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1D electrospun MOS are basically nanofibers, nanotubes or nanowires, which are made of one or more
semiconductor metal oxides or with other dopant material. Polymer/MOS precursor nanofibers that are formed in

the electrospinning process are calcined until the polymer is removed and pristine MOS nanostructure is obtained.

electrospinning metal oxides nanomaterials nanofibers nanowires

| 1. Electrospun 1D MOS in Saving the Natural Environment

Industrialization and increasing consumerism have led to the highest level of warning about environmental pollution
and its associated crisis. Industrial waste compared to municipal waste is toxic and non-biodegradable, as it
contains heavy metal ions, oils and fats, dyes, phenols and ammonia, which can adversely affect human life and
health but also the environment. One possible solution to this problem is to use the process of photocatalysis to
break down harmful substances into simpler and environmentally friendly ones. Photocatalysis combines reactions
using light and a catalyst, which is usually a semiconductor—it absorbs light and acts as a catalyst for chemical

reactions. Therefore, it is necessary to search for semiconductor materials that can help solve this global problem.

Recently, electrospun one-dimensional semiconductor metal oxide nanostructures, predisposed by their unique
optical and electrical properties, have attracted the attention of researchers studying photocatalytic pollutant
decomposition processes of TiO,, ZnO and SnO,, whose energy gap width, radiation absorption range and mobility

rate can be controlled by the parameters of the manufacturing process (Figure 1, Table 1 and Table 2) [LI2IEI4I[5]
(61,
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Figure 1. SEM image of surface morphology of (a) TiO, nanowires after calcination at 400 °C, (b) ZnO nanowires

after calcination at 400 °C [own study].

Table 1. Optical properties of selected 1D metal oxides prepared via electrospinning.

MOS TIOZ ZnO SIOZ SnO, Bi203 In,O3
Direct band gap [eV] 2.91-2.94 3.32-3.36 3.93-3.97 3.30-3.58 2.48-2.72 2.92-3.34

Ref. EY [7] (8] 9 [10] [11][22]

Table 2. Optical properties of TiO, nanowires and ZnO nanowires after calcination at 400 °C [own study].

Material Calcination Temperature [°C] Max. Absorbance Wavelength [nm] Eg [eV]
400 2.42 3.73
TiO, nanowires 500 2.34 248 3.83
600 2.26 3.88
400 2.94 3.36
ZnO nanowires 500 3.38 346 3.34
600 3.43 3.32

Z. Wang et al. performed an analysis 13 of the photocatalytic properties of ZnO/SnO, nanofiber with and without
the addition of the P123 precursor, which resulted in a much higher photocatalytic activity in the degradation of
methyl orange (MO) in UV light of the composite nanofibers with the addition of P123. C. Zhu et al. in their work 14!
showed significantly greater possibilities of photocatalytic decomposition of Rhodamine B in visible light through
the use of composite SnO,/Fe,03 nanofibers compared to the capabilities of the non-admixture SnO,. Electrospun
SnO, nanostructures coated with a 1 nm thick carbon shell fabricated by P. Zhang et al. 13 showed very efficient
photocatalytic degradation of 4-Nitrophenol under both UV and visible light (Figure 2). K. Wang et al. in their work
(28] reported a study on the photocatalytic activity of mutiheterojunction in the photodegradation of methyl orange
(MO) and Cr (V1) ions under visible light. It was observed that the SnO,/Bi,O4/BiOIl nanofibers were characterized
by better photocatalytic activity than the non-admixture SnO, and Bi,O3, which the authors attributed to the
increased absorption of visible light, electron-hole pair separation and large specific surface area of the

nanostructures studied.
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Figure 2. Diagram of the photocatalytic activation of nanotubes SnO, (131,

T. Wang. et al. &I demonstrated that the use of magnetic field-assisted electrospinning in the fabrication of
nanofibers and nanotubes from TiO, narrowed the band gap to favor photocatalytic performance—TiO, reduced
Rhodamine B (RhB) by 95.8% in 100 min. Q. Zhang et al. 17 proposed the use of 1D composite nanostructures
based on In,O3 of admixtured Caln,O,4 in the photocatalytic purification of water from the dye-methylene blue (MB).
The degradation rates of MB were 76% and 92%, respectively, under 120 min of simulated sunlight exposure. The
efficient separation and transport of photogenerated carriers, as well as the large specific surface area, meant that
the Caln,0,-In,05 composites were characterized by high photocatalytic efficiency. A. Ahmad et al. 28 by the
triaxial electrospinning method produced TiO, with a structure of nanofiber-in-nanotube (rutile-anatase), with which

the photodegradation was carried out for 88.1% of the Sandalfix N. Blue with a 240 min irradiation time.

The diversity of available variations of the electrospinning process makes it possible to obtain MOS with high

photocatalytic activity; however, further research is needed to explore the mechanism of this phenomenon.

The growing demand for green energy motivates researchers to look for materials and solutions that can increase
the efficiency of existing renewable energy sources (RES), especially photovoltaic cells. So far, the many works

that have presented the possibility of using 1D MOS in the construction of modern solar cells mainly focused on the
use of TiO,, ZnO and SnO, [12[20]121][22][23][24][25][26]{27]
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Favorable optoelectronic properties of crystalline-amorphous hybrid SnO, nanowires are suggested by W.
Matysiak et al. 28 to be used in in modern flexible photovoltaic cells (Table 3, Figure 3). The research group, to
which the Authors belong, was awarded a silver medal at the 5th China (Shanghai) International Invention &
Innovation Expo in 2021 for the invention “Innovative flexible solid-state solar cell with a hybrid layered
architecture”, for which the construction of which SnO, nanowires were used (Figure 4).
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Figure 3. (@) SEM image of SnO, nanowires calcined in 500 °C (Reprinted with kind permission from Springer [28]);

UV-VIS: (b) absorption spectrum of SnO, nanowires calcined in 500 °C (Reprinted with kind permission from
Nature [22),

Figure 4. Schematic representation of multilayer flexible photovoltaic architecture manufactured in Department of
Engineering Materials and Biomaterials [Poster at the 5th China (Shanghai) International Invention & Innovation
Expo: “Innovative flexible solid-state solar cell with a hybrid layered architecture”].
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Table 3. Refractive index and dielectric permittivity obtained for the electrospun 1D SnO, nanomaterials (28!,

SnO, Nanowires

Parameter Type of Spinning Solutions
Type 1 Type 2 Type 1
refractive index (n) 1.51 1.52 1.51
complex dielectric permeability (€) 2.28 2.30 2.28
Energy band gap (Eg) 3.3 3.8 3.9

M. Yang et al. in their publication B9 described the effect of graphene oxide (GO) admixture in hybrid SnO,/TiO,
nanofibers on the efficiency of dye-based solar cells (DSCs) constructed with their participation. DSCs along with
GO-SnO,/TiO, as the working electrode were analyzed for efficiency and the following photovoltaic parameters:
short-circuit current density, open-circuit voltage and fill factor, which were respectively 11.19 mA/cm?2, 0.72 V and
0.67. It was found that the solar-to-electric energy conversion efficiency of GO/SnO,/TiO, as a photoanode-based

device was 5.41%.

Therefore, it is worthwhile to pay attention to the application of MOS in the construction of next-generation

photovoltaic cells, as they may provide a solution to the problem of low efficiency of dye-based cells.

2. Electrospun Metal Oxides 1D Nanostructures in Gas
Sensors

The most widely studied application of one-dimensional metal oxide-based nanostructures are sensors for gases
such as methanol, ethanol, acetone, formaldehyde, xylene and other volatile organic compounds that are highly

toxic and dangerous to human health and even life [32[32],

Gas sensors based on semiconductor metal oxides are widely used in many areas, including chemical pollution
control in air and rooms, alarms to detect the threat of poisonous substances and even medical diagnostics

performed on the basis of a patient’s breath. The popularity of these types of sensors is due to their high sensitivity,

low cost and ease of manufacture, as well as their compatibility with modern electronic devices [22I341[35](36][37][38]

The mechanism of gas detection by these MOS can be explained by the fact that the conductivity of the materials
is changed by the chemical interaction between the gas and the surface of the nanostructure on which oxygen is
adsorbed. Oxygen (O,) molecules are adsorbed on the nanofiber/nanowire surface in air and then they capture
electrons from the conductivity band of the oxide so that chemisorbed oxygen ions (O,7) are generated and the
formation of a barrier layer at a certain depth of the oxide structure is initiated. When the nanostructures are
exposed to gas at an appropriate temperature, the gas reacts with the surface oxygen species and the width of the
barrier layer decreases. As a result, the carrier concentration will increase, which ultimately increases the

conductivity of the nanofibers/nanowires 24941
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Many scientific reports indicate that the detection of hazardous substances by sensors based on electrospun MOS
still needs to be developed—aobtaining sensors with a lower substance detection threshold and shorter device
response and reaction times. Improvement of these properties can be achieved by admixing with metallic
nanoparticles, other MOS and carbon materials, which will affect the conductivity of the MOS. The combination of
different materials produces local p-n, n-n or p-p nanojunctions. It is the heterojunctions generated from different
materials that directly affect the substance detection mechanism. Several typical morphologies of MOS-based
heterostructured materials are most commonly reported in the literature (Figure 5). In addition to non-admixed 1D
MOS, hybrid structures consisting of both MOS and admixed crystallites simultaneously stand out. MOS nanowires
decorated with nanoparticles or other forms of admixture are another interesting variation. There are also

structures with core-shell morphology in which MOS can be either covered or surrounded by other material.

Decorated Core-shell

Pristine

Figure 5. Types of morphology of the most commonly produced 1D nanostructures.

One of the most commonly used MOS as detector anode is tin dioxide, which is characterized by an energy gap
width of about 3.6 kV and simultaneous optical transparency and electrical conductivity [2Q42][431[44]45][46] |njym
oxide exhibiting similar properties to tin oxide is also increasingly used. These materials are often combined with
each other and also admixed with other oxides such as TiO,, ZnO, CuO and NiO (Table 4). The authors of this
paper have established a collaboration with the Department of Optoelectronics, which is equipped with laboratories
capable of gas detection measurements. Electrospun SnO, and In,O3 nanowires fabricated in the Department of
Engineering Materials and Biomaterials will be plotted on the IDT and tested to detect gases such as NH3, NO,,
CO, and H,.

Bai et al. ¥Z demonstrated that the porous, coreless structure of ZnO-SnO, nanowires is ideal for detecting very
low concentrations (0.023 ppm) of toxic NO,. In addition, good detection properties of NO, promotes the formation
of an n-n heterojunction at the phase boundary of ZnO and SnO,, which results in the formation of an additional

barrier layer (Figure 6).
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Figure 6. Scheme of hollow structure of gas adsorption and depletion layer for ZnO-SnO, composite 47,

Zhang et al. 48 observed that the response of sensors in acetone-containing environment can be improved by
using heterojunction nanotubes of WO3-SnO, and admixing it with Pd catalyst. Studies of the sensory properties of
the material showed that the addition of Pd increased the response of Pd-WO3-SnO, sensor more than double the
response obtained from WO3-SnO, sensor in contact with 100 ppm acetone. In addition, the selectivity for
detecting acetone in the presence of other gases such as toluene, ammonia, nitrous oxide and pentane was

significantly improved.

Du et al. 42 fabricated In,03 nanofibers with a traditional electrospinning method and then they subjected them to
surface modification using low-temperature oxygen and hydrogen radiofrequency plasma. The nanofibers were
placed in a plasma reactor chamber and surface modification was performed by increasing the number of pores
and channels in the nanofibers (Figure 7). This mechanism enabled more oxygen to be adsorbed on the surface of
the indium oxide nanostructures, leading to increased response values and improved selectivity for detecting
acetone in the presence of interfering gases such as ethanol, methanol, formaldehyde, benzene, ammonia and

nitrogen dioxide.
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Figure 7. Scheme of In,0O3 nanofibers morphology before and after surface modification 42!,

Table 4. Selected 1D MOS and their sensing properties.

L Polymer Precursor Solvent gﬁ:lceir'\l'aetri: 5 Gas U SR LS Ref
Type y [h] [oC]p [ppm] Time [S] )
e SO O Ly e 5 cumm ®
glril(())-z PVP Sl\:‘ig:z:gzig’ Et'\gi 5 600  Toluene 50 11.2/4 51
oo, PR dichome  mom 4 S0 WS 10 2
%i%zz' PVP Ci(”NC(')Zs')Z:(SZSZ’O cor 3 600 EtOH 200 8-10/11-30 53]
V;ﬁgj PVP (NH4)Ser|j|(2:\|/%/-122|_(|324(2'/XH20 Et'\éi 1 600 EtOH 10 18.5/282 (54
Flfégz PVP 'E(G}N(Sg;j.';:;g' Et'\é';' 2 550 Formaldehyde 100 5/25 (551
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Material Calcination Conc Response/Recovery
Polymer Precursor Solvent Time Tem Gas - Ref.
Type OV [l [ppm]  Time [s]
DMF,
\I/r‘]’oOS' PVP '”(Noﬁc‘f'SHzo' EtOH, 2 500 Acetone 25 6/64 (561
273 6 AcOH
CuO- IN(NO3)3-xH,0, 4-30/incomplete 57]
In,O3 PVP Cu(NO3),-xH,0 DMF 2 600 HS ° recovery
SnOZ' |n(NO3)3'4.5H20, DMF, 0.5- _ [58]
IN,Os PVP SnCly-2H,0 EtOH 2 600 Formaldehyde 50 20/40
|n203
(RF DMF, [49]
plasma PVP IN(NO3)3-4.5H,0 EtOH 3 550 Acetone 10 18-23/55-92
modified)
S uction of
L3005 pyp LIONCHER O EtOH, 550 Formaldehyde 50 3/19 (591
IN,03 La(NO3)3-xH,0 mlnﬁral posed to
Ol
In,O3 PVP IN(NO3)3-4.5 H,O DMF 2 800 NO, 5 200/1000 [60]

3. Electrospun Metal Oxides 1D Nanostructures in Other
Applications

Supercapacitors and lithium-ion batteries (LIBs) are other devices for which one-dimensional MOS nanostructures
can be used. With the rapid progress of civilization and industrialization, there is a growing need for methods,
materials and devices to store large amounts of energy (1. One solution to meet these needs is the development
of LIBs with high performance, which is primarily dependent on the performance of the battery’s most important
component, the anode. The currently used anode material in the form of graphite is currently no longer able to
meet the needs of high energy storage capacity due to its low capacity and low efficiency. Therefore, the search
and research of new electrode materials is of great importance for the current demand for high performance LIBs
[62][63] Recently, semiconductor nanomaterials such as ZnO, NiO, SnO; lub TiO, nanotubes and nanowires have
been of particular interest for 1D, along with heterojunctions formed by combining these materials with carbon
materials [B2I6SII6EI6TI68IE9] The advantage of using one-dimensional nanomaterials for anodes in LIBs is the much
less frequently observed agglomeration of the material than in the case of nanoparticles, which positively affects
the electrochemical performance of the battery, and this fact was confirmed in a study by C. K. Chan et al. [

based on the analysis of a battery based on Si nanowires.

J. Zhu et al. (68 pointed out the high application potential of electrospun ZnO-SnO2 nanofibers as anode material in
lithium-ion batteries. It was observed that due to the heterogeneous mesoporous electrode structure based on
Zn0O-Sn0O; nanofibers, they provide excellent performance and reversible capacity at a relatively low cost and with
high process repeatability. D. Lei et al. in their work X showed that GeO,-SnO, composite nanofibers with high
porosity prepared by the solution electrospinning method have high specific capacitance and good cycling
performance, which is mainly due to the porous one-dimensional nanostructure, which can shorten the transport

pathway and provide trapping of electrolyte ions to meet the requirements of fast charging and discharging
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reactions. J. Guo in 22 described the effect of pore distribution on the capacitance of two types of porous C/SnO,
nanofibers produced by electrospinning from solutions based on different precursors, i.e., using tin chloride, the
fibers with spherical pores were obtained, while the pores in the form of channels were obtained from acetate
(Figure 8). On the basis of a galvanostatic charge-discharge test, it was found that multichannel C/SnO,
nanofibers with a large specific surface area (34.97 m2/g) achieve better charging performance than spherical pore

nanofibers and show a more stable capacity retention of about 90% after 50 cycles.

| PANPMMA/DMF/SNCI,-5H,0 |
Electrospinning
solution Manofibers with precursor Nanofibers after

l

PAN/PMMA/DMF/AcSn |

@ ravomvrE @ PANPMMADMFprecursor (@) Sn precursor @) C/Sn0,

Figure 8. Scheme of the manufacturing process of C/SnO, nanofibers with a different morphology.

The use of SnO,-ZnO nanofibers in energy storage was presented in the work 2 of J. Zhang et al. The study
showed that by using the spinning solution parameters, it is possible to control the morphology and obtain hollow
nanotubes, which exhibited good capacity stability in an electrochemical test. In addition, it was observed that the
polypyrrole (PPy) polymer coating of SnO,-ZnO nanotubes has made it possible to maintain a high capacity of
626.1 mA hg™t at 0.2 °C for 100 cycles, and cycle stability has also been improved.

Thus, the electrospinning method with subsequent calcination enables precise control of the electrochemical
properties of the fabricated one-dimensional MOS-based nanostructures, thus providing a chance to solve the

problem of non-compliant LIBs.

Due to their unique optical, electrical and magnetic properties, they are used in modern devices such as field-effect
transistors (FETs) and microwave absorption materials. X. Zhu et al. presented 23l a method to fabricate high-
performance field-effect transistors based on electrospun In,O3; nanofibers admixed with Al, Ga and Cr. The

devices showed optimal performance at a 10% molar concentration of admixing material (Al, Cr and Ga): low and
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positive gate-source voltage Vgs (<6.0 V), a high ratio of the transistor on current to transistor off current Iyn/los

(~108), high saturation current (~10—-4 A) and carrier mobility on the level of ~2.0 cm?/V~1s71,

H. Zhang et al. 13l demonstrated that the use of polymorphic anatase-rutile TiO, nanofibers to build FET showed
better transistor characteristics because of a strong synergistic effect compared with pure anatase and rutile TiO,
nanofibers. BioFET created by S. Veeralingam and S. Badhulik 4 based on B-Bi,O3 nanofibers for the detection
of serotonin exhibited sensitivity of 51.64 pA/nM over a range of 10 nM™! yM and a limit of detection of 0.29 nM.
Moreover, it maintained excellent sensitivity, stability and reproducibility with a rapid response time of 0.8 s. Using
the electrospinning method, K.C.S. Reddy et al. 3 created a self-powered NiO-p/Si-n based ultraviolet
photodetector which exhibited a high responsivity of 9.1 mA W1 at zero bias with a fast photoresponse of less than
0.4 s. X. Huang et al. 78 observed that electrospun bead-like Co-ZnO nanostructures present ferromagnetic
properties and an excellent electromagnetic loss performance—the effective microwave absorption of bandwidth

with reflection loss less than —=10 dB was 11.6 GHz.

For years, medicine has been a priority discipline in which new solutions and biomaterials are constantly being
sought. Looking at the disease problems that affect mankind today, the most rapidly developing areas of medicine
include cancer therapies, drug delivery, biosensors, medical imaging and tissue engineering. Due to the
unsatisfactory properties of conventional biomaterials, it is necessary to search for new material solutions.
Production of one-dimensional nanomaterials with controlled dimensions, arrangement of structures with respect to
each other or porosity creates many possibilities of using their unique properties for therapeutic purposes. Ceramic
nanomaterials, which are based on inert simple oxides, may seem to be a possible solution for some health
problems. The most commonly used one-dimensional MOS include TiO,, due to its non-toxicity, environmental

friendliness as well as good chemical stability and high corrosion resistance 778,

One of many interesting examples of work on the above issue is that presented by I.H.M. Aly et al. 29 who used
electrospun TiO, nanofibers as an admixture to a bioceramic composite based on wollastonite for bone tissue
regeneration, which significantly improved the mechanical properties of the composite while not affecting the
bioactivity in any way, and proves that this type of material is worth considering and researching for applications in
medicine. Mesh with TiO, nanofibers may also find applications in tissue engineering, as studies have shown that it
provides an osteogenic environment—increasing osteoblast production and differentiation 2. S. Chen et al.
confirmed the possibility of using hydrothermal treated nanofibers as delivery systems for the antibiotic tetracycline
hydrochloride, whereby nanofibers showed high bactericidal activity against E. coli and S. aureus [81l. N.C. Bezir et
al. demonstrated that TiO, and Ag/TiO, nanofibers show beneficial antibacterial properties based on measured
inhibition zones diameters of S. aureusculture plates 82, Effective inhibition of B. subtilis and B. cereus through
TiO,/GOI/CA nanofibers was observed by L. Jia et al. B8 TiO, in the form of electrospun one-dimensional
nanostructures also shows promising results in promoting apoptosis of cancer cells, e.g., cervical cancer B4, Other
applications of 1D ceramic nanomaterials in medicine include the use of oleic acid-coated ZnO nanowires to
fabricate hydrophobic polyvinylidene fluoride (PVDF) membranes, whose self-cleaning properties can be used to
construct surgical devices and instruments or artificial blood vessels B3, ZnO nanofibers, similarly to TiO,

nanofibers, are characterized by tremendous antibacterial activity in S. aureus and E. coli utilization B8],
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