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Matrix metalloproteinase-9 (MMP-9) plays a crucial role in cell invasion and cancer metastasis. In this study, we showed

that cholic acid (CA), a major primary bile acid, can induce MMP-9 expression in colon cancer HT29 and SW620 cells. CA

increased reactive oxygen species (ROS) production and also activated phosphorylation of ERK1/2, JNK, and p38 MAPK.

Specific inhibitors and mutagenesis studies showed that ERK1/2 and JNK functioned as upstream signals in the activation

of AP-1, and p38 MAPK functioned as an upstream signal in the activation of NF-κB. N-acetyl-L-cysteine (NAC, an ROS

scavenger) and diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor) inhibited CA-induced activation of

ERK1/2, JNK, and p38 MAPK, indicating that ROS production by NADPH oxidase could be the furthest upstream signal in

MMP-9 expression. Colon cancer cells pretreated with CA showed remarkably enhanced invasiveness. Such

enhancement was partially abrogated by MMP-9-neutralizing antibodies. These results demonstrate that CA could induce

MMP-9 expression via ROS-dependent ERK1/2, JNK-activated AP-1, and p38-MAPK-activated NF-κB signaling

pathways, which in turn stimulate cell invasion in human colon cancer cells.
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1. Colon Cancer

Colon cancer is the third most common human disease worldwide. The rate of relative survival following diagnosis is 65%

at 5 years and 58% at 10 years . Bile acid has been reported to be strongly associated with colon cancer development

. However, the molecular mechanisms for the role of bile acid in the development of colon cancer have not been

elucidated yet. Bile acid, as the end product of cholesterol catabolism, accounts for a major fraction of daily cholesterol

turnover in humans. It plays an important role in the absorption, transport, and metabolism of dietary fats and lipid-soluble

vitamins in the intestine . In the duodenum, more than 90% of bile acids are reabsorbed and returned to the liver, which

again secretes primary bile acids, cholic acid (CA), and chenodeoxycholic acid (CDCA) . Secondary bile acids

deoxycholic acid (DCA) and lithocholic acid (LCA) are formed through bacterial 7α-dehydroxylation of primary bile acids

CA and CDCA, respectively .

2. CA

CA, a major primary bile acid, plays an important role not only in the digestion and absorption of dietary lipids but also in

cell invasion, growth, and apoptosis through various signaling pathways . NADPH oxidases activated by CA are

the major intracellular sources of reactive oxygen species (ROS), which play important roles in modulating signaling

pathways, thus changing the cellular phenotype . Several studies have shown that bile acids can induce ROS

production via NADPH oxidase involved in multiple signaling cascades, such as ERK1/2 , JNK , p38 MAPK , and

Akt .

3. Cell Invasion

Cell invasion is a fundamental process for cancer metastasis. It requires increased expression of proteases such as

uroplaminogen-type activator (uPA) and matrix metalloproteinases (MMPs) . MMPs are a family of zinc-containing

enzymes that are involved in the degradation of different components of the extracellular matrix. There is sufficient

evidence indicating that individual MMPs have important roles in tumor cell invasion . MMP-9 is involved in cancer

metastasis and tumor-induced angiogenesis . Furthermore, it has been reported that ROS can activate MAPK

(ERK1/2, JNK, and p38 MAPK), which leads to the expression of MMP-9 . Some MAPK-activated transcription

factors such as NF-κB and AP-1 can regulate the expression of MMP-9 by interacting with the binding site of the promoter

of MMP .
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In colon cell carcinomas, MMP-9 not only serves as a potential prognostic marker of tumor but also an indicator for tumor

metastasis . In addition, in a study with T3-T4 node-negative patients, it was found that MMP-9 could be an

independent marker of poor prognosis . Therefore, the detailed regulatory relationship between bile acid and MMP-9

should be clarified.

4. Findings

We demonstrated that CA, a major primary bile acid, can induce cell invasion through MMP-9 expression in human colon

cells. We also elucidated the underlying molecular mechanism involved in such induction.

The human bile acid pool consists of four different bile acids: two primary bile acids (CA and CDCA) and two secondary

bile acids (DCA and LCA) . CA and CDCA are major bile acids in humans . Biliary cholesterol secretion is increased

by CA. The amount of cholesterol absorbed was found to be larger with CA (79%) than with CDCA (60%) . Bile acid is

involved in the progression of colon cancer. However, many authors are interested in the effect of the secondary bile acid

DCA, a proinflammatory and procarcinogenic natural chemical, on bile-acid-sensing receptors such as farnesoid X

receptor (FXR) and G-protein-coupled bile acid receptor (TGR5) or gut microbiota study of DCA-induced dysbiosis 

, while the relevant role of the major bile acid CA in colon cancer progression is ignored. CA, a naturally occurring bile

acid, can stimulate cell invasion in human colon cancer cells through activation of multiple signaling pathways . A

previous study has shown that CDCA, the primary bile acid, can induce MMP-9 by FAK regulation at the AP-1 motif of the

MMP-9 promoter via c-jun activation . Previously, we also reported that bile acids can stimulate invasion of human

colon cancer cells . In the present study, we observed that CA treatment could increase colon cancer cell invasiveness

and elucidated the molecular mechanisms of CA-induced MMP-9 expression.

ROS, such as superoxide and H O , can act as second messengers in intracellular signaling pathways. They are

increasingly involved in cell invasion and migration . Previous studies have reported that ROS can act as key

regulators in mediating MMP gene expression . AP-1 and NF-κB are involved in the regulation of MMP-9 expression

. Bile acids can promote tumor formation on the colon through the generation of ROS . There are several ways that

ROS can be produced by the action of bile acids: (i) bile acids can stimulate the release and oxygenation of arachidonate

metabolism via cyclooxygenase and lipoxygenase pathways, thus leading to ROS production ; (ii) protein kinase C

activation by bile acids is correlated with the stimulation of reactive oxygen production ; (iii) membrane perturbations

caused by the hydrophobicity of bile acid can induce ROS production by activating the surface enzyme NADPH oxidase

. In our current study, NAC (an ROS scavenger) and DPI (an NADPH oxidase inhibitor) significantly inhibited H O

generation induced by CA, indicating a regulatory role of CA for ROS in MMP-9 expression and cell invasion through

NADPH oxidation.

Invasion and metastases are properties of cancer cells and the final results of a sophisticated series of actions involving

multiple signaling molecule interactions . In this study, the blockage of CA-induced cell invasion was observed in

SW620 cells with pretreatment of MMP-9 antibody, DPI, or NAC, indicating that ROS production by NADPH oxidase plays

an important role in CA-induced MMP-9 expression as well as colon cancer cell invasion. Accumulated evidence shows

that ROS production affects invasion and metastases through MAPK signaling pathways . Consistent with our results

(Figure 2), in hepatocytes, bile-acid-induced mitochondrial ROS can enhance the downsignaling of ERK1/2 through the

ERBB 1-ERKl/2 signaling module . In human breast cancer MCF-7 cells, JNK plays a crucial role in the ROS/MAPK

molecular pathway, leading to synthetic lethality upon p53 activation and TrxR inhibition ; ROS/MAPK activation by

TBBPA-induced NOX plays an important role in MMP-9 expression, and treatment with PD (ERK inhibitor), SP (JNK

inhibitor), or SB (p38 MAPK inhibitor) blocked the ROS/MAPK molecular pathways . Transcription factors AP-1 and NF-

κB are known to be downstream signals for MAPK . AP-1, a dimeric transcription factor, plays an important role in

regulating cell invasion , and c-jun and c-fos are two main components of AP-1 . As shown in Figure 5, CA induced

both c-fos and c-jun phosphorylation. Consistent with our results, dimerumic acid can suppress H O -induced MMP-7

expression by inhibiting AP-1-mediated gene expression via the JNK/c-jun and ERK/c-fos signaling pathway in SW620

cells .

Cross talk and cooperativity between p38 MAPK and NF-κB have been reported . However, the regulation of p38-

dependent NF-κB has not been fully elucidated yet. In chondrocytes, COX-2 is expressed via p38 activation/NF-κB

recruitment during both differentiation and inflammatory response . Interestingly, it has been reported that mitogen- and

stress-activated kinase 1 (MSK1), a potential p38 substrate, can upregulate p65-S276 phosphorylation . CA induces

phospho-p65 through the activation of p38 MAPK, revealing the regulation of p38 MAPK and NF-κB in human SW620

colon cancer cells.
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In conclusion, our results demonstrate that CA can induce MMP-9 expression through ROS-dependent ERK1/2, JNK-

activated AP-1, and p38-MAPK-activated NF-κB, thus promoting the invasion of human colon cancer cells.
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