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Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In

this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences

have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely

known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of

tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding

RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development.

However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and

its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic,

not only as biomarkers, but also as molecules for development of promising therapies.
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1. Introduction

The MYC family is a group of cellular proto-oncogenes with the following three highly related nuclear phosphoproteins:

MYC, N-MYC, and L-MYC . MYC has a low expression and has a short half-life in normal cells, and its mRNA level is

tightly regulated by both transcriptional and post-transcriptional mechanisms . However, it is overexpressed in several

neoplasms.

2. Biological Significance of MYC

Our group and others have shown MYC overexpression in GC samples , including early stages , and reported

MYC protein overexpression . Moreover, other studies revealed the importance of the co-amplification of MYC and

EGFR and FGFR2, in predicting poor survival of patients undergoing cancer therapy . In tumor cells, MYC activation

occurs as follows: (1) mutations in signaling pathways proteins upstream from MYC; (2) mutations and single nucleotide

polymorphisms in regulatory regions that enhance the stability of these proteins  and (3) direct modification of MYC
gene via gene amplification, mutation, chromosomal translocation and epigenetic modifications .

MYC deregulation plays an important role in neoplastic development by targeting genes involved in critical cellular

functions, such as DNA metabolism and dynamics, cell cycle, apoptosis, adhesion, survival, and protein and

macromolecular synthesis . Moreover, it contributes to aerobic metabolism by activating the expression of several

genes essential for glycolysis and mitochondrial biogenesis . Additionally, its hyperactivity can allow widespread

miRNAs downregulation through the regulation of transcriptional and post-transcriptional mechanisms. Indeed, MYC is

known as the gene with the highest interaction with downregulated miRNAs  . Taken together, this scenario shows

that MYC deregulation (usually overexpression) can have an impact in various cellular functions, contributing to an

abnormal cell growth (Figure 1) .
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Figure 1. Pleiotropic consequence of MYC deregulation in cancer. MYC overexpression in gastric carcinogenesis affects

various components of signaling pathways critical to cancer establishment. Some of these pathways’ phenotypes are

shown here.

Infectious agents are extremely important factors on cancer development, accounting for 16% of all new cancer cases per

year worldwide . Moreover, liver and gastric tumors in men account for greater than 80% of the infection-related burden

cancers . According to the International Agency for Research on Cancer (IARC), 78% of all GC cases are estimated to

be associated to chronic H. pylori infection, a bacteria classified as a group 1 carcinogen . The virulence of this

bacterium is commonly determined by cagA and vacA genes. The cagA gene encodes the secretion complex, capable of

introducing the cagA oncoprotein in the gastric epithelial cell, which activates mitogen-activated protein (MAP) kinases.

This alteration activates cell proliferation, differentiation, and stress and inflammatory responses and inhibits programed

death, leading to a precancerous process . Especially in intestinal-type of GC, H. pylori cagA has been associated

with increased MYC expression and nuclear MYC protein . In H. pylori infected patients with active gastritis,

chromosomal aneuploidy and cellular DNA damage were associated with MYC expression, leading to a chronic

hyperproliferation . This association may occur through H. pylori-induced activation of NF-κB and AP-1 proteins which

transcriptionally regulate β-catenin expression, responsible for controlling MYC expression and consequently cell

proliferation . On the other hand, MYC overexpression was not observed in patients without H. pylori infection .

The alteration of the DNA methylation profile is considered to be associated with the H pylori inflammatory response,

rather than the infection itself . This infection participates in the regulation of MYC expression, which is necessary to

gastric carcinogenesis occur (Figure 2), but its infection alone is insufficient to the disease establishment. Thus, the

identification of molecules and miRNAs associated with H. pylori infection in GC can contribute to understand the key

cellular and molecular processes at the beginning of carcinogenesis and how environmental factors contribute to GC

etiology.

Figure 2: Pathways scheme in which miRNAs regulate MYC and PVT1 expression and vice versa in neoplastic gastric

tissue samples and cell lines. The coding genes are shown in green, and the non-coding genes in grey. Lines ending with

an arrow indicate activation, whereas T ending lines indicate repression. Lines with a red cross indicate that the

interaction is lost due to repression or blocking of a miRNA or protein.
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