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The zinc(II) metal derivative of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS ) is quite labile and readily

demetallates under acidic conditions, affording the parent diacid porphyrin in a monomeric form. The rate of this process

is first order on [ZnTPPS ] and second order on [H ], allowing a precise control of the monomer release in solution. Under

high ionic strength, this latter species is able to self-assemble into J-aggregates, whose kinetics of growth are largely

modulated by pH. The aggregation kinetics have been treated according to a well-established model, in which the

formation of an initial nucleus is the rate determining step preceding the autocatalytic growth of the whole assembly. The

extinction spectra of the aggregates suggest the occurrence of a dipolar coupling mechanism very similar to that operating

in metal nanoparticles. Spontaneous symmetry breaking takes place in these aggregates as evidenced by unusual

circular dichroism spectra. The intensity and sign of the effect is controlled by the aggregation rate and therefore can be

tuned through a proper choice of initial conditions.
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J-aggregates are supramolecular systems in which the constituent chromophore units are laterally arranged. Apart the

occurrence of a specific J-band in the UV/Vis spectra, bathochromically shifted with respect to the free monomer, a series

of peculiar opto-electronic and chiroptical properties attracted the interest of many researchers on these species in the

last decades . Usual candidates to build such structures are aromatic compounds, e.g. porphyrins and, among them

the water soluble 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS ) has been intensely studied. Such interest

arises from the possibility of obtaining a variety of supramolecular architectures whose size spans from the nano- up to

the microscale.  Chirality can be induced in these species by imposing external chemical (small chiral molecules

or polymers)   or physical chiral bias (hydrodynamic flows, vortexes or combination of gravitational and

rotational forces) . More intriguingly, spontaneous symmetry breaking can also occur in the absence of

any bias, leading to a search for the intimate causes of such phenomenon . Kinetic studies on the self-assembly

formation pointed out the role of aggregation rates and the mixing protocol on the intensity of the circular dichroic signals

. Furthermore, these findings suggest that the interplay of local concentration and temperature gradients, mixing

techniques, and also aging of reagents could have a deep impact on the reproducibility of the experiments, since the

distribution of species in solution at the beginning of aggregation could be unpredictable (monomers, dimers, oligomers

etc.). In complex systems, all these factors are able to change the aggregation pathway and eventually influence the

resulting structure of the final supramolecular assembly . For these reasons, it is very important to develop approaches

to minimize the potential sources of uncertainty. In a previous study, we showed that controlled amounts of the zinc(II)

metal derivative of TPPS  when added to the metal-free porphyrin decrease consistently the formation of J-aggregates

and influence their chiroptical properties . This particular metal complex is quite labile under acidic conditions and the

metal ion can be easily removed,   affording an easy and convenient way to obtain in situ the monomeric diacid

H TPPS , that is the building block for the subsequent aggregate growth (see Scheme 1).

Scheme 1. Pictorial sketch of the basic strategy to growth J-aggregates of the diacid H TPPS by demetallation of

ZnTPPS  under acidic conditions.

This particular metal complex offers three main advantages: i) since the rate of zinc(II) extrusion from the porphyrin core is

first order on [ZnTPPS ] and second order on [H ], the proper choice of pH and ionic strength conditions allows a fine

time-control on the initial concentration of monomeric diacid H TPPS . Actually, by lowering the pH the demetallation

becomes fast with respect to the J-aggregate formation, disentangling the two processes; ii) zinc(II) is usually a penta-

coordinated metal ion and the presence of an axial ligand (usually water) on top of the porphyrin plane hinders formation
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of dimers or oligomers for this porphyrin; iii) the difference always observed in kinetics and optical activity when using

different mixing protocols is removed. Purrello et al. exploited this strategy to induce chirality into a porphyrin

supramolecular assembly pre-organized onto a polymeric support .

In this report, we have performed a detailed kinetic study of the demetallation of ZnTPPS and the subsequent

aggregation into J-aggregates of the diacid H TPPS  generated in situ as function of pH and ionic strength. The main

spectroscopic and chiroptical features of the J-aggregates have been related to the experimental conditions, suggesting

an effective role of zinc cations. 

Kinetic analysis

Our kinetic experiments have shown that when ZnTPPS is used as starting material, the rates are independent on the

mixing order, and sigmoidal profiles for extinction vs time have been observed in all cases. A precise control on the

release of metal free porphyrin could be achieved at pH higher than 1, a condition that requires rather high ionic strength

to trigger aggregation. Since both the demetallation and aggregation rates could be influenced by the nature of the various

species in solution, we used H SO  as acid to initiate both process and ZnSO  to ensure the proper ionic strength. The

spectral changes in the extinction spectra show the conversion of the starting ZnTPPS  into the intermediate diacid

H TPPS  that eventually converts to J-aggregates. An analysis of the spectral changes allowed the calculation of the

relevant kinetic parameters for both processes. The removal of the metal ion from its porphyrin complex follows the rate

law: rate = k  [ZnTPPS ][H ] , with k  = 5.5 ± 0.4 M  s  at 298 K, in line with the literature . The subsequent

aggregation kinetics have been treated according to an established model proposed by Pasternack et al .   The rate

determining step is the formation of a nucleus containing m porphyrin units, that initiates the autocatalytic growth of the

final assembly following a time-dependent process. The values of the catalytic rate constant k  monotonically increase on

increasing both [H ] and ionic strength, while the value of m indicates a trimer or a tetramer as the initial nucleus.

Chiroptical properties

Samples of the prepared J-aggregates exhibit rather peculiar spectroscopic features: i) a broad J-band, suggesting a

dipolar coupling mechanism, instead of the usual Frenkel exciton model , ii) resonance enhanced light scattering

(RLS) corresponding to the absorption bands due to their size and the strong electronic coupling among the monomers

. The increase of intensity of RLS on increasing [H ] and ionic strength suggests that aggregates become larger at

lower pH and higher ionic strength. As already reported in literature, spontaneous symmetry breaking can occur in these

systems, leading to the observation of circular dichroism (CD) spectra . On increasing [H ] or the ionic strength, i.e.

increasing the aggregation rates (see Figure 1), the absolute intensity of the dissymmetry g-factor decreases and the

bands eventually switch from negative to positive Cotton effect.

Figure 1. Plot of dissymmetry g-factor as function of the corresponding rate constants k  and two representative CD

spectra for positive and negative Cotton effect (inset).

All our experimental evidence points to a specific role played by the zinc(II) ions, at molecular level and on the

mesoscopic structure of the aggregates, in analogy to other polycationic species  At difference with J-aggregates

prepared by simply adding inorganic acids, the sign of the Cotton effect in these species can be changed from negative to

positive by varying pH and ionic strength . All together, these findings shed further light onto these fascinating

supramolecular assemblies and pave the way to new approaches in order to modulate their spectroscopic and chiroptical

properties for potential applications.
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