

# Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome

Subjects: **Gastroenterology & Hepatology**

Contributor: Fabiana Radu , Claudia-Gabriela Potcovaru , Teodor Salmen , Petruța Violeta Filip , Corina Pop , Carmen Fierbințeanu-Braticievici

Metabolic syndrome (MetS) is characterized by an association of cardiovascular and diabetes mellitus type 2 risk factors. Although the definition of MetS slightly differs depending on the society that described it, its central diagnostic criteria include impaired fasting glucose, low HDL-cholesterol, elevated triglycerides levels and high blood pressure. Insulin resistance (IR) is believed to be the main cause of MetS and is connected to the level of visceral or intra-abdominal adipose tissue, which could be assessed either by calculating body mass index or by measuring waist circumference. Studies revealed that IR may also be present in non-obese patients, and considered visceral adiposity to be the main effector of MetS' pathology. Visceral adiposity is strongly linked with hepatic fatty infiltration also known as non-alcoholic fatty liver disease (NAFLD), therefore, the level of fatty acids in the hepatic parenchyma is indirectly linked with MetS, being both a cause and a consequence of this syndrome.

metabolic syndrome

insulin resistance

NAFLD

early diagnosis

hepatocellular carcinoma

## 1. Introduction

Metabolic syndrome (MetS), also known as insulin resistance (IR) syndrome or Syndrome X (terminology not commonly used as another syndrome X has been documented in cardiology), represents an association of risk factors for cardiovascular (CV) disease (CVD) and type 2 diabetes mellitus (T2DM) that co-occur more frequently than by chance. These risk factors are represented by high blood pressure (HBP), impaired fasting glucose (IFG), increased level of triglycerides (TG), low high-density lipoprotein (HDL) cholesterol levels, and obesity (mostly abdominal type). It is becoming increasingly clear that this constellation of metabolic disorders is connected to IR and is more frequently found in people with abdominal obesity, particularly in those with an excess of intra-abdominal or visceral adipose tissue <sup>[1]</sup>. IR creates an atherogenic, inflammatory and prothrombotic state and it is not only a factor which increases the risk of T2DM but also a prevalent cause of CVD <sup>[2]</sup>. Non-alcoholic fatty liver disease (NAFLD) is strongly related with IR, and it can be a cause, but also a consequence of MetS <sup>[3]</sup>. It is estimated that 32.4% of the population worldwide has NAFLD. The incidence and prevalence have rapidly increased over time, from 25.5% before 2005 to 37.8% in 2016 <sup>[4]</sup>, synchronising with the global obesity pandemic <sup>[5]</sup> and becoming one of the leading causes of cirrhosis in some countries <sup>[6]</sup>. Moreover, it is predicted that, in terms of indication for liver transplantation, NAFLD will exceed the viral ethiology <sup>[7]</sup>. The overall prevalence of NAFLD was significantly higher in male than in female. Liver biopsy is the gold standard for diagnosis NAFLD, but due to

its inconvenience, other non-invasive ways of diagnosis were developed (serum biomarkers and imaging-based biomarkers).

## 2. Definition of MetS

The challenge represented by MetS is that various organizations offered slightly different clinical screening parameters and cut-off values for identifying individuals with MetS which are somewhat ambiguous compared to the conceptual description of the MetS. The first formalized definition of MetS was offered in 1998 from a consultation group towards the World Health Organisation (WHO). The WHO diagnosis has mandatory markers of IR (glucose  $> 6.1$  mmol/L or  $> 110$  mg/dL, 2 h glucose  $> 7.8$  mmol/L or  $> 140$  mg/dL) and a minimum of two additional risk factors: low HDL-cholesterol level (HDL-cholesterol  $< 0.9$  mmol/L or  $< 35$  mg/dL in males and  $< 1.0$  mmol/L or  $< 40$  mg/dL in females), high TG levels ( $> 1.7$  mmol/L or  $> 150$  mg/dL), obesity (waist/hip ratio  $> 0.9$  in male or  $> 0.85$  in female or body mass index (BMI)  $> 30$  kg/m<sup>2</sup>), HBP with systolic ( $> 140/90$  mmHg). In 2001, the National Cholesterol Education Program Adult Treatment Panel III (ATP) [8] developed a new definition for MetS that did not require the expression of IR or a single factor for diagnosis, but rather the presence of 3 out of the 5 factors listed below which include abdominal obesity (waist  $> 102$  cm in males or  $> 88$  cm in females) (which is strongly associated with IR), elevated TG ( $> 1.7$  mmol/L or  $> 150$  mg/dL), reduced HDL cholesterol ( $< 1.0$  mmol/L or  $< 40$  mg/dL in males,  $< 1.3$  mmol/L or  $< 50$  mg/dL in females or drug treatment for low HDL cholesterol), elevated blood pressure (BP) ( $> 130/85$  mmHg or drug treatment for HBP), and IFG (glucose  $> 5.6$  mmol/L or  $> 100$  mg/dL or drug treatment for elevated blood glucose) (IFG or T2DM). To integrate these two different definitions, the International Diabetes Federation (IDF) [9] and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) [10] promulgated in 2005 a new definition for MetS, but there were variations based on waist size. IDF, in comparison with WHO's definition, assert abdominal obesity as mandatory (waist  $> 94$  cm in males or  $> 80$  cm in females) along with the presence of two or more of the following: blood glucose  $> 5.6$  mmol/L (100 mg/dL) or diagnosed DM, HDL cholesterol  $< 1.0$  mmol/L ( $< 40$  mg/dL) in males,  $< 1.3$  mmol/L ( $< 50$  mg/dL) in females or drug treatment for low HDL cholesterol, blood TG  $< 1.7$  mmol/L ( $< 150$  mg/dL) or drug treatment for elevated TG, BP  $> 135/85$  mmHg or drug treatment for HBP. AHA/NHLBI did not consider abdominal obesity as mandatory, and the waist parameters are 102 instead of 94 in males and 88 instead of 80 in females. The parameters of the waist circumference (WC) from AHA/NHLBI are indicators for a BMI of approximately 30 kg/m<sup>2</sup>, and those from IDF are more suggestive of a BMI of 25 kg/m<sup>2</sup>. Although they are not as widely used, somewhat slightly different definitions were utilized by other organizations such the European Group for the Study of IR (EGIR) and the American Association of Clinical Endocrinologists (AACE) in 2003. Because of its heterogenous definition and cut-off criteria, the data existing on the epidemiology of MetS differs. It is observed that the prevalence of MetS is higher using AHA and IDF (more sensitive criteria) compared to the ATP III definition, with a ranging prevalence from 12.5% to 31.4% worldwide [11].

## 3. MetS and Liver Involvement

Initially, Reaven did not include obesity in his description of syndrome X since he could identify non-obese people with IR and people with obesity who were insulin sensitive. Obesity assessed by BMI alone, is not a predictor of MetS if not correlated with WC, age, gender, and ethnicity, because IR has a strong connection with visceral adipose tissue. It is important to identify people with adipose tissue that is distributed in deep compartments because adipocytes from deep compartments are more metabolically active compared with superficial adipocytes and are correlated with IR [12]. In this context, studies evaluating adiposity using computed tomography (CT) revealed that an excessive build-up of visceral adipose tissue was a key correlate of the characteristics of IR; however, CT is unlikely to be employed widely due to the radiation exposure and cost of use [13]. More recently, anomalies that are clustered together, as with those seen in visceral obesity, were found to be nearly identical in people with extra liver fat. Liver fat accumulation may be evaluated non-invasively and with high precision thanks to the development of magnetic resonance spectroscopy. The data provided by this method corresponds with the findings of liver biopsies, making it the best non-invasive way to determine the hepatic triglyceride content (HTGC) and to identify hepatic steatosis [14]. Liver fat is tightly associated with fasting insulin concentrations and direct measurements of hepatic insulin sensitivity, while the amount of subcutaneous adipose tissue is not [15]. A fatty liver overproduces glucose and lipids, especially very low-density lipoproteins (VLDL), the main players of MetS, but also the majority of the well-known CV risk factors, including fibrinogen, C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1) and coagulation factors [15][16].

## 4. NAFLD in the Pathogenesis of Metabolic Syndrome

NAFLD refers to the presence of fat in the liver ('5–10% of hepatocytes are fatty) which is not associated with other known causes of steatosis such as: alcohol (defined as >20 g of alcohol daily for females and >30 g for males in European and American recommendations [17]), viruses, drugs, toxins, autoimmune disease or iron overload and is accompanied most frequently, if not always, by IR [18]. NAFLD ranges from simple fatty infiltration, without evidence of inflammation (non-alcoholic fatty liver (NAFL)), to fat and inflammation (non-alcoholic steatohepatitis (NASH)) and cirrhosis, which can progress to end-stage liver disease (ESLD) or directly to HCC. It is not a rule that all subjects with MetS develop NAFLD, nor do all subjects with NAFLD develop NASH [19]. NAFLD and MetS may be linked in a vicious cycle, with NAFLD becoming both a symptom and a cause of MetS [20]. From the histological point of view, alcoholic steatohepatitis is indistinguishable from NASH and is characterized by small and large macrovesicular steatosis droplets, but may also be composed of a mixture of large and small vacuoles, ballooning necrosis, mild inflammation, fibrosis, and it can be diagnosed by identifying these features on biopsy liver samples as a gold standard method [21]. In the USA, NASH is the third most common reason for liver transplantation [22] and the most common cause of cryptogenic cirrhosis. According to reviews, 3–6% of people globally are thought to have NASH. It can proceed to cirrhosis and ESLD, even though CVD is the primary cause of mortality in persons with this condition [23]. In addition, the percentage of individuals in the United States who have NASH as the primary cause of their HCC has increased 7.7-fold (from 2.1 to 16.2%) [24]. NAFL is typically asymptomatic, and most patients have normal transaminases levels, even though the disorder is the most common reason for unexpectedly elevated transaminase. At this time, it is not recommended to screen asymptomatic people or people with MetS or simple steatosis [18]. According to a recent assessment, NAFLD may be responsible

for 80% of cases of increased transaminase levels in the American population [25] and similar data have been obtained in the Italian [26] and Japanese [27] population. Due to the increase in Western industrialized food, and the sedentary lifestyle, there is an obesity epidemic beginning in childhood with the increase of DM and, respectively, an increase in NAFLD which is now recognized as the most prevalent chronic liver disease, with a worldwide prevalence of 25% [28], with a high prevalence rate reaching 60–70% in patients with DM [29]. T2DM is the most important risk factor for NAFLD and seems to be correlated with the progression of the disease, with the presence of advanced fibrosis (AF), and is associated with liver-related mortality, but it is usually overlooked in clinical practice [30].

## 5. New Therapeutic Perspectives in the Association between NAFLD and MetS

Montemayor et al. reported [31] in a study on 128 patients aged 40–60 years with BMI between 27 and 40 kg/m<sup>2</sup>, with diagnosis of NAFLD and MetS, that conventional diet (CD) 43 patients, Mediterranean Diet (MD)—high meal frequency, 43 patients, and MD—physical activity (PA), 42 patients, decreased the intrahepatic fat content and liver stiffness alongside with BMI, insulin, HbA1c, diastolic BP, HDL-C and ALT after 12 months as seen in **Table 1**.

**Table 1.** Novel therapeutic approaches in NAFLD and MetS.

| Author                 | Study Groups  | Intervention                                                                                      | Outcome                                                                                                                                 |
|------------------------|---------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Montemayor et al. [31] | 128 patients  | Conventional Diet,<br>Mediterranean diet (MD)—high meal frequency<br>MD—physical activity groups. | ↓ intrahepatic fat contents<br>↓ liver stiffness<br>ameliorated BMI, insulin, Hb1Ac, diastolic blood pressure, HDL-cholesterol, and ALT |
| Konieczna et al. [32]  | 5867 patients | Energy-restricted MD, physical activity promotion and behavioral support                          | ↓ of BMI, waist circumference<br>↓ HbA1c<br>↓ TG                                                                                        |
| Van Kleef et al. [33]  | 667 patients  | Different intensities of physical activity                                                        | ↓ NAFLD<br>↓ waist circumference                                                                                                        |

| Author                  | Study Groups                             | Intervention                                    | Outcome                                                                                                                   |
|-------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Lassailly et al. [34]   | 180 patients                             | Bariatric surgery                               | ↓ fibrosis<br>reversed NASH                                                                                               |
| Pedersen et al. [35]    | 40 patients                              | Roux-en-Y gastric bypass<br>sleeve, gastrectomy | ↓ NAFLD<br>reversed NASH                                                                                                  |
| Newsome et al. [36]     | 320 patients                             | semaglutide                                     | ↓ fibrosis<br>resolution of NASH                                                                                          |
| Mirarchi et al. [37]    | Review with 511 patients from 13 studies | SGLT-2i                                         | ↓ liver fat content<br>↓ AST/ALT<br>↓ liver stiffness.                                                                    |
| Vilar-Gomez et al. [38] | 180 patients                             | Vitamin E                                       | ↓ overall mortality and transplant rates<br>↓ rates of hepatic decompensation<br>↓ risk of death<br>↓ need for transplant |

Cholesterol, ALT—alanine aminotransferase, WC—waist circumference, NAFLD—nonalcoholic fatty liver disease, NASH—non-alcohol steatohepatitis; SGLT-2i—sodium-glucose loop transporter 2; AST—aspartate amino transferase; T2DM—type 2 diabetes mellitus.

Konieczna et al. [32] reported in a study on 5867 patients with NAFLD risk factors who used to consume ultra-processed foods, that administration of energy-restricted MD, PA and behavioural support decreases the BMI, WC, HbA1c, TG after one year. The dietary intake and PA were assessed at 0, 6 and 12 months using a semi-quantitative food frequency questionnaire and validated Minnesota-REGICOR short PA questionnaire as seen in **Table 1**.

Van Kleef et al. [33] reported in a study of 667 patients, 229 of which had NAFLD (assessed by ultrasound (US) after excluding secondary causes of liver steatosis such as excessive alcohol consumption, steatogenic drug use, and hepatitis B or C), a mean age of 63.3 years and were females 53%. Of these, 229 (34.3%) had NAFLD and associated a higher prevalence of overweight, DM, HBP, and lipid abnormalities. The intervention consisted in PA—61.9% light intensity, 29.8% moderate intensity, and 8.2% vigorous intensity; and resulted in amelioration of NAFLD incidence and in WC as seen in **Table 1**.

Recently, Lassailly et al. [34] reported long-term outcomes in a group of 180 patients with severe obesity and biopsy-confirmed NASH who underwent metabolic and bariatric surgery (MBS). At the 5-year post-surgical follow-up, NASH was resolved without deteriorating fibrosis in 84% of patients, fibrosis was reduced compared to baseline in 70.2%, and it was totally resolved in 56%. MBS is now restricted to adults with a BMI of at least 35 kg/m<sup>2</sup>, a clinical indication that excludes many NAFLD patients as seen in **Table 1**.

In a study of 40 patients with obesity who underwent bariatric surgery, Pedersen et al. [35] concluded that bariatric surgery reduces NAFLD and can reverse NASH. The study divides the patients in two subgroups that were treated with two different surgical methods: 16 patients underwent Roux-en-Y gastric bypass (RYGB), and 24 patients underwent sleeve gastrectomy (SG). RYGB appeared to minimize hepatic steatosis and enhance the plasma lipoprotein profile better than SG. Even though there are presently no NAFLD guidelines evaluating the efficacy of bariatric surgery in treating NAFLD, SG looks to be an equally good alternative to RYGB in bariatric patients with NAFLD as seen in **Table 1**.

Newsome et al. [36] studied the efficacy of three different dosages of semaglutide once daily (0.1, 0.2, and 0.4 mg) vs. placebo in a large cohort of 320 patients with NASH, aged 18–75 years, 61% female, and 62% with T2DM. NASH resolution was observed in 59% of volunteers treated with the highest dose of semaglutide, compared to 17% in the placebo group. The combined endpoint of NASH resolution and fibrosis improvement was reported in 37% vs. 15% of semaglutide vs. placebo-treated patients as seen in **Table 1**.

Regarding the other novel antidiabetic non-insulinic drug [39], Mirarchi et al. [37] reported in a review of 13 studies the benefits of sodium-glucose cotransporter-2 inhibitors in patients with NAFLD decrease liver fat content, AST/ALT levels and liver stiffness as seen in **Table 1**.

About Vitamin E use in liver involvement, Vilar-Gomez et al. [38] reported in a study on 180 with biopsy-proven NASH and bridging fibrosis or cirrhosis—90 that received treatment with vitamin E and 90 matched patients without vitamin E treatment; that vitamin E treatment increase transplant-free survival rates and and lower rates of hepatic decompensation, risk of death or need for liver transplant. The benefits were present both in patients with or without T2DM as seen in **Table 1**.

## References

1. Barale, C.; Russo, I. Influence of Cardiometabolic Risk Factors on Platelet Function. *Int. J. Mol. Sci.* 2020, 21, 623.
2. Lemieux, I.; Després, J.-P. Metabolic Syndrome: Past, Present and Future. *Nutrients* 2020, 12, 3501.
3. Grander, C.; Grabherr, F.; Moschen, A.R.; Tilg, H. Non-Alcoholic Fatty Liver Disease: Cause or Effect of Metabolic Syndrome. *Visc. Med.* 2016, 32, 329–334.
4. Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. *Lancet Gastroenterol. Hepatol.* 2022, 7, 851–861.
5. Jackson, S.E.; Llewellyn, C.H.; Smith, L. The obesity epidemic—Nature via nurture: A narrative review of high-income countries. *SAGE Open Med.* 2020, 8, 2050312120918265.
6. Choudhary, N.S.; Duseja, A. Screening of Cardiovascular Disease in Nonalcoholic Fatty Liver Disease: Whom and How? *J. Clin. Exp. Hepatol.* 2019, 9, 506–514.
7. Berg, E.H.V.D.; Douwes, R.M.; de Meijer, V.E.; Schreuder, T.C.; Blokzijl, H. Liver transplantation for NASH cirrhosis is not performed at the expense of major post-operative morbidity. *Dig. Liver Dis.* 2018, 50, 68–75.
8. Cleeman, J.; Grundy, S.; Becker, D.; Clark, L. Expert panel on detection, evaluation and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Adult Treatment Panel (ATP III). *JAMA* 2001, 285, 2486–2497.
9. Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. *BMC Med.* 2011, 9, 48.
10. Grundy, S.M.; Cleeman, J.L.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. *Circulation* 2005, 112, 2735–2752.
11. Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tiansi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. *Diabetes Res. Clin. Pract.* 2022, 188, 109924.
12. Patel, P.; Abate, N. Role of Subcutaneous Adipose Tissue in the Pathogenesis of Insulin Resistance. *J. Obes.* 2013, 2013, 489187.
13. Ramírez-Manent, J.I.; Jover, A.M.; Martínez, C.S.; Tomás-Gil, P.; Martí-Llitteras, P.; López-González, A. Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. *Nutrients* 2023, 15, 257.

14. Szczepaniak, L.S.; Nurenberg, P.; Leonard, D.; Browning, J.D.; Reingold, J.S.; Grundy, S.; Hobbs, H.H.; Dobbins, R.L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. *Am. J. Physiol. Metab.* 2005, 288, E462–E468.
15. Yki-Järvinen, H. Fat in the liver and insulin resistance. *Ann. Med.* 2005, 37, 347–356.
16. Busnatu, S.-S.; Salmen, T.; Pana, M.-A.; Rizzo, M.; Stallone, T.; Papanas, N.; Popovic, D.; Tanasescu, D.; Serban, D.; Stoian, A.P. The Role of Fructose as a Cardiovascular Risk Factor: An Update. *Metabolites* 2022, 12, 67.
17. Chalasani, N.; Younossi, Z.; LaVine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. *Hepatology* 2012, 55, 2005–2023.
18. Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. *Lancet Diabetes Endocrinol.* 2014, 2, 901–910.
19. Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. *Hepatology* 2004, 40, 1387–1395.
20. Hashimoto, E.; Tokushige, K.; Ludwig, J. Diagnosis and classification of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: Current concepts and remaining challenges. *Hepatol. Res.* 2014, 45, 20–28.
21. Bellentani, S. The epidemiology of non-alcoholic fatty liver disease. *Liver Int.* 2017, 37, 81–84.
22. Charlton, M.R.; Burns, J.M.; Pedersen, R.A.; Watt, K.D.; Heimbach, J.K.; Dierkhising, R.A. Frequency and Outcomes of Liver Transplantation for Nonalcoholic Steatohepatitis in the United States. *Gastroenterology* 2011, 141, 1249–1253.
23. Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. *Nat. Rev. Gastroenterol. Hepatol.* 2013, 10, 330–344.
24. Younossi, Z.; Stepanova, M.; Ong, J.P.; Jacobson, I.M.; Bugianesi, E.; Duseja, A.; Eguchi, Y.; Wong, V.W.; Negro, F.; Yilmaz, Y.; et al. Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates. *Clin. Gastroenterol. Hepatol.* 2018, 17, 748–755.e3.
25. Thong, V.D.; Quynh, B.T.H. Correlation of Serum Transaminase Levels with Liver Fibrosis Assessed by Transient Elastography in Vietnamese Patients with Nonalcoholic Fatty Liver Disease. *Int. J. Gen. Med.* 2021, 14, 1349–1355.

26. Fedeli, U.; Avossa, F.; Ferroni, E.; De Paoli, A.; Donato, F.; Corti, M.C. Prevalence of chronic liver disease among young/middle-aged adults in Northern Italy: Role of hepatitis B and hepatitis C virus infection by age, sex, ethnicity. *Heliyon* 2019, 5, e02114.

27. Kitazawa, A.; Maeda, S.; Fukuda, Y. Fatty liver index as a predictive marker for the development of diabetes: A retrospective cohort study using Japanese health check-up data. *PLoS ONE* 2021, 16, e0257352.

28. Cotter, T.G.; Rinella, M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. *Gastroenterology* 2020, 158, 1851–1864.

29. Younossi, Z.M.; Henry, L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. *JHEP Rep.* 2021, 3, 100305.

30. Stepanova, M.; Rafiq, N.; Makhlof, H.; Agrawal, R.; Kaur, I.; Younoszai, Z.; McCullough, A.; Goodman, Z.; Younossi, Z.M. Predictors of All-Cause Mortality and Liver-Related Mortality in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD). *Dig. Dis. Sci.* 2013, 58, 3017–3023.

31. Montemayor, S.; Bouzas, C.; Mascaró, C.M.; Casares, M.; Llompart, I.; Abete, I.; Angulo-Martinez, E.; Zulet, M.; Martínez, J.A.; Tur, J.A. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. *Nutrients* 2022, 14, 2223.

32. Konieczna, J.; Fiol, M.; Colom, A.; Martínez-González, M.; Salas-Salvadó, J.; Corella, D.; Soria-Florida, M.T.; Martínez, J.A.; Alonso-Gómez, M.; Wärnberg, J.; et al. Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome. *Nutrients* 2022, 14, 4142.

33. van Kleef, L.A.; Hofman, A.; Voortman, T.; de Knecht, R.J. Objectively Measured Physical Activity Is Inversely Associated with Nonalcoholic Fatty Liver Disease: The Rotterdam Study. *Am. J. Gastroenterol.* 2021, 117, 311–318.

34. Lassailly, G.; Caiazzo, R.; Ntandja-Wandji, L.-C.; Gnemmi, V.; Baud, G.; Verkindt, H.; Ningarhari, M.; Louvet, A.; Leteurtre, E.; Raverdy, V.; et al. Bariatric Surgery Provides Long-term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. *Gastroenterology* 2020, 159, 1290–1301.e5.

35. Pedersen, J.S.; Rygg, M.O.; Serizawa, R.R.; Kristiansen, V.B.; Albrechtsen, N.J.W.; Gluud, L.L.; Madsbad, S.; Bendtsen, F. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Non-Alcoholic Fatty Liver Disease: A 12-Month Follow-Up Study with Paired Liver Biopsies. *J. Clin. Med.* 2021, 10, 3783.

36. Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. *N. Engl. J. Med.* 2021, 384, 1113–1124.

37. Mirarchi, L.; Amodeo, S.; Citarrella, R.; Licata, A.; Soresi, M.; Giannitrapani, L. SGLT2 Inhibitors as the Most Promising Influencers on the Outcome of Non-Alcoholic Fatty Liver Disease. *Int. J. Mol. Sci.* 2022, 23, 3668.

38. Vilar-Gomez, E.; Vuppalanchi, R.; Gawrieh, S.; Ghabril, M.; Saxena, R.; Cummings, O.W.; Chalasani, N. Vitamin E Improves Transplant-Free Survival and Hepatic Decompensation among Patients with Nonalcoholic Steatohepatitis and Advanced Fibrosis. *Hepatology* 2018, 71, 495–509.

39. Salmen, T.; Pietroșel, V.-A.; Mihai, B.-M.; Bica, I.C.; Teodorescu, C.; Păunescu, H.; Coman, O.A.; Mihai, D.-A.; Stoian, A.P. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. *Biomedicines* 2022, 10, 2624.

Retrieved from <https://encyclopedia.pub/entry/history/show/93688>