  concentrations;
microorganisms and exogenous

substances; the seasonal variation;
strongly reducing environment;

reducing environment

Taiwan (Lanyang and
Chianan Plain) 1010   Alluvial plain; high DOC; strong reducing

conditions

Tarim Basin 91.2 233 Reducing environment; the dissolved
organic; reductive dissolution release;

Yinchuan 177 92
Agricultural irrigation; the reductive

dissolution of Fe oxides; the high PO
concentrations

Pearl River Delta 161 18
Reductive environment; the high NH
concentrations; high concentrations of

NH  and organic matter

Cambodian   1610 207 Holocene alluvial sediments; reducing
environment

Costa Rica Northern Costa Rica 29,100 35 Associated with the volcanic rock

Czech
Republic Mokrsko 1690 62 pH > 9

Ecuador   969 67 In hot springs

Ethiopia Southwestern Ethiopia 184.5 44 pH < 7

Ghana   1760 357 Spillages of the mines; pH 4.8–6.99

Hungary Southern Hungary 260 73 At a depth of 0.8–2.4 km and containing CH

India

Bhair 1466 1365 Ganga Plain; Holocene newer alluvium and
the Pleistocene older alluvium

Shahpur block,
Bhojpur district, Bihar

state
1805 4704 Ganges plain

Punjab 3192 4780 Alluvial aquifers

Iran

Kurdistan Some
villages 1500 27 Mining and sedimentary environment

East Azarbaijan-Tabriz
Plain 2000 18 Hydrogeological and

environmental reducing conditions

Ardabil-A city 5834 163
Interaction of hydrothermal fluids with the

rocks and geogenic source-geological
structure

Mazandar an-Haraz
River 110 20 Geogenic source and mining

Tabas South Khorasan 53 29 Weathering

Razavi Khorasan
Chelpu Kashmar 606 12 Geogenic

Origin sedimentary environment

Isfahan Mutehgold
mining district 1061 17 Weathering and mining

Japan   38 136 Reducing environment and factory
blowdown
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Country Study Area
Max As
conc.
(µg/L)

Samples Environmental Condition and/or Enrichment
Mechanism References

Korea Geumsan County 113 150
Oxidation reaction of sulfide minerals in
metasedimentary rocks and desorption

process under high pH conditions

Nigeria Warri-Port Harcourt,
Ogun State, Kaduna 750 20 Alluvial sediments, reducing environment,

slightly acidic

Pakistan

Kasur, Shhiwal,
Bahawalpur, and Rahim

Yar Khan
3090 395 Irrigation and factory sewage

Lahore municipality 85 41 Topsoil and extensive irrigation of
unconfined aquifers, reductive dissolution

Mailsi 812 44 Human activity

Paraguay   120 37 Human activity and volcanic ash deposition
environment

Lao PDR

Vientiane 24.4 3 Reducing environment

Borikhamxay 30 7 Reducing environment

Champasack 25.6 27 Reducing environment

Attapeu 31.6 10 Reducing environment

Myanmar Ayeyarwady 630 55 Reductive dissolution of Fe oxyhydroxides

Mexico
La Laguna Region 5000 29

Adsorption or coprecipitation on iron
oxides, clay-mineral surfaces, and organic

carbon

Zacatecas 75.4 182 Geological origin, water–rock interaction

Nepal Nawalparasi 2620 18,000 Seasons and climate change, water–rock
interaction

Pakistan
Larkana Sindh, 318 58 pH 6.8–8.1

Punjab 655 141 pH 7.0–9.3

Spain Duero Cenozoic Basin 613 514 pH 5.87–1.58

Thailand Suphan Buri 5000 21 pH 5.20–5.90; Eh 250–370 mV

USA

San Joaquin Valley,
California 148.5 4983

Arid and semi-arid basins;
alluvial, fluvial, and lacustrine deposits; pH

> 7.8; reducing conditions

Lahontan Valley, in
Churchill County,

Nevada
4100 59 Lacustrine sediments

Vietnam Mekong Delta 850 109 pH 7.22–8.63

In Europe, As contamination in groundwater is attributed to geothermal and hydrothermal systems, dominated by bedrock

and volcanic deposits . The situation in the Pannonian Basin (Romania, Serbia, and Hungary) is particularly

noteworthy, as over 600,000 residents may be exposed to high-As groundwater . Additionally, the maximum

concentration of arsenic found in bedrock groundwater in Finland is 1040 μg/L. The highest concentration of As recorded

in the Ischia Island area, southern Italy, was 1479 μg/L, which was 148 times higher than the MCL. Hydrothermal activity

and thermal control seem to be the main factors responsible for the liberation of As from minerals .

The United States and Canada have also experienced extensive geogenic high-As groundwater contamination, although

the concentration is lower than that of Asian countries . In Latin America, arsenic compounds in groundwater are mainly

derived from geothermal fluids as well as volcanic activity . The As levels of drinking water are too high in 13 of

Mexico’s 31 states . In particular, As concentrations of 5000 μg/L were discovered in pore weakly permeable layers in

the La Laguna area . Groundwater As sources of geothermal origin have been identified at Juventino Rosas in the

State of Guanajuato and Ixtapan de la Sal and Tonatico in the State of México . The area of Argentina most affected by
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As in groundwater is the Chaco-Pampean Plain, with approximately 88% of the 86 collected groundwater samples

surpassing the WHO guideline values, and the population at risk in Argentina is about 4 million people .

In Africa, high-As groundwater has been found in only a few areas across the continent, primarily in the western and

southern regions, more due to insufficient research rather than a shortage of problems . Twenty countries in Africa have

recorded high concentrations of arsenic in groundwater, including Botswana, Burkina Faso, Ethiopia, and Ghana . The

maximum concentration of As in groundwater in Burkina Faso was 1630 μg/L, while an analogous maximum

concentration of 1760 μg/L was detected in groundwater in Ghana .
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