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Magnetic hyperthermia (MHT) is more commonly used in various biomedical applications. Magnetic hyperthermia

(MH), a clinical alternative to tumor treatments, also became a powerful tool for cancer treatment by exposing

tumor tissue to elevated temperatures to achieve a therapeutic effect. It has been successfully applied to the

treatment of different types of cancer including the brain, spine, lung, prostate, breast, and pancreas. It is also a

promising alternative to traditional cancer therapies, particularly in the case of aggressive brain cancer like

glioblastoma. MHT’s huge advantages are connected with biosafety, deep tissue penetration, and a focused place

of action. The development of nanomedicine involves complex nanomaterial research involving magnetic

nanomaterials and their use in magnetic hyperthermia. The selection of the optimal treatment strategies is time-

consuming, expensive, unpredictable, and not consistently effective. Delivering personalized therapy that obtains

maximal efficiency and minimal side effects is highly important. Thus, Artificial Intelligence (AI) based algorithms

provide the opportunity to overcome these crucial issues.

artificial intelligence  magnetic hyperthermia  drug

1. Introduction

Artificial Intelligence (AI), including Machine Learning (ML), can be used to solve various issues of information

processing, including pattern recognition, classification, clustering, dimensionality reduction, image recognition,

natural language processing, and predictive analysis . AI-based algorithms can be applied to solve complex

problems . Recent algorithm development enables its application in many areas of everyday life, such as

industry, medicine, and nanomedicine; including nanomaterials with magnetic properties . Consequently, a new

opportunity to predict drug influence and responsiveness based on retrospective databases became available . It

may contribute to the development of optimized healthcare .

An important direction in developing medicine is to provide an effective method of dealing with various neoplastic

diseases. The heterogeneous nature of tumors contributes to the problems in selecting effective treatment

mechanisms. It is crucial to deliver drugs directly to the tumor core, the area most active in proliferation but less

vascularized and hypoxic. Thus, the critical challenge in choosing the optimal therapy is determining the synergy of

the drug depending on its dose, administration timing, and current treatment process. The latest development in

nanotechnology enables the design of nanocarriers for targeted drug delivery, improving medicine release and

beating cancer cells. In turn, manufacturing the nanoparticles, which can be loaded with drugs or other agents

(stabilizers, compounds for diagnostics), is a time and financial outlays-consuming process. Thus, the AI-based
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prediction of the effect of nanoparticles with drugs on living tissues enables the development of targeted

nanomedicine .

2. Artificial Intelligence and Machine Learning as Support for
Magnetic Hyperthermia-Based Research and Prediction
Properties of Nanoparticles

Since each subject is different, and drug synergy gives a different output in an individual case, transforming

Artificial Intelligence (AI) to nanomedicine enables the analysis of large data sets and the effective selection of the

optimal therapy . It is essential in cancer therapy, particularly in the application of magnetic hyperthermia, to

predict the optimal parameters of the process. AI includes various algorithms; researchers reviewed the existing

solutions in the area of research, which involve the use of magnetic hyperthermia, taking into account their

effectiveness, type and size of data sets, input and output parameters, and application fields. In , ANN was

applied to predict the size of AgNO  particles. It turned out that the most sensitive parameters are both AgNO

concentration and reaction temperature. As the AgNO  suspension has no relation with magnetic hyperthermia, the

literature shows the successful use of ANN in the prediction of particular properties of nanomaterials. In , the

ANN was proposed to predict the shape and size of TiO  nanoparticles. In Table 1, the algorithms for the

evaluation of the nanoparticle size were compared. It turned out that neural networks, in particular networks based

on multilayer perceptrons, enable the prediction of the size of nanoparticles with high accuracy, i.e., 0.97 based on

the experimental data.

Table 1. The comparison of the algorithm’s performance takes account of the prediction of the optimal size of the

nanoparticles.
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AccuracyDatabase (Type and
Size if Available) Input Parameters Output

Parameters Reference

Algorithm Type: Artificial Neural Network

0.94 experimental data

polymer concentration

drug

solvent ratio

mixing rate

size

0.97 experimental data polymer molecular weight-number of

blocks in the copolymer used

ratio of polymer to drug

size
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The AI-based analysis of thermal conductivity, taking into account different shapes of nanoparticles (i.e., spherical,

ellipsoidal, clubbed, and sheet), has been made in . It turned out that AI-based prediction can substantially
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AccuracyDatabase (Type and
Size if Available) Input Parameters Output

Parameters Reference

Algorithm Type: multilayer perceptron

0.97
745 experimental data
from the literature

inherent viscosity

molecular weight

lactide-co-glycolide ratio

inner/outer phase Polyvinyl alcohol

(PVA)

concentration

PVA molecular weight

inner phase volume

encapsulation rate

mean particle size

concentration

dissolution pH

number of dissolution additives

dissolution additive concentration

production method

dissolution time

size

0.99 experimental data particle concentration

reaction temperature

UV-visible wavelength

montmorillonite d-

size
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increase the relative thermal conductivity of nanofluids. In Table 2, the algorithms for the evaluation of the thermal

conductivity of the nanoparticle were compared.

Table 2. The comparison of the algorithm’s performance takes account of effective thermal conductivity.
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Size if Available) Input Parameters Output
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AccuracyDatabase (Type and
Size if Available) Input Parameters Output Parameters Reference

Algorithm Type: cascade-forward neural network

0.93
1273 data collected from
the literature

temperature-solid volume

fraction-solid volume fraction
effective thermal

conductivity

0.99

80 dataset experimental
data and
389 data collected from
the literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity

Algorithm Type: Artificial Neural Network

0.99
776 experimental data
set

average diameter

volume fraction

temperature

the ratio of

thermal

conductivity

Algorithm Type: multilayer perceptron, radial basis function neural network
generalized regression, Least-Squares Support Vector Machines

0.97

80 dataset experimental
data and
389 data collected from
the literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity

Algorithm Type: radial basis function neural network

0.95 80 dataset experimental
data and
389 data collected from
the literature

temperature concentration

shape factor

relative thermal

conductivity
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One of the most important properties of nanoparticles is neurotoxicity . In , the classification model for

evaluation neurotoxicity based on Random Forest was proposed while in , the evaluation of antibacterial

capacity using different AI-based algorithms was shown. In turn,  applied ML and perturbation theory to evaluate

the toxicity of nanoparticles. In Table 3 the comparison of the algorithms for the prediction of the neurotoxicity of

the nanoparticle was compiled. So far, the ANN can also be used to predict specific parameters for magnetic

nanoparticles, see Table 4.

Table 3. The comparison of the algorithms for prediction of the nanoparticle toxicity.
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AccuracyDatabase (Type and
Size if Available) Input Parameters Output Parameters Reference

thermal conductivity

Algorithm Type: Adaptive neuro-fuzzy inference system

0.96

80 dataset experimental
data and
389 data collected from
the literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity
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Accuracy
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Parameters Reference

Algorithm Type: Artificial Neural Networks

0.97
260 datasets
from the
literature

average values of the

descriptors for nontoxic

toxic cases with the specific value of the

descriptor of each toxic or nontoxic

toxicity

Algorithm Type: Least Absolute Shrinkage Selection Operator Regression, Ridge Regression Elastic Net
Regression, Support Vector Machine

0.78 datasets from
literature

specific surface

area

hydrodynamic size

zeta potential

core size

exposure dose

core size

exposure

dose

species of

bacterium
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coating
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Available online: https://github.com/mahsa-
mirzaei/RFR_ABA/commits?author=mahsa-
mirzaei (accessed on 24 November 2022).

Algorithm Type: Random Forest

0.78 datasets from
literature

specific surface

area

hydrodynamic size

zeta potential

core size

exposure dose

duration

shape

type

coating

bacterium

aggregation

core size

exposure

dose

species of

bacterium
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Table 4. The comparison of the algorithms for prediction of the optimal properties of nanomaterials performance.
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Accuracy
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Parameters Reference

Available online: https://github.com/mahsa-
mirzaei/RFR_ABA/commits?author=mahsa-
mirzaei (accessed on 24 November 2022).

0.98  

dose

duration

nanoparticle type

nanoparticle shape

zeta potential

surface area

cell origin

cell type

cell line
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cell viability [23]
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Accuracy Database (Type and
Size if Available) Input Parameters Output Parameters Reference

Algorithm Type: Artificial Neural Network

0.93 (for Young’s
modulus)
0.96 (ultimate
tensile strength)

153 datasets from the
literature

weight percent

- particle size

Young’s modulus

ultimate tensile

strength

0.97
3404 experimental
dataset

wavelength

peak intensity

full width at half-

maximum

peak area of the

main peak

particle size

reaction yield

quantum yield

0.98 experimental data sets extraction time

temperature

pressure

extraction yield of

essential oils
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Accuracy Database (Type and
Size if Available) Input Parameters Output Parameters Reference

modifier volume

0.99 experimental data sets
composition

specific absorption

rate

0.99
420 experimental data
sets

particle

concentration

alternating magnetic

field strength

temperature

time

optimal parameters

Algorithm Type: Random Forest

0.75
652 datasets from the
literature

nanoparticle type

nanoparticle core

surface modification

modification type-

size

zeta potential

polydispersity index

corona formation

corona isolation

optimal

composition

Algorithm Type: multilayer perceptron

0.94 (compressive
strength)
0.97 (porosity)

data collected from the
literature

elastic modulus compressive

strength
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The following research  described the ML application to the prediction of power losses of magnetic particles,

which is an important issue in drug targeting. This research has been done on a limited amount of data containing

simulated particles’ simulated properties, showing the proposed approach’s colossal potential. In Table 5, the

algorithm’s performance in predicting power losses of magnetic particles has been made. The evaluation of the

biological and mechanical behavior of the potential candidate for nanomaterials, i.e., silicates bioceramics-

magnetite bio-nanocomposites, which can be applied to the magnetic hypothermia based on ANN has been made

in . In turn, the results presented by  show that ANN has better accuracy than genetic algorithms (GA) in

predicting Young’s modulus and ultimate tensile strength of nanocomposites, particularly polyethylene composites

with multiple nanoparticles.

Table 5. The comparison of the algorithm’s performance takes into account the prediction of power losses of

magnetic particles.
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Accuracy Database (Type and
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fracture toughness

diopside

hardystonite

bredigite
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AccuracyDatabase (Type and Size if
Available) Input Parameters Output Parameters Reference

Algorithm Type: Neural Network

0.90
3963 records of simulated
records

temperature

vertex field

nanoparticles diameter

magnetic anisotropy

saturation

magnetization

the identity of

nanoparticles

coercive field

magnetic

remanence

hysteresis loop

area

Algorithm Type: Random Forrest

0.90 3963 records of simulated
records

temperature

vertex field

nanoparticles diameter

magnetic anisotropy

coercive field

magnetic

remanence

hysteresis loop

area
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In , the application of the genetic algorithm for the optimization of agar nanospheres, which were used in the

manufacturing process of drug loading, was proposed. The optimization problem was formulated to minimize the

size of the particle, release efficiency, and PDI, as well as to maximize the absolute value of zeta potential and

loading efficiency. It turned out that a genetics algorithm could successfully predict the parameters of Bupropion

hydrochloride-loaded agar nanospheres. In turn,  the closed-loop optimization of the release process of the Poly

(lactic-co-glycolic acid) (PLGA) biodegradable particles with ANN and genetic algorithms was described. As input

data, particle size, and initial burst percent at the desired levels were chosen. It was postulated that the proposed

algorithm can predict drug delivery.

In , the ANN was used to predict the optimal composition of two-dimensional graphene–Fe O  nanohybrids,

which are dedicated to magnetic hyperthermia. It enables the prediction of the composition of the optimal

nanohybrid, which can be applied to magnetic hypothermia in low dosage. The optimization based on multilayer

perceptron neural networks of the experimental conditions of nanoparticles was described in . The influence on

nanoparticle characteristics factors like environmental conditions and type of precipitating agent was investigated.

In turn, the mathematical framework for the magnetic drug delivery taking into account the ferrofluid flow was

shown in .

Another critical issue in the manufacturing of nanoparticles is the synthesis process . It should maintain

precisely controlled characteristics. Since the synthesis of nanoparticles is a long-term and cost-consuming

process due to the involvement of multiple chemical substances, the AI-based algorithm provides the opportunity to

develop efficient experimental protocols. The following research describes the application of AI to the synthesis of

semiconductor, metal, carbon-based and polymeric nanoparticles . In , based on ultraviolet-visible (UV-vis)

and PL spectrum data, the prediction of the optimal parameters of the synthesis of combinatorial CdSe

nanoparticles was proposed. Thus, the heuristic and Bayesian optimization can be applied to the evaluation of the

synthesis of the nanoparticles. Such an example is far from the magnetic hyperthermia application, while AI

support can improve the experimental work also in the magnetic nanoparticles and magnetic hyperthermia field. In

 the genetics algorithm particle swarm optimization (PSO) was used to predict the magnetic field generation. In

, GA was used to optimize the Specific Absorption Rate in the case of hyperthermia treatment of the human

head.

Recently, attempts were made to apply AI-based algorithms in the research of hydrogels. In reference , the

Artificial Neural Network and Least Square Support Vector Machine were used to evaluate the swelling degree in

the hydrogel, namely poly(NIPAAm-co-AAc) IPN. It turned out that Artificial Intelligence-based algorithms can,

successfully and with high accuracy, predict the influence of pH and temperature on hydrogel deswelling behaviors.

At the same time, the ANN model has higher computational efficiencies than the LS-SVM approach while

maintaining this similar accuracy. Thus, in , ANN was used to evaluate the deswelling and heating behavior of

the field-sensitive hydrogels, like poly(NIPAAm-co-VSA)/Fe O  IPN. The comparison of the algorithms for

-

AccuracyDatabase (Type and Size if
Available) Input Parameters Output Parameters Reference

saturation

magnetization

the identity of

nanoparticles
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predicting deswelling behaviors is made in Table 6. It turned out that ANN achieved the highest efficiency in

predicting deswelling degrees.

Table 6. The comparison of the algorithms for the prediction of deswelling behavior.

Magnetic nanoparticles are also used to remove various types of substances. The efficiency of the approach is

strictly connected with the percent of compounds adsorbed onto modified magnetic nanoparticles . Thus,

AI-based algorithms can be applied to predict removal efficiency. In  the application of the Artificial Neural

Network and adaptive neuro-fuzzy inference system for the prediction of the chromium removal efficiency was

shown. In Table 7, the comparison of algorithms for the evaluation of the removal efficiency is presented. It turned

out that the combination of the Artificial Neural Network with an adaptive neuro-fuzzy inference system provides

higher prediction efficiency.

Table 7. The comparison of the algorithms for prediction of the removal efficiency.
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Accuracy
Application Field
Database (Type and Size if
Available)

Input Parameters Output
Parameters Reference

Algorithm Type: Artificial Neural Network

0.99 1638 experimental data set

time

temperature

pH

swelling

degree

0.99 438 experimental data set

alternating magnetic field

strength

time

temperature

swelling

degree

temperature

Algorithm Type: Least Square Support Vector Machine

0.98 1638 experimental data set

time

temperature

pH

swelling

degree
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AccuracyDatabase (Type and Size
if Available) Input Parameters Output Parameters Reference

Algorithm Type: Artificial Neural Network

0.88 29 experimental data set

initial dye concentration

initial pH

contact time

temperature

maximum removal

efficiency

0.97 experimental data set

temperature

stirring rate

initial ethyl benzene

xylene (BTEX)

concentration

contact time

pH

adsorbent dose

removal efficiency

0.98
18 experimental datasets
from the literature

pH

adsorbent dose

initial coupons

concentration

removal efficiency

0.98 experimental dataset pH

initial heptachlor

concentration

contact time

heptachlor removal

efficiency
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AccuracyDatabase (Type and Size
if Available) Input Parameters Output Parameters Reference

stirring rate

adsorbent dose

0.99 experimental dataset

dose of photocatalyst

the power of visible

light

initial concentration of

tetracycline

radiation time

oxidant concentration

removal percentage of

tetracycline

Algorithm Type: genetic algorithm

0.86 29 experimental data set

initial dye concentration

initial pH

contact time

temperature

maximum removal

efficiency

Algorithm Type: adaptive neuro-fuzzy inference system

0.94
18 experimental datasets
from the literature

pH

adsorbent dose

initial coupons

concentration

removal efficiency

0.98 experimental dataset pH heptachlor removal

efficiency
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