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Lymphatic vessels play a distinctive role in draining fluid, molecules and even cells from interstitial and serosal spaces

back to the blood circulation. Lymph vessels of the gut, and especially those located in the villi (called lacteals), not only

serve this primary function, but are also responsible for the transport of lipid moieties absorbed by the intestinal mucosa

and serve as a second line of defence against possible bacterial infections.
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1. Foreword

The lymphatic system is a fascinating and still partially undiscovered fluid transport system that lies in parallel with the

blood circulation and complements it by returning the liquid filtered from the blood capillaries towards the interstitial

spaces back to the blood stream. Its role is fundamental in maintaining a functional fluid volume and composition in

various areas of the body, preventing organ failure. In this review, we will briefly discuss the general mechanisms of lymph

drainage and propulsion, and then focus on the most recent findings that pertain to the exquisite, peculiar environment of

the initial lymphatic vessels of the gut, the lacteals. They have recently been the site of extensive research because of the

pivotal role that the close association between lacteals and microbiota exerts on the whole-body homeostasis.

2. General Overview of the Lymphatic System

The lymphatic network is widely distributed throughout the body, arising as lymphatic capillaries, thin-walled vessels

devoid of lymphatic muscle (LM), connected to the extracellular matrix by anchoring filaments, forming primary valves . 

Lymphatic capillaries then drain into progressively larger and converging collecting lymphatics, which are equipped with a

LM layer owning unique features (as it displays skeletal, cardiac, and smooth muscle contractile elements ), and possess

intraluminal valves , separating adjacent vessel segments named “lymphangions”, the functional contracting pump units

of the lymphatic system. The proper function of the lymphatic system is critically related to the development of pressure

gradients between the vessel’s segments and/or surrounding tissue. According to Starling’s Law , lymph formation

depends upon the transmural pressure gradient (ΔP ) between intraluminal (P ) and interstitial (P ) hydraulic

pressures (ΔP  = P  − P ). Lymph propulsion is due to the intraluminal hydraulic pressure gradient (ΔP )

across adjacent lymphangions (ΔP  = P  − P ), acting against an overall opposite pressure gradient . In most

tissues’ lymphatic capillaries, P  is almost slightly subatmospheric , whereas in the venous system, the intraluminal

pressure is ~10 cmH O. However, exceeding the transvalve ΔP  (1–1.5 cmH O) is enough to guarantee the proper

lymph propulsion to the downstream lymphangion, against an adverse hydraulic pressure gradient and the force of

gravity .

ΔP  and ΔP  are deeply affected by different mechanisms, either involving the spontaneous contraction of the

vessel itself (“intrinsic” mechanism) or mechanical stresses originating in the surrounding tissues (“extrinsic”

mechanisms). The intrinsic mechanism is predominant in vessels located in soft tissues and body areas experiencing no

significant tissue displacement, such as mesenteric lymphatics. It relies on spontaneous contractions of the vessel

triggered by pacemaker cells in the LM layer  and then transmitted to electrically coupled LM cells in the vessel’s

wall . Different pacemaking mechanisms have been proposed, such as Spontaneous Transient Depolarisations (STDs)

 induced by calcium-dependent chloride currents or I -like currents, due to hyperpolarisation-activated cyclic nucleotide

(HCN) channels, similarly to what occurs in the heart sinoatrial node . Hence, in analogy to the cardiac cycle, LM

intrinsic activity generates phasic contractions, displaying an active systolic phase, which forces lymph propulsion to the

adjacent vessel segment, and a passive diastolic phase, due to LM relaxation, which favours lymphangion fluid refilling.

The whole mechanism can be described in terms of contraction frequency and ejection fraction or stroke volume .
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Lymph flow dynamics and the surrounding microenvironment can deeply affect lymphatic spontaneous contractions.

Changes in transmural and/or intraluminal pressures, lymph flow-induced wall shear stress, nitric oxide, histamine, fluid

osmolarity, local tissue temperature and neuronal modulation by the autonomous nervous system can significantly alter

contraction frequency (i.e., chronotropic effect) and/or contraction amplitude (i.e., inotropic effect), continuously

modulating and adapting lymph drainage and transport to current needs . Impaired

intrinsic contractility, as well as lymphatic vessels obstruction, may lead to oedema development as a result of tissue fluid

imbalance . The extrinsic mechanism, on the other hand, is related to mechanical stresses arising in surrounding tissues

then transmitted to the lymphatic vessels by means of fibrous elements of the extracellular matrix . It typically involves

vessels located in areas of the body which experience cyclical movements such as the heart or skeletal muscle,

lymphatics undergoing cardiogenic activity or respiratory movements, intestinal motility, external compression and

arteriolar vasomotion . These mechanisms rhythmically exert external forces compressing and

expanding lymphatic vessels, thus dramatically affecting primary and intraluminal valves dynamics and both ΔP  and

ΔP  .

Intrinsic and extrinsic mechanisms may coexist according to area on the body: their relevance depends upon the sources

of extrinsic forces ranging from blood vessels’ vasomotion caused by the pulsatile blood flow, to skeletal muscle fibres’

contraction. Indeed, in the rat diaphragmatic lymphatic network, both intrinsic and extrinsic mechanisms cooperate as the

contraction of the skeletal muscle fibres is adequate to sustain lymph flow in vessels of the tendinous and medial muscle

regions, but it is not sufficient in the muscular periphery adjacent to the chest wall, where intrinsic contractions are

required to prevent fluid accumulation . However, if extrinsically related mechanisms are sufficient to generate

lymph flow-supportive pressure gradients for proper lymph propulsion, when flow rates are elevated, lymphatic vessels

generally display their own flow-induced inhibition of the spontaneous contractions, and lymphatics behave like

conduits .

3. The Lymphatic System of the Intestine and Mesentery

The organisation of the lymphatic network greatly varies among different body areas. In the intestine, a three-level

distribution of lymphatic vessels can be identified: (a) in the small intestinal villi, (b) in the submucosa and (c) in the

smooth muscle layer surrounding the mucosa . The blind-ended lymphatic capillaries, also known as intestinal lacteals
(Figure 1), are exclusively located in the centre of villi, normally reaching 60–70% of the villus length , which is,

however, variable among different intestine tracts. Indeed, villi length decreases from the duodenum to the jejunum and

distal ileum. As a result, according to the absorptive properties of the intestinal epithelium, lacteals are longest in the

duodenum, where most nutrient uptake occurs. Lacteals merge at the villi basis, forming the submucosal network.

Intestinal villi contain a blood vascular capillary network and 1–10 central lacteals, providing a route for absorbed nutrient

distribution . Water-soluble molecules enter blood vessels and are transported to the portal vein; conversely, lipids

and other lipophilic molecules of large size such as chylomicrons enter lymphatic vessels, which then reach the blood

circulatory system without passing through the liver. Such a privileged delivery route can also be used to enhance the

bioavailability of oral lipophilic drugs, thus improving the efficacy of therapeutical strategies .
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Figure 1. Functional organisation of lymphatic capillaries (lacteals), submucosal and mesenteric collecting vessels in the

intestine. Dietary lipids are absorbed at the epithelial surface of the intestine, entering lacteals by paracellular and/or

transcellular mechanisms. Lacteals are located at the centre of the intestinal villus, surrounded by villus smooth muscle

fibres. They merge at the villus basis forming the submucosal network and then lymph is propelled along mesenteric

collecting vessels endowed with a lymphatic muscle mesh. Lymph passes through mesenteric lymph nodes, ultimately

reaching the venous circulatory system via the thoracic duct.

As other lymphatic capillaries, lacteals are non-contracting vessels, having no LM elements in their vessels’ walls nor

intraluminal valves. Therefore, lymph drainage by intestinal lymphatics is deeply affected by extrinsic forces related to

vasomotion and intestinal motility . Indeed, the pulsatile activity of neighbouring arteries as well as villous motility

may easily mechanically deform lymphatics. Lacteals are surrounded by villus smooth muscle fibres, organised in a tree-

like structure (Figure 1), whose contractile activity exerts extrinsic forces contributing to enhance intestinal lymph and

blood flow, propelling lymph at velocities up to 150 µm/s , with a positive effect on lipid absorption . Lacteals’ periodic

squeezing due to the contraction of those longitudinally oriented smooth muscle fibres is critically modulated by

neurohormonal factors released by the autonomic nervous system. Thus, in the intestinal lymphatic network,

neuromodulation may exert a mixed modulatory role by acting on both intrinsic and extrinsic mechanisms of drainage and

propulsion . Moreover, the contraction of smooth muscle layers in the intestinal wall gives rise to a compressive stress

on lacteals and gut lymphatics, favouring vessel squeezing and lymph propulsion. On the contrary, when smooth muscle

relaxes, lymphatics are stretched and a net ΔP  and/or ΔP  favouring fluid entry is provided. Thus, intestinal lymph

drainage and propulsion are pulsatile. Lymphatic vessels in the smooth muscle layers are anatomically segregated from

submucosal ones; however, both networks merge into larger collectors next to the mesentery, where almost all the lymph

is of intestinal origin . Here, the collecting vessels are equipped with intraluminal valves and a proper LM mesh (Figure
1) so that intrinsic spontaneous contractions can be identified along the lymphangion chain, allowing lymph propulsion. In

rat mesenteric lymphatics, spontaneous contractions arise in the smaller vessels and then propagate to the larger

collecting lymphatics, generating progressively higher pressure oscillations from distal (2–4 cmH O) to proximal vessels

(up to 10–20 cmH O) . Those lymphatics display an intrinsic contraction frequency of about of 6.4 ± 0.6 cycles/min and

an ejection fraction of about 67% of their resting diastolic volume . Lymph propelled along the mesenteric lymphangions

chain passes through mesenteric lymph nodes, then drains into the thoracic duct and, eventually, empties into the blood

circulatory system at the level of the subclavian vein (Figure 1).

The proper development of a fully functional lymphatic system, essential to guarantee fluid homeostasis, is critically

related to the master regulatory gene Prox1 (Prospero homeobox protein 1), as Prox1-null mice are devoid of lymphatic

vessels, whose deficiency results in severe oedema and prenatal death at embryonic day E14.5 . Heterozygous Prox1
mice often die at birth or soon after birth, mainly due to lymphatics’ defective growth, particularly displaying dilated and

dysfunctional submucosal and mesenteric vessels, and impaired lymph drainage, also resulting in chylous ascites and/or

chylothorax . However, in surviving haplo-insufficient mice lymph, abnormal leaking from gut lymphatics in the visceral
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area accumulates in the surrounding tissues and causes an increase in adipose tissue. This results in adulthood late-

onset obesity due to subcutaneous and intra-abdominal dysfunctional lymphatic-related fat accumulation and, eventually,

adipocyte proliferation . Moreover, VEGFC (Vascular endothelial growth factor C) growth factor, which is implicated in

prenatal lymphatic system development, is also required for intestinal lymphatics’ maintenance during adulthood . As

VEGFC-null mice die around embryonic day E15.5–17.5 lacking lymphatic vessels differentiation, postnatal deletion of

VEGFC results in the regression of lacteals. Since, in adulthood, lacteals continue to grow and expand to guarantee

proper lipid absorption, smooth muscle fibres located in the villi and within the intestinal inner circular muscle layer may be

the prominent VEGFC source to maintain proper organisation of intestinal lymphatics .

4. Maturation and Stability of Lacteals

To date, few mechanisms have been elucidated regarding the development and maintenance of a fully functional lacteal

network in the adult subject, and, surprisingly, they all require the presence of a normal gut microbiota. Lymph drainage

from the interstitial space of the villi represents a balanced mechanism of different needs: while a lymph drainage increase

can improve the immune surveillance keeping pathogens under control , on the other hand, a lymph drainage reduction

can prevent damages caused by the spread of pathogens and/or pro-inflammatory factors coming from nutrients

hydrolysis closely in contact with a deteriorated intestinal epithelium .

Lacteals sprout into the villi around postnatal day 7 and continue to develop and remodel after weaning at P21 (in mice),

into adult life . The first evidence of the need of gut microbiota for proper lacteals development came from the findings

that germ-free (GF) mice, which entirely lack an endogenous microbiota, have decreased lacteal length and a significantly

lower number of lymphatic endothelial cells (Prox1 ) in their villi and reduced VEGFR3 (Vascular endothelial growth factor

receptor 3) expression, when compared to same-age mice grown in a controlled, specific pathogen-free condition .

Disruption of intestinal lymphatics, in adult mice, leads to immune homeostasis failure and results in rapid lethality, due to

the lack of immune surveillance that lacteals and mesenteric lymph nodes are expected to deploy . Interestingly,

lymphatic regression only affects lacteals, since this phenomenon was not observed in other organs and tissues where

lymphatic networks are present, such as diaphragm, skin and trachea.

From a purely phenomenological view, the lacteals wall is not able to selectively avoid the drainage of pathogens,

endotoxins and/or pro-inflammatory molecules present in the villi interstitial space. This is due to button-like junctions

between adjacent lymphatic endothelial cells, which allow their free, overlapping ends to open and behave similar to

unidirectional primary valves , favouring interstitial liquid (and all the dissolved and suspended particles) progression

into the vessel lumen. Therefore, the prevention of lacteal-draining toxic gut-derived lymph to the rest of the body depends

on the maintenance of mucus and epithelial cells’ integrity . In healthy individuals, the gut microbiota produces short-

chain fatty acids, which stimulate the epithelial cells to produce mucus and antimicrobial peptides, thus increasing the

mucosal immune response. Mucus creates a favourable environment, which harbours commensal microbiota, protecting

the intestine against colonisation by pathogenic agents , and a very hostile environment for pathogens, which are

mostly excluded from reaching the epithelial layer . Despite the healthy intestine being lined by a monolayer of

epithelial cells, it represents a proper selective barrier, thus controlling the movement of different substances and

macromolecules. This is due to tight junctions (TJs) and junctional adherens molecules (JAMs) between neighbouring

cells, forming a strong seal which regulates the paracellular pathway and prevents the uncontrolled systemic spread of

potentially toxic agents . In critical illness, TJs homeostasis can be impaired by proinflammatory cytokines,

pathogens and lipopolysaccharides, damaging the integrity of the intestinal epithelium. The increase in barrier

permeability with the loss of functionality affects not only fat absorption, but also leads to dysbiosis and to an

inflammatory-related alteration of immunosurveillance.

5. Closing Remarks

Lymph formation and propulsion are crucial to attain the correct fluid homeostasis of interstitial tissue and serosal cavities.

In the peculiar gut microenvironment, this primary requirement is intertwined with the need of lipid transport associated

with the absorption of dietary lipids, and the compartmentalised immunosurveillance exerted by dendritic cells (DCs)

recirculating between the villi interstitial space and mesenteric lymph nodes. All these factors are mutually coordinated

and any small imbalance, in the short or medium time frame, can cause severe illness due to oedema, reduced dietary

lipids transport to the blood or even lack of immune surveillance. Most of the research in recent years has been focused

on the primary site of potential translocation of bacteria, bacterial-derived or even tissue-derived toxins to the lymph, trying

to unveil possible sites of intervention at the first step of this potentially life-threatening process.

[49][50]

[51]

[51][52]

[53]

[54][55][56]

[57]

+

[58]

[38][59]

[60]

[61]

[62]

[63][64]

[65][66]



Is the influence of the microbiota’s density and composition on lacteals development and stability a one-way relationship

or is there a mutual exchange and effect by lacteals as well? While the DC-mediated transport of invading intestinal

bacteria is well acknowledged, very few research studies are related to the possible alteration of the microbiota in

response to a primitive impairment of lymphatic function. Among others, in chronic colitis mice, the supplementation of

VEGFC causes an increase in lymph drainage from the small intestine, and this, in turn, alters the composition of the

intestinal microbiota, causing a net reduction in its amount but not in its diversity. Overall, an increased

Bacteroidetes/Firmicutes ratio caused by increased lymphatic drainage closed the gap towards a healthy microbiota

profile, thus reducing colitis . Despite the very small amount of data collected so far, it is envisaged that a more efficient

lymphatic drainage might exert a positive effect on the composition of gut microbiota, potentially through a better

immunological control on the phyla.
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