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Precision medicine requires highly sensitive and specific diagnostic strategies with high spatiotemporal resolution.
Accurate detection and monitoring of endogenously generated biomarkers at the very early disease stage is of
extensive importance for precise diagnosis and treatment. Aggregation-induced emission luminogens (AlEgens)
have emerged as a new type of excellent optical agents, which show great promise for numerous biomedical
applications. Advances of AlE-based probes for detecting reactive species (including reactive oxygen species
(ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), and reactive carbonyl species (RCS)) and
related biomedical applications are introduced. The molecular design strategies for increasing the sensitivity, tuning
the response wavelength, and realizing afterglow imaging are summarized, and theranostic applications in reactive

species-related major diseases such as cancer, inflammation, and vascular diseases are reviewed.

aggregation-induced emission reactive oxygen nitrogen species activatable probe

theranostics fluorescence photoacoustic afterglow bioimaging

| 1. Introduction

Precision medicine requires highly sensitive and specific diagnostic methods with high accuracy at the very early
disease stage W2l Some traditional imaging modalities such as ultrasound, computed tomography (CT), and
magnetic resonance imaging (MRI) have been widely used in clinic &8 However, most of them suffer from low
sensitivity, and it is usually difficult to recognize tiny pathological changes when the lesion is small DBl Optical
imaging techniques such as fluorescence and photoacoustic imaging have significant advantages such as high
sensitivity, real-time monitoring, noninvasive imaging, and portable instruments, which are very promising for
disease diagnosis and therapy [QILALLIZ1SI14] Flyorescence has been used for in vitro examination of diseased
samples and in vivo image-guided tumor surgery clinically. However, due to interference from the strong light—
tissue interaction (e.g., absorption, scattering, and reflection) and autofluorescence, the sensitivity of fluorescence
is significantly reduced X218l Therefore, the development of new imaging agents that could improve the

therapeutic performance (e.g., recognition of disease-related markers) is highly desirable.

Numerous materials have been used for optical imaging, for example, carbon nanomaterials, metal nanostructures,
rare earth-doped nanoparticles (NPs), and organic materials 1718119201211 Among them, organic compounds
possess unique intrinsic merits including excellent reproducibility, specific chemical structures, and good

biocompatibility [2212311241[251[26] ' Cyrrently, small-molecule dyes, i.e., indocyanine green (ICG) and methylene blue
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(MB) have been approved by the Food and Drug Administration (FDA) for clinical use, highlighting the great clinical
translation potential of organic optical materials 22[28129] Nevertheless, most conventional organic dyes are planar
structures, which face the obstacle of aggregation-caused quenching (ACQ) effect in aggregate state due to strong
intermolecular interactions (e.g., Ti-1t stacking) BB, The ACQ problem seriously hinders the applications of these
hydrophobic molecules in a hydrophilic living environment. In 2001, Tang’s group first coined the the concept of
aggregation-induced emission (AIE), representing a new type of optical materials that were weak or non-
luminescent in dilute solution, but became highly emissive in aggregate form [B2I331B4I85[361[37] For AIE luminogens
(AlEgens), the excited-state energy is consumed by the intensive intramolecular motion through non-radiative
decay in solution, while the molecular motion is restricted in aggregate form, thus, the non-radiative pathway is
closed and the radiative process is open [28I39[40141]142] A5 g result, restriction of intramolecular motion (RIM) is
considered to be the working principle of the AIE phenomenon, and a library of AlEgens with various properties
have been developed [43]44]145][46] A|Egens have been used in many areas such as optoelectronic devices,
chemo/biosensing, and biological imaging 24814950 |n the biomedical field, AIEgens have shown excellent

performance in organelle imaging, in vivo high-resolution imaging, disease theranostics, and activatable detection
[51](52][53][54](55],

Excessive expression of various reactive species can lead to oxidative stress, which is known to cause DNA,
protein, cell, and tissue damage, and affect signaling pathways BEIE7I58] These processes are closely associated
with many diseases including inflammation, cancers, diabetes, and neurodegeneration diseases [59](601(611(62] Thys,
accurate detection and monitoring of these endogenously generated biomarkers is extensively important for
precise disease diagnostics and therapeutics at an early stage 631(64I65 According to their nature, reactive species
can be divided into reactive oxygen species (ROS) including hydrogen peroxide (H,0,), hypochlorite/hypochlorous
acid (HOCI/CIO"), hydroxyl radical ("OH), superoxide anion radical (O,"), singlet oxygen (*O,), and peroxy radical
(ROO; reactive nitrogen species (RNS) including nitric oxide (NO), peroxynitrite (ONOQO™), S-nitrosothiol (RSNO),
and S-nitrosoglutathione (GSNO); reactive sulfur species (RSS) including hydrogen sulfide (H,S), thiyl radical
(RS), thiol (RSH), S-nitrosothiol, sulfenic acid, and sulfite; reactive carbonyl species (RCS) including carbon
monoxide (CO), formaldehyde (FA), glyoxal (GO), acrolein, and glucosone B8IBZIEEI6ATONTL72[73I[74][75]  Reactive
species have gained great interest from both fundamental biological scientists and clinical doctors, and more and
more new phenomena about their functions have been discovered 8T8 Numerous molecular probes for

detecting ROS, RNS, RSS, and RCS have been exploited, focusing on understanding the

physiological/pathological effects and disease theranostics [Z2[BABLIE2][83]84] Recently, the development of reactive

species-responsive AlEgens has attracted considerable attention, which are advantageous for applications in the
biomedical field [ESIEEIETIEE]

Thanks to the salient merits of good stability, large Stokes shift, facile structure modification, and excellent

sensitivity, AIEgens have emerged as a new type of potent probes for detecting various reactive species. Although

there are many review papers that have focused on AlEgens [BQOLE2]93I94] to the best of researchers'
knowledge, comprehensive summaries of reactive species-responsive AlEgens are very rare. In this entry,
researchers highlight the recent advances of AlEgen-based reactive species-activatable systems. The recent

development of AlEgens for sensing reactive species such as ROS, RNS, RSS, and RCS are discussed. The
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molecular design strategies for increasing sensitivity, tuning the response wavelength, increasing the afterglow
imaging efficiency, as well as different biomedical applications are reviewed. The challenges and outlooks for the

reactive species-activatable AIE systems for biomedical applications are also discussed.

| 2. Detection of Reactive Oxygen Nitrogen Species

When designing a specific chemical/biological probe, a usually requisite is to synthesize molecules with specific
recognition groups or moieties.The boronate subunit is a popularly used building block for H,O, sensors, as the
boronate cage is nonfluorescent and the conversion of arylboronates to phenols results in turn-on emission 221261
7. The deprotonated H,0, is a potent nucleophile, which can attack the boron center to generate a labile borate
species that hydrolyses to the corresponding phenol 28!, For O, detection, the diphenyl phosphinyl group can be
introduced into an organic compound, in which the fluorescence is strongly quenched at first, and obvious turn-on
fluorescent signal is realized in the presence of O, R The oxidative properties of CIO™ can be utilized to
destroy C=C or C=N bonds rapidly, therefor, the conjugation of fluorescence quencher through C=C or C=N bonds
has turned out to be an efficient strategy to construct CIO~ probes L1021 Some arylboronate groups,
diphenylphosphinate groups, and nitrophenyloxoacetamide moieties have been employed as the response
substitutes for ONOO~ detection [1O3I104]i105] The tunability of molecular structure will alter the photophysical

properties and biomedical applications as well.

H,O, is an overexpressed molecule in many serious diseases, and thus, it is regarded as a pivotal biomarker for
some biological processes and disease diagnoses [08ILO7I108] A variety of H,O,-activatable probes have been
exploited based on AlEgens, which exhibit excellent performance for both in vitro and in vivo applications [102110]
(L1112 Xja and Lou et al. developed a H,O,-responsive AlEgen for peroxidase-mediated selective imaging and
inhibition of inflammatory cells 223 The probe consisted of a TPE core and two tyrosine (Tyr) moieties, which could
undergo enzyme-catalyzed dityrosine formation in the presence of peroxidase and H,O,. By conjugating two
hydrophilic Tyr groups, the hydrophobic TPE molecule became hydrophilic TT, which showed weak fluorescence in
agueous solution due to the excited-state energy consumption via intense molecular motion. As a result, the H,O,-
responsive and myeloperoxidase (MPO)-mediated TT self-assembly enabled turn-on fluorescence, which could be
used for selectively imaging and inhibiting inflammatory cells containing overexpressed H,O, and MPO. The AIE
process could be activated through dityrosine linkage-induced hydrophobic aggregates formation, which helped to
distinguish between inflammatory and normal cells. Additionally, the in situ formation of TT aggregates could inhibit

RAW264.7 cell growth through inducing mitochondria damage and cell apoptosis.

Wang and Li et al. reported a ROS-responsive theranostic nanoplatform for accurate diagnosis and therapy of
inflammation diseases 114l A two-photon AIEgen (TP) was conjugated with the widely used anti-inflammatory
glucocorticoid, prednisolone (Pred) with the ROS-sensitive linkage to afford the compound TPP. Then, the TPP was
encapsulated with an amphiphilic block copolymer PMPC-PMEMA (PMM) to give polymeric micelles
(TPP@PMM). Noteworthy, the PMEMA part served as the hydrophobic block in the NPs formation, which could be
oxidized in response to ROS to yield the hydrophilic sulphone product. The ROS-triggered hydrophobic-to-

hydrophilic conversion was able to realize ROS-mediated drug delivery at an inflammatory site. This shell-core dual
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ROS-responsive nanoplatform was used in three different inflammatory murine models including acute lung injury,
atherosclerosis, and arthritis. The deep-penetration two-photon fluorescence diagnosis and efficient serial ROS
sensitive anti-inflammation could be used for both acute and chronic inflammation theranostics. Two-photon
imaging with the AlEgen helped to provide unambiguous delineation of inflammatory tissue with minimum
autofluorescence interference. Moreover, TPP@PMM also possessed excellent anti-inflammatory effect that

reduced the inflammatory response and decreased inflammatory cytokines expression.

| 3. Detection of Gasotransmitters

Small gaseous molecules including NO, CO, and H,S, function as important signal transmitters in living systems as
they are associated with many biological functions and major diseases L1SIL8ILI7ILI8] NQ js a neutral diatomic
free radical that is produced from L-arginine by NO synthase (NOSs) isoforms such as neuronal NOS (nNOS),
inducible NOS (iNOS), and endothelial NOS (eNOS) 1191201 CQ is the second gasotransmitter that is generated
as a byproduct of haem cleavage by two distinct haem oxygenases 221, H,S is predominantly formed from Cys or
its derivatives by the enzymes cystathionine B-synthase and cystathionine y-lyase 122 Al these gasotransmitters
play vital roles in vasorelaxation and inflammatory responses, thus, numerous molecular probes have been
developed for precise monitoring of related diseases [123111241125] For example, the o-diamino aromatic moiety is a
recognition group for NO, and the cyclization reaction of o-diamine with NO produces a triazole moiety, which alters
the electronic property and conjugation nature 1261127111281 For H,S detection, the popularly used approaches
include reduction of azides into amines and nucleophilic addition of H,S to the electrophilic group 1291301 Some
representative AlEgens for sensing gasotransmitters are listed Figure 1, which show great potential for

applications in biological imaging and disease diagnosis.
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Figure 1. Chemical structures of different types of gasotransmitter-responsive molecular probes.

Wu'’s group developed a NO-activatable AlEgen for precisely diagnosing herbal medicine-induced liver injury with
NIR-II fluorescence and PA imaging 231l They designed and synthesized a D-11-A-type probe (QY-N) consisting of

an electron-rich bismethoxyphenyl-amine-containing dihydroxanthene group and an electron-deficient quinolinium
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moiety. The linking of electron-donating butylamine to the quinolinium group weakened the electron-accepting
capability, and thus, quenched the fluorescence, and butylamine also served as a NO-responsive group based on
the N-nitrosation reaction of aromatic secondary amine. In the presence of NO, the electron-donating butylamine
was transformed into an electron-withdrawing butyl-N-nitroso group, which resulted in a bathochromic shift of
absorption in the range of 700—850 nm for PA imaging, and boosted NIR-II fluorescence at 910-1110 nm. The AIE
probe was able to detect and assess the severity of herbal medicine-induced liver injury in vivo in a high-contrast
manner for significantly enhanced NIR-II fluorescence and PA signals via reacting with the overexpressed NO at a
disease site. In addition, the probe was also capable of monitoring the rehabilitation of liver injury during the

treatment process.
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