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Many researchers have adopted the finite-element-based design-on-simulation (DoS) technology for the reliability

assessment of electronic packaging. DoS technology can effectively shorten the design cycle, reduce costs, and

effectively optimize the packaging structure. However, the simulation analysis results are highly dependent on the

individual researcher and are usually inconsistent between them. Artificial intelligence (AI) can help researchers

avoid the shortcomings of the human factor. 

FEM simulation  WLP  AI  machine learning  ANN  RNN  SVR  KRR
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1. Introduction

Electronics packaging plays an important role in the semiconductor industry. Currently, the mainstream electronic

packaging structures include heterogeneous packaging, 3D packaging, system-in-packaging (SiP), fan-out (FO)

packaging, and wafer-level packaging . With the increasing complexity of packaging structures,

manufacturing reliability test vehicles, and conducting ATCT experiments have become time-consuming and very

expensive processes, the design-on-experiment (DoE) methodology for packaging design is becoming infeasible.

As a result of the wide adoption of finite element analysis , accelerated thermal cycling tests are

reduced significantly in the semiconductor industry, and package development time and cost are reduced as well.

In a 3D WLP model, Liu  applied the Coffin–Manson life prediction empirical model to predict the reliability life of

a solder joint within an accurate range. However, the results of finite element simulations are highly dependent on

the mesh size, and there is no guideline to help researchers address this issue. Therefore, Chiang et al. 

proposed the concept of “volume-weighted averaging” to determine the local strain, especially in critical areas.

Tsou  successfully predicted packaging reliability through finite element simulation with a fixed mesh size in the

critical area of the WLP structure. However, the results of simulation analysis are highly dependent on the

individual researcher, and the results are usually inconsistent between simulations. In order to overcome this

problem, the present work comparatively reviews an artificial intelligence (AI) approach in which electronic

packaging design using a machine learning algorithm . The use of machine learning for the analysis of

electronic packaging reliability is the best way to obtain a reliable prediction result and meet the time-to-market

demand.

2. Finite Element Method for WLP
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If the simulation consistently predicts the result of the experiment , then the simulation is an experiment; the

experimental work can be replaced by a validated simulation procedure to create a large database for AI training

and obtain a small and accurate AI model for reliability life cycles prediction. Once we obtain the final AI model for a

new WLP structure, developers can simply input the WLP geometries, and then the life cycle can be obtained.

Figure 1 illustrates this procedure.

Figure 1. AI-assisted design-on-simulation procedure.

In the simulation process, the solder material was a nonlinear plastic material. Therefore, PLANE182, which has

good convergence characteristics and can deal with large deformations, was used as the solder ball element.

Figure 2 shows the stress–strain curve for an Sn–Ag–Cu (SAC)305 solder joint. The stress–strain curve ,

obtained by tensile testing and the Chabochee kinematic hardening model, was used to describe the tensile curves

at different temperatures. Once the model is built, boundary conditions and external thermal loading are required

for the WLP simulation.
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Figure 2. Stress–strain curve for SAC solder.

Electronics packaging geometry is usually symmetrical; therefore, in this study, half of the 2D structure was

modeled along the diagonal, as shown in Figure 3. The X-direction displacement on each node was fixed to zero

owing to the Y-symmetry. To prevent rigid body motion, the node at the lowest point of the neutral axis, which is at

the printed circuit board (PCB), has all degrees of freedom fixed. The complete finite element model and the

boundary conditions are shown in Figure 4. The thermal loading condition used in this research was JEDEC

JESD22-A104D condition G , and the temperature range was −40 °C to 125 °C. The ramp rate was fixed at 16.5

°C/min and the dwell time was 10 min. In a qualified design, its mean-cycle-to-failure (MTTF) should pass 1000

thermal cycles. After the simulation process is completed, the incremental equivalent plastic strain in the critical

zone is substituted into the strain-based Coffin–Manson model  for reliable life cycle prediction. For a fixed

temperature ramp rate, this method is as accurate as the energy-based empirical equation  but with much

less CPU time.
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Figure 3. Symmetrical solder ball geometry.

Figure 4. FEM model boundary condition.

The empirical formula for Coffin–Manson equivalent plastic strain model is shown in Equation (1):
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Table 1 presents the predicted reliability life cycles of the WLP structure. The results show that the difference

between the FEM-predicted life cycle and experiment result is within a small range. Therefore, experiments can be

replaced by this validated FEM simulation to minimize the cost and time. Compared with the experiment approach,

this validated FEM simulation procedure can provide large amounts of data within much less time and can be

effectively used to generate a database for AI training.

Table 1. WLP finite element results for five test vehicles.

Test Vehicle
Experimental

Reliability
(Cycles)

Simulation
Reliability
(Cycles)

Difference

TV1 318 313 −5

TV2 1013 982 −31

TV3 587 587 0

TV4 876 804 72

TV5 904 885 19

3. Machine Learning

3.1. Establishment of Dataset

The WLP structure consists of several components, including the solder mask, solder ball, I/O pad, stress buffer

layer, and silicon chip, etc. (Figure 5). For illustration purposes, the four most influential parameters, namely silicon

chip thickness, stress buffer layer thickness, upper pad diameters, and lower pad diameters, were selected to build

the AI model and predict the reliability life cycles of new WLP structures. These four design parameters were used

to generate both training and testing datasets for AI machine learning algorithms. Table 2 and Table 3 show the

generated training dataset obtained through FEM simulation.

Figure 5. WLP geometry structure.
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3.2. ANN Model

The ANN model is based on the concept of the brain’s self-learning ability, mimicking the human nervous system to

process information. It is a multilayer neural network, as shown in Figure 6. The model consists of three layers: the

input layer, where the data are provided; the hidden layer, where the input data are calculated; and the output layer,

where the results are displayed . As the numbers of neurons and hidden layers are increased, the ability to

handle nonlinearity improves. However, these conditions may result in high computational complexity, overfitting,

and poor predictive performance.

Figure 6. Schematic diagram of artificial neural network.

[27]
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where the activation function is shown in Figure 7.

Figure 7. Sigmoid activation function.

3.3. RNN Model

RNN is a type of neural network that can model “time-like”-series data, and it commonly adopts a nonlinear

structure in deep learning. RNN  works on the principle that the output of a particular layer is fed back to the

input layer to realize a time-dependent neural network and a dynamic model. Consequently, an ANN with nodes

connected in a ring shape is obtained, as shown in the left half of Figure 8. The ring-shaped neural network is

expanded along the “time” axis, as shown in the right half of Figure 8, where the “time” step t and the hidden state

st can be expressed as a function of the output from the previous (st−1) “time” steps and previous layers (xt). U, V,

and W denote the shared weights in RNN models during different “time” steps. Generally, the RNN series model

[28][29]
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can be divided into four types according to the number of inputs and outputs in given “time” steps; that is, one to

one (O to O), one to many (O to M), many to one (M to O), and many to many (M to M). To synchronize the input

features with the output results, RNN models can be subdivided into different series models, as shown in Figure 9

. 

Figure 8. Schematic structure of recurrent neural network.

Figure 9. Different series model for RNN.

3.4. SVR Model

This regression method evolved from the support vector machine algorithm. It transforms data to high-dimensional

feature space and adapts the ε-insensitive loss function (Equation (4)) to perform the linear regression in feature

space (Equation (5)). In this regression method, the norm value of w is also minimized to avoid the overfitting

problem. In other words, f(X,w), which is the function of the SVR model, will be as flat as possible. The SVR

concept is illustrated in Figure 10. The data points outside the ε-insensitive zone are called support vectors, and

two slack variables, ξi and ξ∗i, are used to record the loss of each support vector. Thus, the whole SVR problem

can be seen as an optimization problem (Equation (6)). 

[30]
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Figure 10. Schematic diagram of SVR.
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In order to solve the optimization problem, the regression model is built as shown in Equation (7), where b is the

bias of the SVR model.

In Equation (7), the term K(X,Xi) is known as the kernel function, and Xi is the training sample, with X as an input

variable. This kernel function should be chosen as a dot product in the high-dimensional feature space [67]. There

are numerous types of kernel functions. The commonly used kernel functions for SVR are the linear kernel,

polynomial kernel, radial basis function (RBF) kernel, and sigmoid kernel.

All of the kernel functions satisfy Mercer’s condition; however, the regression results of the kernels vary. Therefore,

it is essential to choose the best kernel function for the SVR algorithm to obtain optimal performance.

3.5. KRR Model

KRR combines ridge regression with the kernel “trick”. This model can learn a linear function in the space induced

by the respective kernel and the dataset. Nonlinear functions in the original space can be used by the nonlinear

kernels. The KRR algorithm also analyzes several kernels such as the RBF kernel, sigmoid kernel, and polynomial

kernel to find the suitable kernel function for the WLP nonlinear dataset.

The KRR is possibly the most elementary algorithm that can be kernelized to ridge regression . The classic

method is used to minimize the quadratic cost, as shown in Equation (8). However, for the nonlinear dataset, the

lower-dimensional feature space replaces the higher-dimensional feature space; that is, Xi→Φ(Xi). To convert

lower-dimensional space to higher-dimensional space, the predictive model undergoes overfitting. Hence, to avoid

overfitting, this function requires regularization. 

[31]
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Hence, Equation (11) is very simple and more flexible due to introducing kernel function K,  is the regularize

factor with the identity matrix I, and  is the response variable. This model can also avoid both model complexity

and computational time.

3.6. KNN Model

The KNN model is a statistical tool for estimating the value of an unknown point based on its nearest neighbors

[69]. The nearest neighbors are usually calculated as the points with the shortest distance to the unknown point

[70]. Several techniques are used to measure the distance between the neighbors. Two simple techniques are

used in this study: the Euclidean distance function d(x,y), provided in Equation (12), and the Manhattan distance

function d(x,y), provided in Equation (13).
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3.7. The RF Regression Model

RF is a collection of decision trees. These tree models usually consist of fully grown and unpruned CARTs.

The structure of the RF regression model is shown in Figure 10. This algorithm creates an RF by combining

several decision trees built from the training dataset. The CART tree selects one feature from all of the input

features as the segmentation condition according to the minimum mean square error method.

The RF algorithm procedure comprises three steps. In step 1, the bagging method is used to create a subset that

accounts for approximately 2/3 of the total data volume. In step 2, if the data value is greater than the selected

feature value, the data points are separated to the right from the parent node, otherwise to the left of the parent

node (Figure 11). Afterward, a set of trained decision trees is created. In step 3, the RF calculates the average

value of all decision tree results to obtain the final predicted value.

Figure 11. Schematic diagram of random forest structure.
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3.8. Training Methodology

To obtain the best performance and avoid overfitting of the final trained regression model, several techniques,

including data preprocessing (for standardization), cross-validation (for parameter selection), and grid search (for

hyperparameter determination), were applied during training. The AI regression model was estimated using the

method in the flowchart given in Figure 12.

Figure 12. Methodology flow chart.

3.8.1. Data Preprocessing

The dataset values are not in a uniform range. Hence, before the machine learning model is developed, the data

need to be preprocessed to standardize all of the input and output datasets and improve the modeling

performance. Several data preprocessing methods, including min–max scaling, robust scaling, max absolute

scaling, and standard scaling, were used in this study. Hence, of all preprocessing methods, we need to select the

one method that provides the most accurately predicted output from the input dataset.

3.8.2. Cross-Validation

Cross-validation is the most frequently used parameter selection method. The basic idea of cross-validation is that

not all of the dataset is used for training; a part of it (which does not participate in training) is used to test the

parameters generated by the training set. The training data are trained with different model parameters and verified

by the validation set to determine the most appropriate model parameters. Cross-validation methods can be

divided into three categories: the hold-out method, k-fold method, and leave-one-out method. Owing to the huge

calculation burdens of the hold-out method and the leave-one-out method, the k-fold method was chosen for this

study (Figure 13). After the choice of data preprocessing method was confirmed, cross-validation was performed

to avoid overfitting of the machine learning model, as shown in Figure 13. The dataset was divided into 10 parts,

and each part acted as either a validation or training set in different training steps. The validation sets were also

used to predict the training results.
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Figure 13. Cross-validation model diagram from Round 1 to Round 10.

3.8.3. Grid Search Technique

Grid search is a large-scale method for finding the best hyperparameter to build the training model. In order to

determine the best parameter, the search range value needs to be set by the model builder. Although the method is

simple and easy to perform, it is time-consuming. Therefore, to reduce the computation time, this work adopted the

grid search technique to find the best hyperparameter as compared to manually searching the hypermeter, and

eventually, the training model was fixed with the above hyperparameters to run the best AI model.
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