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Porous carbons are an important class of porous materials that have grown rapidly in recent years. They have the

advantages of a tunable pore structure, good physical and chemical stability, a variable specific surface, and the

possibility of easy functionalization. 
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1. Introduction

Porous materials are defined as materials with cavities, or channels, called pores. Pores are empty spaces that

exist between particles of any shape in materials. These empty spaces form the porosity of the materials, defined

as the volume percentage of air in the material that correspond to the total volume occupied by the voids of the

material divided by the total volume of the material . The porous space is a continuity of absence of solid matter

nested in the continuity of solid matter. It is essentially irregular in its forms and inconsistent also in its qualities,

which can be given great complexity. There are two types of porosity: open porosity (on the external environment)

and closed porosity. In all cases, it is generally characterized by its volume fraction (or by the density of the porous

material) and the pore size distribution. The open porosity notably controls the adhesion properties of the coatings

on the surface of the material .

Porous materials have attracted the attention of chemists and materials scientists, and the development of new

porous materials has accelerated research development in recent decades . This attention comes back not

only to the commercial interest that porous materials have for their application in various fields such as separation

, catalysis , adsorption , energy storage and conversion , and

medicine , but also, because of the scientific interest in the challenges posed by their synthesis, their

treatment and their characterization. Indeed, the progress of technology and the demand for porous materials have

pushed researchers to develop synthesis methods allowing for controlling the parameters that determine the

structural and textural characteristics of these materials. In this context, a lot of works have shown that controlling

the pore size is essential for many specific applications. However, this technological and industrial development

with the growth of the world population and domestic activities are causing a remarkable increase in water

pollution. It is therefore necessary to purify wastewater before it is released into the environment. Thus, several

wastewater treatment technologies have been developed, the adsorption of which on porous materials is proving to

be one of the most promising techniques for the removal of pollutants from wastewater due to its affordable price

and ease of disposal at large-scale use . The most widely used adsorbents are activated carbons, and
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they are considered the most useful for the removal of organic and inorganic pollutants due to their structural

variability (macro-, meso-, and micropores), their large specific surface area, and a wide availability of functional

groups .

The purpose of this review is to discuss the preparation processes of porous carbons as well as the main carbon

precursors used. In addition, the performance and characteristics of the resulting carbons are investigated. Finally,

the contribution of activated carbon in the field of wastewater treatment will also be discussed in detail.

2. Classification of Porous Materials

According to the International Union of Pure and Applied Chemistry-USA(IUPAC) , porous materials are

classified according to the diameter of the pores (d ) that constitute them, and the three classes are seen in Figure

1.

Figure 1. Classification of porosity based on pore diameter according to the International Union of Pure and

Applied Chemistry (IUPAC).

2.1. Microporous Materials

Microporous materials are those whose pore diameter is less than 2 nm (d <2 nm). They can be prepared by the

sol-gel process and are widely used in catalysis and adsorption.

2.2. Mesoporous Materials

In this category of materials, the pore diameter varies between 2 and 50 nm (2 nm <d <50 nm). A distinction is

made between crystalline mesoporous materials and ordered amorphous materials, which are intermediate

between that of crystalline microporous solids of the zeolite type and disordered amorphous solids such as silica

gel . Mesoporous materials have several known applications such as catalysis, filtration, pollution control,

optics, and even electronics.

2.3. Macroporous Materials

As these materials have fairly large pores (d > 50 nm), they find their use in the field of decontamination of polluted

water with organic dyes and as a catalyst support for the photodegradation of the pollutant .

3. Graphite and Graphene
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Graphite consists of interconnected carbon atoms arranged to hexagonally form flat networks in the form of layers

stacked parallel to each other (Figure 2b) . These layers are connected by low energy van der Waals type

bonds. This explains the laminated morphology of graphite . Graphite is characterized by high thermal and

electrical conductivity, good chemical stability, and remarkable plasticity . A good thermal

and electrical conductivity is attributed to the delocalization of the π-electrons of the carbon atoms in graphite, and

its plasticity can be explained by the possibility of sliding the sheets layers one onto the other . These

favorable characteristics make graphite interesting materials for improving the transfer and storage of thermal

energy, for preparing anodes of lithium-ion batteries, and for electrochemical applications. In this context, Zhong et

al.  used pitch-based graphite foams to increase the thermal diffusivity of paraffin wax for a thermal energy

storage application. Later, Jana et al.  studied the effect of the addition of graphite on the conductivity of a

tannin-based resin. They showed, contrary to what was expected a priori, that the smaller graphite particles were

much more suitable for obtaining conductive matrices. Indeed, the use of small grains made the viscosity higher

because of their higher surface and made it possible to obtain homogeneous foams with a higher density . In

2019, Zhang et al.  showed that the use of graphitized mesoporous carbon as anode materials for lithium-ion

batteries improved speed performance and had a good cycling stability with a reversible capacity of 248.3 mA h g

at 1 C after 100 cycles. In the same context, porous graphitic carbon was synthesized from Eichhornia crassipes

plants  collected from the Coimbatore region, Tamilnadu-India, and has been used for the sustainable fabrication of

hole-transporting materials electrode in perovskite solar cells .

Figure 2. A conceptual model depicting the structure of graphene (a), graphite (b), and carbon nanotubes (c).

4. Carbon Nanotubes

Carbon nanotubes are an allotropic form of carbon (Figure 2c), observed for the first time in 1991 by Japanese

researcher Sumio Iijima during the synthesis of fullerenes by an electric arc . They have been characterized as

graphene sheets that are wound on themselves in the form of microtubes and will later be renamed multiwall

carbon nanotubes (MWCNTs). In 1993, the synthesis of single-walled carbon nanotubes (SWCNTs) was reported
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by optimizing the method of synthesis by an electric arc . The multisheet nanotubes consist of several

graphene sheets wound concentrically with a spacing between two sheets of approximately 3.6 Å, slightly greater

than the spacing between two sheets in graphite. The diameter of the nanotubes varies, depending on the number

of sheets, from 1 to 50 nm, and their lengths can reach 1 µm . SWCNTs consist of a graphene sheet

wound on itself, and they form a tube whose diameter is between 0.4 and 3 nm. Carbon nanotubes are therefore

composed of one or more sheets of carbon atoms, as in graphite, wound on themselves forming a tube. Carbon

nanotubes have good mechanical properties, good adhesion, and excellent electrical conductivity [43,111–113].

Some of these nanotubes have metallic properties [75,114,115], while others are semiconductors 

. SWCNTs and MWCNTs are manufactured by almost the same method; the only distinction can appear on the

use of the metal catalyst, generally nickel, iron, or cobalt, which is essential for the synthesis of fullerenes. They

can be prepared mainly by arc discharge, laser ablation, and chemical vapor deposition , involving

one of the following as carbon precursors: xylene, acetylene, toluene, methane, benzene,etc. . On the industrial

level, carbon nanotubes, with the particularity that they possess, residing in a small amount of impurities, are used

in many forms such as the reinforcing elements of polymers and composites, nanoporous materials for energy

storage, passive (nanometric conductors) or active components (diodes and transistors), and systems allowing for

the vectorization of drug molecules for the treatment of certain diseases .

5. Activated Carbon

Activated carbon is porous, amorphous organic material with a complex structure, characterized by high carbon

content . These materials include a wide range of carbonaceous substances with different properties and

characteristics (porosity, specific surface, chemical nature of the surface, density, etc.). Activated carbon can be

produced from any substance with a high carbon content, whether of a vegetable, fossil, or material of a synthetic

nature; examples include date stones , coffee grounds , almond shell , coconut shell , corncob

wastes , Acacia glauca sawdust , waste potato residue , rice husk , sunflower piths , tomato stem

, banana peel , etc.
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