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Fish industry waste is attracting growing interest for the production of environmentally friendly materials for several
different applications, due to the potential for reduced environmental impact and increased socioeconomic benefits.
Recently, the application of fish industry waste for the synthesis of value-added materials and energy storage

systems represents a feasible route to strengthen the overall sustainability of energy storage product lines.
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| 1. Introduction

The energy crisis, climate change, increased energy consumption and growing awareness of environmental
protection needs have imposed the challenge of sustainable development, pushing industrial and academic
research toward efficient, clean, ecological and high-performance materials and equipment for energy storage and
conversion . The energy produced by renewable resources needs to be stored by electrochemical energy
storage devices from which it can be extracted at a later time to perform necessary tasks 2. These devices are
required to have increasingly improved energy and power density. Moreover, electrochemical energy storage
technology is crucial for the sustainable development of wearable electronics 8. Therefore, it is essential to find
high-performing, low-cost and environmentally friendly materials. Additionally, the developed materials should be

able to be produced at a large-scale for usage in various industries HBIEIIE]

One of the most invaluable, renewable and sustainable resources for the synthesis of high-performance materials
for energy storage is biomass €. The term biomass indicates all renewable organic materials deriving from plants,
algae, trees, crops, wood wastes, agricultural and forestry wastes, animal and poultry wastes, fishery and
aquaculture waste and food processing waste 19 |n 2016, the total biomass waste in the world was
approximately 550 gigatons of carbon, and is increasing every year 12 This waste is either burnt or left in the
ocean which leads to environmental pollution and the emission of greenhouse gas 2314, Bjomass is exploited for
energy production through thermochemical processes, including combustion, gasification and pyrolysis, and

biochemical processes, including fermentation and anaerobic digestion 1Y[131[16],

Thanks to biomass’ recyclability, abundance and low cost, the application of biomass as a precursor to produce

green carbon materials for energy storage is economically and technically sustainable BILZII8IL - Nowadays,
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many porous and nanostructured carbons derived from biomass present high conductivity, high tensile strength,
low density and large aspect ratios, leading to enhanced energy storage capacity 29211221 These carbon-based
materials can be used in hydrogen storage 23, energy storage devices 24123 carbon capture and storage 281271,
photovoltaics 2829 dye degradation 2% and environmental remediation applications (132 Essentially, the
utilization of biomass not only helps to find inexpensive high-potential materials for different industries but also

prevents or alleviates environmental pollution, providing opportunities for biomass-based industries [BI41[33][34]

Transformation of biomass into carbon-based materials can be done through carbonization, pyrolysis and
activation techniques, producing enriched materials with high surface areas, vast pore volumes and small pore
sizes BSIB6I7EBEISRI |nstrumental and methodological details regarding different synthetic strategies for biomass-
derived carbon can be found in 91142 pye to a better electrolyte seepage and higher charge storage
capabilities compared to conventional materials, porous and high-surface carbon materials are suitable as
electrode materials for batteries and supercapacitors [43I4445146]47] - Ag 3 result, the research on preparation
techniques and activator typologies has led to the concept of engineered biochar, wherein the physicochemical
properties, performance and environmental benefits of pristine biochar can be tailored for specific applications 2
(48] For example, it is possible to derive a porous carbon with precise micropore size and large specific surface
area (up to 3000 m?/g) [4I331149  Additionally, chitin and chitosan, obtained from fish and crustacean shells, have
been demonstrated to be effective as material for supercapacitors, LIBs, polymer electrolyte-based fuel cells and
LSBs as polysulfide trapping agents BY5EL52],

Biowaste materials obtained from the fish industry have drawn significant attention as a novel raw material for
various purposes. Around 50-75% of fish and seafood by-products, including viscera, skin, bones, scales, flesh,
fins and shells are wasted during fish processing 2334l This waste occurs in huge quantities, considering that, in
2019, worldwide production of fish was estimated to be around 177.8 million metric tons (a number that will
continually increase in the future) B8], Of this amount, around 7.2-12 million tons are wasted yearly 28], These
waste products are discarded into the environment, in disposal areas or in the sea, with huge economic loss and
detrimental effects on aquatic ecosystems, producing greenhouse gases and stench BABEI5I. Fish waste disposal
in the ocean increases organic matter content, leading to oxygen level reduction at the bottom of the ocean and
endangering the lives of other oceanic inhabitants BAE162 piscarding fish waste is a serious challenge that needs
to be promptly overcome B2l. Consequently, the valorization of fish byproducts would be a great achievement, not
only for the environment, but also for the fish and aquaculture industries [63164],

Recent studies in literature reveal that fish industry waste can successfully be used as a low-cost precursor for the
production of sustainable energy storage materials, since it is a rich source of carbon, nitrogen, oxygen, hydrogen
and sulfur [6Q63I66]  Moreover, biomass derived from fish waste includes a valuable amount of collagen, crude
protein and amino acids, which are a great choice for preparing 3D and N-doped nanoporous carbon materials 22
(671 Fish scales, for example, contain organic and inorganic materials (collagen fibers and calcium-deficient
hydroxyapatite, respectively) €8, The organic parts of fish scales can be converted to carbon matrices; the
inorganic parts may be a natural template to induce a chain porous structure after carbonization and activation &

(7074 - Additionally, fins and fish skins contain valuable amounts of collagen fibers, including different amounts of
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carbon, oxygen, nitrogen, hydrogen and sulfur. Finally, the annual generation of around 0.5 million tons of crab
shells makes crab shells another valuable source of material for energy storage devices. This amount of waste is

much higher than the material produced for LIBs (about ten thousand tons for both anodes and cathodes) 72,

The increasing interest toward the valorization of fish waste into sustainable materials for electrochemical storage
systems is highlighted by the growing number of scientific publications on this topic during the last decade and, in

particular, in the last three years, as reported in Figure 1.
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Figure 1. Distribution of scientific publications per year on sustainable materials derived from fish waste for

electrochemical storage systems (Scopus database).

| 2. Applications in Lithium-lon Batteries (LIBs)

To date, the most developed electrochemical energy storage devices are lithium-ion batteries (LIBs), which are
currently applied in various fields including smartphones, laptops and electric vehicles, owing to their relatively high
energy density and long cycle life 374751 Nevertheless, commercial graphite anodes cannot satisfy the
increasing demand of the high energy density in LIBs. Predictions have claimed that the demand for lithium will be
tripled by the year 2025 [Z8. Another limitation is represented by the massive anode volume changes during
Li* insertion and extraction, which leads to the pulverization of the lithium-alloy particles and fast capacity drop

during charge-discharge cycles 1. To overcome these limitations, research on alternatives for graphite anodes
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has focused on nanoporous carbons (NPCs). NPCs have drawn interest because of their potentially higher specific
capacity and stability and their well-organized porous structure. These can prepare rapid ion diffusion channels,
which is advantageous when attempting to obtain high Li* storage capacity 22l A variety of NPCs have been
investigated, such as carbon nanofibers 879 carbon nanocages BYEL  nitrogen-enriched nanocarbons 82131
etc. Their porous structures can reduce the diffusion length of Li-ions, while their high specific surface area offers

abundant active sites for Li* storage reactions 4],

Recent literature demonstrates that fish waste can successfully be used as a sustainable source for nanoporous
carbon materials; it is enriched with elements such as nitrogen, oxygen, hydrogen and sulfur, and characterized by
cost-effectiveness and thermal stability. Depending on the type of fish industry waste, different routes have been
reported in recent studies for obtaining porous carbon electrodes for Li-ion batteries, as schematically reported

in Figure 2.
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Figure 2. Schematic representation of the possible routes for obtaining porous carbon electrodes for Li-ion

batteries from fish waste.
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Crustacean shells are effective biotemplates for preparing nanostructured anodes for rechargeable Li-ion batteries,
as demonstrated by Yao et al. 2, They obtained hollow carbon nanofibers from crab shells encapsulating sulfur
and silicon. The processing route involved several steps, as schematized in Figure 2. After air calcination of the
crab shells, the organic components were removed and CaCO3; templates containing twisted hollow nanometric
channels were obtained, with diameters close to those of commonly anodized aluminum oxide templates. The
CaCO; framework was coated with a thin layer of carbon via heat treatment in nitrogen. Then, the obtained active
electrodes were inserted into the nanochannels, where they were treated by sulfur and silicon through thermal
infusion and chemical vapor deposition, respectively. After dissolving the CaCO5 framework by acid treatment, the
researchers obtained hollow carbon nanofiber arrays encapsulating sulfur or silicon. The hollow nanostructures
provided sufficient space for the volume expansion of sulfur/silicon during the discharge/charge processes and the
thin walls of the hollow carbon nanofibers allowed rapid lithium-ion transport from the electrolyte to sulfur/silicon. As
reported in Table 1, the Li-ion battery prepared with this crab shell-templated carbon/silicon anode showed high

specific capacity (1580 mAh/g at 1C) and high cycling performance 2,

The mechanism responsible for the excellent electrochemical performance of fish waste-derived porous carbon
materials in LIBs occurs due to their uniform interconnected porous structure, which is beneficial for the rapid
penetration of electrolytes, fast Li* diffusion and the provision of active sites for the storage of Li* ions 3. The
electrochemical properties of electrode materials can be improved by heteroatom doping, which induces defects
and increases available active sites 8. Nitrogen-doped porous carbons derived from crawfish shells were
prepared by Wang et al. 80 by modifying the initial calcination treatment in a nitrogen atmosphere, followed by acid
treatment to eliminate CaCO3. Then, N-doped porous carbon underwent a thermal treatment with cobalt acetate
tetrahydrate to become nano-filled with nanometric cobalt oxide (Co3z0,) nanoparticles. The N-doped porous
carbon and Co30,4-N-doped porous carbon were used to prepare a working electrode via a slurry coating
procedure with high electrochemical lithium storage performance. N-doped porous carbon had a capacity of about
400 mAh/g after 100 cycles, which was greater than that of commercial graphite (372 mAh/g). This demonstrated
that N-doped porous carbon could potentially replace graphite in industrial production. More interestingly, as
reported in Table 1, the N-doped PC-Co3;0, nanocomposite with 10 nm Co-based nanofiller presented a high
reversible capacity of 1060 mAh/g after 100 cycles, acceptable rate capability, superior cyclic performance and

excellent primary Coulombic efficiency (86.7%) [B267],

In addition to the use of prawn shells (PSC), prawn meat (PMC) was used by Lian et al. 83 to prepare porous
carbon materials to be applied as anodes in lithium-ion batteries. After calcination under an inert atmosphere, the
obtained carbon structure was washed, centrifuged, dried and then combined with polyvinylidene fluoride (PVDF),
acetylene black (AC) and N-methyl-2-pyrrolidone solvent. The initial discharge/charge capacities of PSC and PMC
materials for the first 3 cycles at the current density of 30 mA/g were 1803/910 and 1200/694 mAh/g with the
coulombic efficiency of 50.4% and 57.8%, respectively (see Table 1). Solid electrolyte interface formation was cited
as the reason for the low initial coulombic efficiencies. For PSC and PMC, coulombic efficiency reached 91% and
93% after the first cycle and 94% and 95% after the third cycle, respectively B2, The best performance was
obtained by PSC due to the presence of a more uniform nanoporous structure compared to PMC and a higher

level of N-doping.
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The steps for the preparation of porous carbons from fish scales are schematized in Figure 2. As reported by
Selvamani et al. 22, after air calcination, activation in alkaline solution and heat treatment, the obtained carbon
was characterized by a high specific surface area and excellent electrochemical behavior, even under high
charge/discharge situations. The galvanostatic charge/discharge curves at the current density of 75 mA/g
demonstrated an initial discharge capacity around 541 mAh/g in ionic liquid electrolyte. After 75 cycles, the
coulombic efficiency was 94% with a reversible capacity of 509 mAh/g. At the current densities of 400 and 4000
mAh/g, the reversible capacities were 390 mAh/g and 179 mAh/g, respectively. In addition to the aforementioned

properties, the electrode was stable before and after cycling 221,

Very recently, it was demonstrated that collagen extracted by fish waste could be used to obtain porous materials
for LIB electrodes, as schematized in Figure 2. Odoom-Wubah et al. 89 extracted collagen from Tilapia fish with
an alkaline treatment followed by an acid treatment. The marine collagen was impregnated by Palladium nitrate
followed by a heat treatment in nitrogen and then used in combination with polyvinylidene fluoride (PVDF), N-
methyl-2-pyrrolidone and carbon black as an anode material for Li, Na and Mg half-cells. Results of
electrochemical measurements revealed that the reversible capacities for Li, Na and Mg-based cells were 270
(Table 1), 120 (Table 2) and 100 mAh/g, respectively 9. The proof of concept of extracted porous carbon from
marine collagen was demonstrated, but further studies are still required to optimize the preparation and

performance.

In Table 1 the performance of porous carbon-based materials obtained from fish industry waste for LIBs is
compared with those of commercial graphite-based anodes for LIB in terms of specific capacity and cycle life. This
latter indicates the number of charge/discharge cycles of the battery until the end of its lifetime. For LIBs, the cycle
life is significantly dependent on the depth of discharge, which is an indication of the amount of storage capacity of
the battery. It is typically in a range between 300 and 500 cycles for commercial LIBs, even if some manufactures

have claimed 1000 cycles (€8],

Table 1. Performance of porous carbon-based materials obtained from fish industry waste for Li-ion batteries.

gg:;r:l?; Initial Reversible
Fish Waste Application (mA/g) Dlscharge Specn‘_lc Capacity References
Source or C- Capacity Capacity Retention
Rate (mAhlg) (mAhlg)
Si-encapsulated C/10 3060 @C/10 -
- = [72]
Crab Shell nanostructured anode 1C 1580 @1C @200
cycles
) 98%
Crawfish nanoCoz0, doped 100 1223 1060 @100 [87]
shell anode
cycles
Prawn anode 50— 1735 950 @50 84% @90 (85]
shells 1000 mA/g cycles
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Current

Density Initial Reversible
Fish Waste Application (mAlg) Dlschal_rge Speclf_lc Capacity References
Source or C- Capacity Capacity  Retention
Rate (mAhIlg) (mAhlg)
300 @1000
mA/g
420 @50
50— mA/g 40% @90 [85]
Prawn meat anode 1000 1132 100 @1000 cycles
mA/g
Prawn 99%
[89]
Shells anode 0.1 740 732 @150
cycles
94% @75
cycles
75 541 509
- 0,
Fish scales N dope(;nnor;:jneoporous 400 418 390 91?0%375 [22]
4000 214 179 84% @75
cycles
Collagen 100%
from Tilapia  nanoPd doped anode 1C 600 270 @1C @20 (601
waste cycles
83%
Crab Shell anode 50 1758 703 @50 @200 (50]
mA/g
cycles
Commercial graphite- 372 300-500 0192 A
based anodes theoretical cycles i
= s i R """"""‘CS

Omega 2019, 4, 15904-15911.

2. Anthony, L.S.; Vasudevan, M.; Perumal, V.; Ovinis, M.; Raja, P.B.; Edison, T.N.J.l. Bioresource-
derived polymer composites for energy storage applications: Brief review. J. Environ. Chem. Eng.

[ agﬁ,gpll(;g@,yons in Sodium-lon Batteries (NIBs)

3-i}oBaR&ies Cahnot a1680Ihe Jidwitly (ebdeibh tHd. Bricthy etbrdde ftaksti®ddange i Susiaigaiave, limited
andDigRRES\Aalsiaa’ ¢ acbensaBBECitodrmipnbatrayaasicUprsrapaciatachhIEAE UteMition due to
theiNainfEIRja0 2B 28R tHudS3&Eodium ions (Na*) as the charge carriers 24, Though sodium cannot compete

SR IR, 0 IR SLOHEVING BToEMAPFRRLS AL s S IS AVRIBHY Bhensl i cos Fopererore
COTBRESOIH N AT A5G SlPagie e RIS TRB AN SANEAIR e i P REL 0 2195 159 Spoipggaurces

However, sodium has two di_sadvantages. F!rst, its weight is three times higher than !ithium; even if only 5% of the
Krefhdttery ARG relSiil & Wihilhy PRI E ARy S ARV S RIS JORE AR URIIRADLE £ p&r i AR AN
the&(#‘\/ic!w,a@drggjtg’rﬁarelﬁ&ggish diffusion kinetics and more significant volumetric changes during repeated

@ agingEtisFnaBRehexeles.: Kgrelosehtdon; hefenastarr eSS memieRb\PInady tug, to1thg3aw Bpay of the
graphite anodes to absorb sodium. A possible solution for achieving higher storage capacities could be the
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Current Initial Discharae Reversible
Fish Waste Apblication Density Capacit 9 Specific Capacity Ref
1 Source pp (mAlg) or (mrl)-\h | 3’ Capacity Retention ) |
C-Rate 9 (mAhlg)
. . 100%
Prawn Na-ion batteries
(89 .
1 Shells anode 100 370 325 @1C @200 niga,
cycles
Fish nanoPd doped n
collagen anode for Na- 1C 60 NIB: 120 @1C S0 @t (69
L cycles
1 (Tilapia) battery i USA
0,
Crab Shell anode 50 mA/g 1211 283 62% @300 (29
cycles
1 rlands,
Commercial 102
graphite-based 25 250 184 @C/10 100 cycles 103
1 anodes )n Poly

RedEiD¥IENEs RraP RipGhatenMicieplaglicsiordns MaTRGERd ARSI ohtiMidd R6h FEYind3ty Radftoas
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obt@i@e@.’a"ge’ msclggnisms underlying their great suitability for replacing common carbon electrodes is due to their
porous structure, high inherent nitrogen content and the presence of macro, meso- and micropores that facilitate
10 MG SRBEY RRRURIRR (oM PIonane. (Bathirh HOBMERISN feehiologies: RIY &3 Mlicted by
EIiz-]a_l %thngl'a%p%,’ \?V%O%Z)ng#éd a porous N-doped structure from prawn shells using a protocol similar to that
Irepyeenain, Base Ry sisnsiibientasesolisroelasiefl dhatand e e tieahifire dirogks. Engagly ICERL@SS.carbon
mate!rmiagl_ezw'@al, 48n@B1vig7 dnd active sites for Li/Na storage were increased, which led to an improved
electrochemical performance. Galvanostatic charge/discharge tests showed that the initial capacity at the current
18. Titirici, M.M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made
density of 0.1 A/g was 1013 mAh/tglt(,)whlch was three times more than the caE%%le of conventional graphite carbon

by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103- _ o
material. The formation of solid-electrolyte interphase and the irreversible trapping of Li in the pores were

13spyidmisStoBina LBy AsayititykidddNat Hhieraeghiarity pOLtIS Ratemisdriiyeddspmpeplyaaisi@sd on the
porbignaasssnEdteeh cindiereReC R e dvhangkge anplieatnsscicRe gy EmgerspSeitic2ilrhcify was
aroghd 66858A\h/g and the discharge capacity was 370 mAh/g with coulombic efficiency of 56%. This low

RPUSHBIZIEIRNRY 7S SUhIP, N TR vhisSaRRc e PaRUSR-R I sRigiF Rt dgihase formation
andell\éac{%%ﬂg%mmee%cgpw g&r&%&rg m&?&c%réegt Egﬂs'%ﬁcﬂ%ﬁ@g llgéglectrode reversible capacity was 234

mAh/g after 150 cycles, which was superior in comparison to other biomass-derived carbon materials used in the

literature. This was ascribed to the hierarchical porous structure and N-doping of carbon. Moreover, TEM results
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