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Knee injuries account for the largest percentage of sport-related, severe injuries (i.e., injuries that cause more than 21

days of missed sport participation). The improved treatment of knee injuries critically relies on having an accurate and

cost-effective detection. Deep-learning-based approaches have monopolized knee injury detection in MRI studies.
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1. Introduction

1.1. Backdrop

Knee injuries account for the largest percentage of sport-related, severe injuries (i.e., injuries that cause more than 21

days of missed sport participation) . Anterior cruciate ligament (ACL) ruptures represent more than 50% of the

cases, affecting 200,000 individuals in the United States each year . Knee cartilage lesions affect around 900,000

individuals in the United States every year, resulting in over 200,000 surgical procedures . Menisci injuries are the

second most common knee impairment, with an incidence of 12–14%  and a prevalence of 60–70 cases per 100,000 in

the United Kingdom . ACL injuries alone account for an expenditure of more than $7 billion in the United States . Both

short- and long-term pain, disability, and negatively affected, health-related quality of life have all been strongly associated

with knee injuries . In regard to young and athletic individuals, the more time they spend engaging in occupational

and/or recreational activities, the higher predisposition to knee injuries they have, which, in turn, contributes to a higher

likelihood of developing osteoarthritis (OA) . On average, half of the individuals, that have an injury that involved ACL

and/or meniscal tear develop radiographically confirmed knee OA ten to 20 years post-injury . Another two possible

consequences of knee injuries are: (i) structural muscle injuries of the lower limb ; and (ii) tendinopathies . All the

above reflect the direct and indirect (lost wages, productivity, and disability) socio-economic burden conferred on the

society by knee injuries. The high prevalence of knee injuries in the general population, and the resulting socio-economic

impact, have created a necessity for developing accurate and cost-effective procedures that can detect and quantify the

severity of knee injuries. Early diagnosis and, consequently, treatment of ligament rupture, menisci tear, and/or cartilage

lesion can prevent early onset of knee OA .

Arthroscopy is considered the “gold-standard” for the diagnosis of intra-articular knee pathologies, but is limited by

potential complications and its invasive nature . Therefore, magnetic resonance imaging (MRI) is the most widely used,

non-invasive imaging technique for diagnosing knee injuries . However, the MRI-based diagnosis of knee injuries

can be a very challenging procedure, with the experience of clinicians playing a critical role in image interpretation.

Human-based image interpretation pitfalls, such as subjectivity, distraction, and fatigue, as well as diagnostic

uncertainties, often lead to erratic diagnoses, hindering the optimal management of knee injuries . Moreover, clinical-

diagnostic discrepancies among non-musculoskeletal radiologists and orthopedic surgeons are commonly encountered in

everyday clinical practice .

Due to the above-listed factors, as well as the exponentially increasing number of clinical examinations, the idea of using

computers for improving the challenging task of image interpretation of medical examinations has been recently adopted

by the scientific community . Imaging data proliferation, algorithmic advances, and recent technological advances in

fast computing have already resulted in a strong push towards the utilization of artificial intelligence (AI) algorithms in

medical image analysis. The term AI broadly refers to any method that enables computers to mimic human intelligence

. Deep learning (DL) in particular is a class of machine-learning (ML) algorithms that is currently driving the AI boom

. Numerous applications of DL in medical image analysis have been reported, including skin cancer classification,

diabetic retinopathy detection, lung nodule detection, and mammography cancer detection, among others . The

aforementioned AI-empowered solutions are expected to revolutionize medical sectors by improving the accuracy and

productivity of different diagnostic and therapeutic measures in clinical practice .
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Drawing attention to the diagnosis of knee injuries, several early DL studies have exhibited better performance than

traditional ML techniques, while in some cases they have proved to be even superior to radiologists . However, the

previously published review studies in the MRI field were either focused on other application domains (e.g., fracture

detection ) or limited to the performance of the proposed networks without paying attention to their specifics (learning

methodology, processing stages, technical limitations etc.) .

1.2. Machine Learning in a Nutshell: Definitions and Terminology

To enhance the understanding of the readers and for the sake of completeness, this section quickly presents the relevant

terminology and definitions with respect to ML and DL algorithms used in the studies involved here. ML is a branch of AI

that focuses on the development of algorithms that automatically learn to make accurate predictions by relying on

experience (data) rather than on hard-coded instructions.

Supervised ML systems (Figure 1) operate in two phases: the learning phase (training) and the testing one. In a

traditional ML pipeline, a feature extraction/selection stage (also referred to as feature engineering) is first implemented to

extract or identify the most informative features . These features can be extracted from the input images, employing

various algorithms including grey-level co-occurrence matrix (GLCM), first- and second-order statistics, and shape/edge

features, among others . Next, a ML model is fit to the extracted features and the optimal model parameters are

obtained. During the testing phase, the trained model is shown previously unseen samples (represented as images or

features extracted from images), which are then classified. As opposed to traditional programming, where the rules are

manually crafted by a programmer, a supervised ML algorithm automatically formulates rules from the data.

Figure 1. Examples of typical machine-learning and deep-learning pipelines.

DL  is a subfield of ML that sets an alternative architectural paradigm by shifting the process of extracting features from

images to the underlying learning mechanism. The most informative features for the task at hand are extracted by the

algorithm itself. The mainstream DL architecture for computer vision applications is the convolutional neural network

(CNN). A CNN typically consists of multiple building blocks (layers such as convolutional, pooling, and fully connected)

that automatically extract increasingly abstract spatial hierarchies of features. The CNN training is carried out via a

backpropagation algorithm. The huge popularity of CNNs is attributed to certain characteristics they possess, such as

weight sharing and spatial invariance.

Transfer learning is a common strategy where a network, that was pre-trained on a big dataset, is partly re-used to

provide decisions on a problem with a different dataset. The main idea behind transfer learning is that generic features

learned on a large dataset could be useful and applicable to other domain tasks with a potentially limited amount of

accessible data. Numerous pre-trained networks are currently available, such as DenseNet , AlexNet , and VGG .

When employing DL with transfer learning for feature extraction, the pre-trained network is treated as an arbitrary feature

extractor: the input image propagates through multiple layers until it reaches a pre-specified layer, the outputs of which

are considered as the finally extracted features (Table 1).

Table 1. Brief presentation of the feature extraction techniques, as well as the ML and DL models, and the main

procedures.
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Category Models Description

Feature

extraction

Histogram of

oriented gradient

(HOG) 

This is a feature descriptor used in computer vision and image processing for the

purpose of object detection. The technique counts occurrences of gradient

orientation in localized portions of an image.

Generalized

search tree

(GIST) 

GIST descriptor represents holistic spatial scene properties (spatial envelope) of

an image. It summarizes gradient information on different spatial scales and

orientations by splitting the image into a grid of cells on several scales and

convolving each cell using a Gabor filter bank from different perspectives.

Gray-level co-

occurrence matrix

(GLCM) 

GLCM is a way of extracting second-order statistical texture features. In particular,

the texture of an image is estimated by calculating how often pairs of pixels with

specific values and a certain spatial relationship occur.

Traditional

Machine

Learning

k-nearest

neighbor (K-NN)

KNN algorithm is a simple, easy-to-implement supervised ML algorithm that can be

used to solve both classification and regression problems. It works by (i) finding

the distances between a query and all the examples in the data, (ii) selecting the K

nearest neighbors of the query, and (iii) voting for the most frequent label (in the

case of classification) or averaging the labels (in the case of regression).

Support vector

machines (SVMs)

SVMs is a supervised method that identifies a hyperplane that best divides the

data into two classes. To separate the two clouds of data points, there are many

possible hyperplanes that could be chosen. The objective of the SVM algorithm is

to find a slab that has the maximum thickness, i.e., the maximum distance

between data points of the different classes.

Shallow artificial

neural networks

(ANNs) 

The ANN vaguely simulates the way the human brain analyzes and processes

information. They consist of sequential layers: input, hidden and output layers. The

hidden layer processes and transmits the input information to the output layer.
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Category Models Description

Deep

Learning

Convolutional

neural networks

(CNNs) 

This is a class of DL algorithms commonly used in computer vision and pattern

recognition. CNNs are a specific type of neural networks that are generally

composed of the following layers: (i) input layer, (ii) convolution layers, (iii) pooling

layers and (iv) fully connected layers. The convolution layers use filters that

perform convolution operations as they are scanning the input with respect to its

dimensions. Pooling is a down-sampling operation, which is typically applied after

a convolution layer. The fully connected layers operate on a flattened input where

each input is connected to all neurons in the next layer and are usually found

towards the end of CNN architectures to optimize objectives such as class scores.

Region based

convolutional

neural networks

(R-CNNs) 

The method of detecting and classifying objects in an image is known as object

detection. R-CNN (regions with convolutional neural networks) is a deep learning

technique that blends rectangular area proposals with convolutional neural network

functionality. The R-CNN algorithm is a two-stage detection method.

Deep residual

networks 

A residual neural network (ResNet) is an ANN variant that uses residual mapping

and shortcut connections to tackle the problem of vanishing and exploding

gradients that is characteristic of deep CNNs. As a consequence of this, deep

residual networks achieve better performance when compared to plain very deep

networks, whereas their training is easier as well. Typical ResNet models are

implemented with double- or triple-layer skips that contain nonlinearities such as

rectified linear unit (ReLUs) and batch normalization in between.

3D-CNNs 

A 3D CNN is simply the 3D generalization of 2D CNNs. It takes as input a 3D

volume or a sequence of 2D frames (e.g., slices in an MRI scan). Then kernels

move through 3 dimensions of data producing 3D activation maps. Overall, they

learn powerful representations of volumetric data.

 
Computer Vision

Transformers 

When data is modelized as a sequence of embeddings, the Transformer model is

a basic yet scalable technique that can be used for any type of data. Even without

typical convolutional pipelines, transformers can be utilized to provide SOTA

results in Computer Vision. It is a DL network that extracts inherent properties of

the interest domain via the self-attention technique.
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Category Models Description

Procedure

Training

The standard procedure involves a dataset of paired images and labels (x, y) for

training and testing, an optimizer (e.g., stochastic gradient descent, Adam ), and

a loss function to update the model parameters. The aim of the training is to find

the optimal values for the network parameters so that the loss function is

minimized.

Data

augmentation

Data augmentation is a strategy that artificially generates more training samples to

increase the diversity of the training data. This can be done via applying affine

transformations (e.g., rotation, scaling), flipping or cropping to original labeled

samples.

Dropout

Dropout is a regularization method that randomly drops some units from the neural

network during training, encouraging the network to learn a sparse representation.

It is used to reduce overfitting.

Loss function

The metric to assess the discrepancy between model predictions and labels is

called loss function. The gradients of the loss function are used to update the

weights of the neural networks.

Transfer learning

This aims to transfer knowledge from one task to another different but related

target task. This is often achieved by reusing the weights of a pre-trained model, to

initialize the weights in a new model for the target task. Transfer learning can help

to decrease the training time and achieve lower generalization error.

2. Knee Injury Detection Using Deep Learning on MRI Studies

Figure 2 shows an increasing trend in adopting ML-based studies in this application area, with most of the papers being

published from 2017 onwards (whilst the first ML-based paper on the field was published in 2013). Medical imaging, and

specifically MRI, has to be seen as one of the most instructive assets in the field of knee injury diagnosis. The proliferation

of MRI data has facilitated the effective training of ML and DL networks towards the development of: (i) novel

methodologies that could enhance the medical experts’ domain knowledge and understanding of MRI; and (ii) new, data-

driven tools that could enable a more reliable, fast, and fully automated detection of knee injuries. The main

characteristics of the proposed MRI-based learning algorithms and pipelines were identified along with the data sources

investigated (Table 2).

Figure 2. Temporal evolution chart depicting the number of ML papers per category published each year since 2013.
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Table 2. Results of studies.

No. Author Year
AI Model

Used

Pretrained

CNN
MRI (T)

Localization

Technique
Validation

Performance

(Accuracy/AUC)

Application

Domain

1
Awan et

al. 
2021 CNN ResNet-14 1.5 T

They applied

normal

approach to

localize

based upon

region of

interest

(ROI)

5-fold cross-

validation

92%/(healthy

tear = 0.98,

partial tear =

0.97 and fully

ruptured tear =

0.99)

ACL tear

2
Jeon et

al. 
2021 3D CNN

VGGNet,

AlexNet,

and

SqueezeNet

3 T & 1.5

T

Custom

localization

technique

5-fold cross-

validation

N/A/0.983 and

0.980 on the

Chiba and

Stanford knee

datasets,

respectively

ACL tear

3
Rizk et

al. 
2021 3D CNN

CNN-based

localization

model

1 T

(54%)–

1.5 T

(9.7%)–3

T

(36.3%)

Custom

localization

technique

ten-fold cross

validation

Meidal =

N/A/0.93,

Lateral =

N/A/0.84

Meniscus

tear

4 Dai et al. 2021 TransMed N/A
3 T & 1.5

T
N/A 120 exams

ACL tear =

94.9%/0.98,

Abnormality =

91.8%/0.976,

Meniscus tear =

85.3%/0.95

ACL tear—

Meniscus

tear—

Abnormalities

5
Astuto et

al. 
2021 3D CNN N/A 3 T V-Net

Hold out (15%

of sample)

N/A/from 0.83

to 0.93

ACL tear—

Meniscus

tear—

Cartilage

Lession
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No. Author Year
AI Model

Used

Pretrained

CNN
MRI (T)

Localization

Technique
Validation

Performance

(Accuracy/AUC)

Application

Domain

6
Fritz et

al. 
2020 DCNN N/A

1.5 T

(64%)–3

T (36%)

To visually

localize the

tear, the

software

computes

the class

activation

map (CAM)

of the last

convolution

layer in the

CNN and

maps it to an

axial knee

image

Hold out (10%

of sample)

Medial =

(86%/0.88),

Lateral =

(84%/0.78),

Overall =

(N/A/0.96)

Meniscus

tear

7
Namiri et

al. 
2020 CNN N/A 3 T

three-

dimensional

V-Net

Hold out (10%

of sample)

3D-model =

(89%/sensitivity

of 89% and

specificity of

88%), 2D-

model =

(92%/sensitivity

of 93% and

specificity of

90%)

ACL tear

8
Zhang et

al. 
2020 CNN

3D

DenseNet,

VGG16,

ResNet

1.5 T

(74%)–3

T (26%)

-
Hold out (20%

of sample)

Custom =

(95.7%/0.96),

ResNet =

(NA/0.95),

VGG16 =

(NA/0.86)

ACL tear

9
Germann

et al. 
2020 DCNN N/A

1.5 T–3

T

They

cropped

manually

Out of the 5802

MRI studies,

4802 were

used for

training, 500 for

validation, and

500 for initial

testing

N/A/0.94 ACL tear

10
Azcona

et al. 
2020 CNN

MRNet,

ResNet18,

Resnet50

and

ResNet152,

ImageNet

3 T

(56.6%)–

1.5 T

(43.4%)

- N/A

NA/0.96–

N/A/0.91–

N/A/0.94

ACL tear—

Meniscus

tear—

Abnormalities
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No. Author Year
AI Model

Used

Pretrained

CNN
MRI (T)

Localization

Technique
Validation

Performance

(Accuracy/AUC)

Application

Domain

11
Chang et

al. 
2019 CNN ResNet

1.5 T–3

T

The object

localization

CNN was

implemented

as a fully

convolutional

network

based on U-

net

architecture

5-fold-cross-

validation
96.7%/0.97 ACL tear

12 Liu et al. 2019 CNN

LeNet-5,

DenseNet,

VGG16,

AlexNet

N/A

They used

object

detection

technique

YOLO

50 subjects test

set (14% of the

sample)

N/A/0.98 ACL tear

13
Couteaux

et al. 
2019 CNN

ResNet-

101,

ConvNet, R-

CNN

N/A

To localize

both menisci

and identify

tears in each

meniscus,

they used

the Mask R-

CNN

framework

54 cases and

the model with

the highest

validation

accuracy was

selected

N/A/0.90
Meniscus

tear

14
Pedoia et

al. 
2019

2D U-Net,

CNN
N/A 3 T -

Hold out (20%

of sample)

Sensitivity of

89.81% and

specificity of

81.98%

Meniscus

tear

15
Roblot et

al. 
2019 CNN

AlexNet,

MRNet
N/A

They used

object

detection

technique

Fast RCNN

& Faster

RCNN

The algorithm

was thus used

on a test

dataset

composed of

700 images for

external

validation

72.5%/0.85
Meniscus

tear

16

Nicholas

Bien et

al. 

2018 CNN
AlexNET,

MRNet

3 T

(56.6%)–

1.5 T

(43.4%)

- 120 exams

86.7%/0.97–

72.5%/0.85–

N/A/0.94

ACL tear—

Meniscus

tear—

Abnormalities
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Although there is no clear acceptance of a “gold-standard” methodological pipeline for diagnosing knee abnormalities

using MRI data, it was observed that a number of processing steps were commonly employed in the majority of the

reported studies. Figure 3 visualizes a DL pipeline that was adopted by most of the papers, including a pre-processing

step, localization (optionally) by identifying regions of interest, and, finally, a CNN-based classification step. Data

augmentation was employed by a significant number of papers in the detection of ACL injuries , in

papers where meniscus injuries were investigated , and, finally, in studies focusing on cartilage lesion

abnormalities . In particular, the available MRI images were modified (via a number of image transformations such

as random rotations, shifting, flipping, and the addition of noise) to expand the training dataset, and thus help to improve

the performance and ability of the employed DL models to generalize. Localization was employed in papers from all three

subcategories: (i) ACL studies ; (ii) meniscus injuries detection studies ; and

(iii) for diagnosing lesion abnormalities . Segmentation or objection detection algorithms were applied in the

aforementioned studies to extract areas of interest, enabling the application of CNN-based models on focused and more

relevant parts of the initially available images. Given that the region of interest (ROI) may appear in slightly different

positions within an image and may have different aspect ratios or sizes, identifying ROIs with an automatic manner has

been proven to be a crucial processing step.

Figure 3. A typical DL pipeline for ACL detection.

CNN-inspired networks were identified as the dominant approach in the task of extracting informative features from either

ROIs or entire MRIs and finally classifying them as normal (healthy) or abnormal (indicating either partial or complete

tears). Transfer learning was preferred in most of the cases, allowing the training of big and powerful deep architectures,

even if the amount of available data was limited. As networks require a lot of information to be trained from scratch, this

technique essentially ‘steals’ knowledge from already pre-trained large networks. Specifically, ResNet variants were used

in five papers  here, whereas VGG , AlexNet , and MRNet  were used three times .

Other pre-trained networks that were used at least once in this survey are: DenseNet , Le-Net , ImageNet , and

R-CNN . In five  out of the 22 studies of the present survey, more traditional ML pipelines were applied,

including a separate feature engineering step (where features were manually extracted from images). SVM classification

was the preferred classifier in most of the cases.

Despite the excellent capability of CNNs to come up with valuable image representations, these models lack the capacity

for capturing long-range relationships. To deal with this limitation, recent research studies  have proposed employing

Transformer-based architectures for various image recognition tasks. The Transformer  is a neural network architecture

that relies on global self-attention mechanisms, and it was initially designed for sequence-to-sequence prediction. Papers

that used this architectural paradigm have indeed achieved state-of the-art results  in many natural language

processing (NLP) tasks. Dai et al.  were the first to employ a Transformer-based architecture for the MRI-based knee

injury detection task. In particular, their hybrid (Transformer and CNN) model was used to extract features that pick up the

long-range dependencies between MRI and other modalities.

3. Conclusion

Notwithstanding the huge potential of AI to improve the medical domain, the DL-based methods have yet to achieve

significant deployment in clinical environments. This mainly ensues as a result of: (i) the intrinsic black-box nature of the

No. Author Year
AI Model

Used

Pretrained

CNN
MRI (T)

Localization

Technique
Validation

Performance

(Accuracy/AUC)

Application

Domain

17 Liu et al. 2018 CNN VGG16 3 T -

fellowship

trained

musculoskeletal

radiologist

(R.K., with 15

years of clinical

experience)

N/A/0.92
Cartilage

lesion

18
Stajduhar

et al. 
2017

HOG +

linSVM,

HOG +

RF, GIST

+

rbfSVM,

GIST +

RF

N/A 1.5 T

Manual

extraction of

a rectangular

ROI

10-fold cross

validation

(Injury detection

problem,

complete

rupture) =

(N/A/0.89,

N/A/0.94),

(N/A/0.88,

N/A/0.94),

(N/A/0.889,

N/A/0.91),

(N/A/0.88,

N/A/0.90)

respectively

with the models

ACL tear

19
Mazlan

et al. 
2017 SVM N/A N/A

They use

cropping

technique

Hold out (10%

of sample)
100%/N/A ACL tear

20
Zarandi

et al. 
2016

IT2FCM,

PNN
N/A N/A -

Hold out (20%

of sample)

0 and 1 mode:

90%/N/A

Binary mode:

78%/N/A

Meniscus

tear

21 Fu et al. 2013 SVM N/A N/A

Active

Contours

without

Edges

method. This

method

combines

Active

Contours

with Level

Sets and is

called ACLS

5-Fold cross

validation

SVM model:

N/A/0.73

SFFS + SVM:

N/A/0.91

Meniscus

tear

22
Abdullah

et al. 
2013

BP ANN,

K-NN
N/A N/A -

5-fold and 6-

fold

BP ANN:

94.44%/N/A

k-NN:

87.83%/N/A

ACL tear
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DL algorithms; and (ii) the high computational cost. Explainable AI aims at building trust in the AI algorithms by providing

medical experts with a diagnostic rationale behind the AI decision processes. The goal of the lightweight DL field is to

develop models that have shallower architecture and are also faster and more data-efficient, while retaining the high-

performance standards. Jeon et al.  were the first to get to grips with the clinical deployment of the MRI-based knee

injury diagnosis. To this end, they proposed to use post-inference visualisation tools (such as CAM and Grad-CAM), and

they also incorporated attention modules, Gaussian positional encoding, squeeze modules, and fewer convolutional

filters.
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