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Magnetic hyperthermia (MHT) is more commonly used in various biomedical applications. Magnetic hyperthermia (MH), a

clinical alternative to tumor treatments, also became a powerful tool for cancer treatment by exposing tumor tissue to

elevated temperatures to achieve a therapeutic effect. It has been successfully applied to the treatment of different types

of cancer including the brain, spine, lung, prostate, breast, and pancreas. It is also a promising alternative to traditional

cancer therapies, particularly in the case of aggressive brain cancer like glioblastoma. MHT’s huge advantages are

connected with biosafety, deep tissue penetration, and a focused place of action. The development of nanomedicine

involves complex nanomaterial research involving magnetic nanomaterials and their use in magnetic hyperthermia. The

selection of the optimal treatment strategies is time-consuming, expensive, unpredictable, and not consistently effective.

Delivering personalized therapy that obtains maximal efficiency and minimal side effects is highly important. Thus, Artificial

Intelligence (AI) based algorithms provide the opportunity to overcome these crucial issues.
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1. Introduction

Artificial Intelligence (AI), including Machine Learning (ML), can be used to solve various issues of information processing,

including pattern recognition, classification, clustering, dimensionality reduction, image recognition, natural language

processing, and predictive analysis . AI-based algorithms can be applied to solve complex problems . Recent

algorithm development enables its application in many areas of everyday life, such as industry, medicine, and

nanomedicine; including nanomaterials with magnetic properties . Consequently, a new opportunity to predict drug

influence and responsiveness based on retrospective databases became available . It may contribute to the

development of optimized healthcare .

An important direction in developing medicine is to provide an effective method of dealing with various neoplastic

diseases. The heterogeneous nature of tumors contributes to the problems in selecting effective treatment mechanisms. It

is crucial to deliver drugs directly to the tumor core, the area most active in proliferation but less vascularized and hypoxic.

Thus, the critical challenge in choosing the optimal therapy is determining the synergy of the drug depending on its dose,

administration timing, and current treatment process. The latest development in nanotechnology enables the design of

nanocarriers for targeted drug delivery, improving medicine release and beating cancer cells. In turn, manufacturing the

nanoparticles, which can be loaded with drugs or other agents (stabilizers, compounds for diagnostics), is a time and

financial outlays-consuming process. Thus, the AI-based prediction of the effect of nanoparticles with drugs on living

tissues enables the development of targeted nanomedicine .

2. Artificial Intelligence and Machine Learning as Support for Magnetic
Hyperthermia-Based Research and Prediction Properties of Nanoparticles

Since each subject is different, and drug synergy gives a different output in an individual case, transforming Artificial

Intelligence (AI) to nanomedicine enables the analysis of large data sets and the effective selection of the optimal therapy

. It is essential in cancer therapy, particularly in the application of magnetic hyperthermia, to predict the optimal

parameters of the process. AI includes various algorithms; researchers reviewed the existing solutions in the area of

research, which involve the use of magnetic hyperthermia, taking into account their effectiveness, type and size of data

sets, input and output parameters, and application fields. In , ANN was applied to predict the size of AgNO  particles. It

turned out that the most sensitive parameters are both AgNO  concentration and reaction temperature. As the AgNO

suspension has no relation with magnetic hyperthermia, the literature shows the successful use of ANN in the prediction

of particular properties of nanomaterials. In , the ANN was proposed to predict the shape and size of TiO
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nanoparticles. In Table 1, the algorithms for the evaluation of the nanoparticle size were compared. It turned out that

neural networks, in particular networks based on multilayer perceptrons, enable the prediction of the size of nanoparticles

with high accuracy, i.e., 0.97 based on the experimental data.

Table 1. The comparison of the algorithm’s performance takes account of the prediction of the optimal size of the

nanoparticles.

Accuracy Database (Type and Size if
Available) Input Parameters Output

Parameters Reference

Algorithm Type: Artificial Neural Network

0.94 experimental data

polymer concentration

drug

solvent ratio

mixing rate

size

0.97 experimental data

polymer molecular weight-number of blocks

in the copolymer used

ratio of polymer to drug

size

Algorithm Type: multilayer perceptron

0.97 745 experimental data from
the literature

inherent viscosity

molecular weight

lactide-co-glycolide ratio

inner/outer phase Polyvinyl alcohol (PVA)

concentration

PVA molecular weight

inner phase volume

encapsulation rate

mean particle size

concentration

dissolution pH

number of dissolution additives

dissolution additive concentration

production method

dissolution time

size
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Accuracy Database (Type and Size if
Available) Input Parameters Output

Parameters Reference

0.99 experimental data

particle concentration

reaction temperature

UV-visible wavelength

montmorillonite d-

spacing

size

The AI-based analysis of thermal conductivity, taking into account different shapes of nanoparticles (i.e., spherical,

ellipsoidal, clubbed, and sheet), has been made in . It turned out that AI-based prediction can substantially increase the

relative thermal conductivity of nanofluids. In Table 2, the algorithms for the evaluation of the thermal conductivity of the

nanoparticle were compared.

Table 2. The comparison of the algorithm’s performance takes account of effective thermal conductivity.

Accuracy Database (Type and Size if
Available) Input Parameters Output Parameters Reference

Algorithm Type: cascade-forward neural network

0.93 1273 data collected from
the literature

temperature-solid volume fraction-

solid volume fraction
effective thermal

conductivity

0.99

80 dataset experimental
data and
389 data collected from the
literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity

Algorithm Type: Artificial Neural Network

0.99 776 experimental data set

average diameter

volume fraction

temperature

the ratio of thermal

conductivity

Algorithm Type: multilayer perceptron, radial basis function neural network
generalized regression, Least-Squares Support Vector Machines

0.97

80 dataset experimental
data and
389 data collected from the
literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity

Algorithm Type: radial basis function neural network

0.95

80 dataset experimental
data and
389 data collected from the
literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity

Algorithm Type: Adaptive neuro-fuzzy inference system
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Accuracy Database (Type and Size if
Available) Input Parameters Output Parameters Reference

0.96

80 dataset experimental
data and
389 data collected from the
literature

temperature concentration

shape factor

thermal conductivity

relative thermal

conductivity

One of the most important properties of nanoparticles is neurotoxicity . In , the classification model for evaluation

neurotoxicity based on Random Forest was proposed while in , the evaluation of antibacterial capacity using different

AI-based algorithms was shown. In turn,  applied ML and perturbation theory to evaluate the toxicity of nanoparticles. In

Table 3 the comparison of the algorithms for the prediction of the neurotoxicity of the nanoparticle was compiled. So far,

the ANN can also be used to predict specific parameters for magnetic nanoparticles, see Table 4.

Table 3. The comparison of the algorithms for prediction of the nanoparticle toxicity.

Accuracy
Database (Type
and Size if
Available)

Input Parameters Output
Parameters Reference

Algorithm Type: Artificial Neural Networks

0.97 260 datasets from
the literature

average values of the

descriptors for nontoxic

toxic cases with the specific value of the descriptor of

each toxic or nontoxic

toxicity

Algorithm Type: Least Absolute Shrinkage Selection Operator Regression, Ridge Regression Elastic Net Regression, Support
Vector Machine

0.78 datasets from
literature

specific surface

area

hydrodynamic size

zeta potential

core size

exposure dose

duration

shape

type

coating

bacterium

aggregation

Available online: https://github.com/mahsa-
mirzaei/RFR_ABA/commits?author=mahsa-mirzaei
(accessed on 24 November 2022).

core size

exposure

dose

species of

bacterium

Algorithm Type: Random Forest
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Accuracy
Database (Type
and Size if
Available)

Input Parameters Output
Parameters Reference

0.78 datasets from
literature

specific surface

area

hydrodynamic size

zeta potential

core size

exposure dose

duration

shape

type

coating

bacterium

aggregation

Available online: https://github.com/mahsa-
mirzaei/RFR_ABA/commits?author=mahsa-mirzaei
(accessed on 24 November 2022).

core size

exposure

dose

species of

bacterium

0.98  

dose

duration

nanoparticle type

nanoparticle shape

zeta potential

surface area

cell origin

cell type

cell line

assay

cell viability

Table 4. The comparison of the algorithms for prediction of the optimal properties of nanomaterials performance.

Accuracy Database (Type and Size
if Available) Input Parameters Output Parameters Reference

Algorithm Type: Artificial Neural Network

0.93 (for Young’s
modulus)
0.96 (ultimate tensile
strength)

153 datasets from the
literature

weight percent

- particle size

Young’s modulus

ultimate tensile

strength
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Accuracy Database (Type and Size
if Available) Input Parameters Output Parameters Reference

0.97 3404 experimental
dataset

wavelength

peak intensity

full width at half-

maximum

peak area of the main

peak

particle size

reaction yield

quantum yield

0.98 experimental data sets

extraction time

temperature

pressure

modifier volume

extraction yield of

essential oils

0.99 experimental data sets
composition

specific absorption

rate

0.99 420 experimental data
sets

particle concentration

alternating magnetic

field strength

temperature

time

optimal parameters

Algorithm Type: Random Forest

0.75 652 datasets from the
literature

nanoparticle type

nanoparticle core

surface modification

modification type-size

zeta potential

polydispersity index

corona formation

corona isolation

optimal composition

Algorithm Type: multilayer perceptron
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Accuracy Database (Type and Size
if Available) Input Parameters Output Parameters Reference

0.94 (compressive
strength)
0.97 (porosity)

data collected from the
literature

elastic modulus

fracture toughness

diopside

hardystonite

bredigite

compressive strength

porosity

The following research  described the ML application to the prediction of power losses of magnetic particles, which is an

important issue in drug targeting. This research has been done on a limited amount of data containing simulated particles’

simulated properties, showing the proposed approach’s colossal potential. In Table 5, the algorithm’s performance in

predicting power losses of magnetic particles has been made. The evaluation of the biological and mechanical behavior of

the potential candidate for nanomaterials, i.e., silicates bioceramics-magnetite bio-nanocomposites, which can be applied

to the magnetic hypothermia based on ANN has been made in . In turn, the results presented by  show that ANN

has better accuracy than genetic algorithms (GA) in predicting Young’s modulus and ultimate tensile strength of

nanocomposites, particularly polyethylene composites with multiple nanoparticles.

Table 5. The comparison of the algorithm’s performance takes into account the prediction of power losses of magnetic

particles.

Accuracy Database (Type and Size if Available) Input Parameters Output Parameters Reference

Algorithm Type: Neural Network

0.90 3963 records of simulated records

temperature

vertex field

nanoparticles diameter

magnetic anisotropy

saturation magnetization

the identity of nanoparticles

coercive field

magnetic remanence

hysteresis loop area

Algorithm Type: Random Forrest

0.90 3963 records of simulated records

temperature

vertex field

nanoparticles diameter

magnetic anisotropy

saturation magnetization

the identity of nanoparticles

coercive field

magnetic remanence

hysteresis loop area

In , the application of the genetic algorithm for the optimization of agar nanospheres, which were used in the

manufacturing process of drug loading, was proposed. The optimization problem was formulated to minimize the size of

the particle, release efficiency, and PDI, as well as to maximize the absolute value of zeta potential and loading efficiency.

It turned out that a genetics algorithm could successfully predict the parameters of Bupropion hydrochloride-loaded agar

nanospheres. In turn,  the closed-loop optimization of the release process of the Poly (lactic-co-glycolic acid) (PLGA)
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biodegradable particles with ANN and genetic algorithms was described. As input data, particle size, and initial burst

percent at the desired levels were chosen. It was postulated that the proposed algorithm can predict drug delivery.

In , the ANN was used to predict the optimal composition of two-dimensional graphene–Fe O  nanohybrids, which are

dedicated to magnetic hyperthermia. It enables the prediction of the composition of the optimal nanohybrid, which can be

applied to magnetic hypothermia in low dosage. The optimization based on multilayer perceptron neural networks of the

experimental conditions of nanoparticles was described in . The influence on nanoparticle characteristics factors like

environmental conditions and type of precipitating agent was investigated. In turn, the mathematical framework for the

magnetic drug delivery taking into account the ferrofluid flow was shown in .

Another critical issue in the manufacturing of nanoparticles is the synthesis process . It should maintain precisely

controlled characteristics. Since the synthesis of nanoparticles is a long-term and cost-consuming process due to the

involvement of multiple chemical substances, the AI-based algorithm provides the opportunity to develop efficient

experimental protocols. The following research describes the application of AI to the synthesis of semiconductor, metal,

carbon-based and polymeric nanoparticles . In , based on ultraviolet-visible (UV-vis) and PL spectrum data, the

prediction of the optimal parameters of the synthesis of combinatorial CdSe nanoparticles was proposed. Thus, the

heuristic and Bayesian optimization can be applied to the evaluation of the synthesis of the nanoparticles. Such an

example is far from the magnetic hyperthermia application, while AI support can improve the experimental work also in the

magnetic nanoparticles and magnetic hyperthermia field. In  the genetics algorithm particle swarm optimization (PSO)

was used to predict the magnetic field generation. In , GA was used to optimize the Specific Absorption Rate in the

case of hyperthermia treatment of the human head.

Recently, attempts were made to apply AI-based algorithms in the research of hydrogels. In reference , the Artificial

Neural Network and Least Square Support Vector Machine were used to evaluate the swelling degree in the hydrogel,

namely poly(NIPAAm-co-AAc) IPN. It turned out that Artificial Intelligence-based algorithms can, successfully and with

high accuracy, predict the influence of pH and temperature on hydrogel deswelling behaviors. At the same time, the ANN

model has higher computational efficiencies than the LS-SVM approach while maintaining this similar accuracy. Thus, in

, ANN was used to evaluate the deswelling and heating behavior of the field-sensitive hydrogels, like poly(NIPAAm-co-

VSA)/Fe O  IPN. The comparison of the algorithms for predicting deswelling behaviors is made in Table 6. It turned out

that ANN achieved the highest efficiency in predicting deswelling degrees.

Table 6. The comparison of the algorithms for the prediction of deswelling behavior.

Accuracy
Application Field
Database (Type and Size if
Available)

Input Parameters Output Parameters Reference

Algorithm Type: Artificial Neural Network

0.99 1638 experimental data set

time

temperature

pH

swelling

degree

0.99 438 experimental data set

alternating magnetic field

strength

time

temperature

swelling

degree

temperature

Algorithm Type: Least Square Support Vector Machine

0.98 1638 experimental data set

time

temperature

pH

swelling

degree
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Magnetic nanoparticles are also used to remove various types of substances. The efficiency of the approach is strictly

connected with the percent of compounds adsorbed onto modified magnetic nanoparticles . Thus, AI-based

algorithms can be applied to predict removal efficiency. In  the application of the Artificial Neural Network and adaptive

neuro-fuzzy inference system for the prediction of the chromium removal efficiency was shown. In Table 7, the

comparison of algorithms for the evaluation of the removal efficiency is presented. It turned out that the combination of the

Artificial Neural Network with an adaptive neuro-fuzzy inference system provides higher prediction efficiency.

Table 7. The comparison of the algorithms for prediction of the removal efficiency.

Accuracy Database (Type and Size if
Available) Input Parameters Output Parameters Reference

Algorithm Type: Artificial Neural Network

0.88 29 experimental data set

initial dye concentration

initial pH

contact time

temperature

maximum removal

efficiency

0.97 experimental data set

temperature

stirring rate

initial ethyl benzene

xylene (BTEX)

concentration

contact time

pH

adsorbent dose

removal efficiency

0.98 18 experimental datasets from
the literature

pH

adsorbent dose

initial coupons

concentration

removal efficiency

0.98 experimental dataset

pH

initial heptachlor

concentration

contact time

stirring rate

adsorbent dose

heptachlor removal

efficiency
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Accuracy Database (Type and Size if
Available) Input Parameters Output Parameters Reference

0.99 experimental dataset

dose of photocatalyst

the power of visible light

initial concentration of

tetracycline

radiation time

oxidant concentration

removal percentage of

tetracycline

Algorithm Type: genetic algorithm

0.86 29 experimental data set

initial dye concentration

initial pH

contact time

temperature

maximum removal

efficiency

Algorithm Type: adaptive neuro-fuzzy inference system

0.94 18 experimental datasets from
the literature

pH

adsorbent dose

initial coupons

concentration

removal efficiency

0.98 experimental dataset

pH

initial heptachlor

concentration

contact time

stirring rate

adsorbent dose

heptachlor removal

efficiency

0.99 experimental data

dose of photocatalyst

the power of visible light

initial concentration of

tetracycline

radiation time

oxidant concentration

removal percentage of

tetracycline
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