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Effective scheduling is an important method proposed by some shop floor engineers and operational analysts to minimize

carbon emissions. Scheduling always has a key role in the manufacturing environment and operations management.

There is a direct link between the energy consumption of a manufacturing facility and its environmental impact, which is

mostly analyzed as a carbon footprint.
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1. Introduction

The main objective of any manufacturing or service industry is to make a profit. The latest technological developments

and the concepts of industrial engineering help these industries maximize their profits. But, in recent times, managers

seem to understand that profit is not the only real goal to achieve. Leaving a positive impact on future generations in a

sustainable environment also turns out to be important . Ongoing usage of resources without thinking about their

environmental effects becomes the main problem in most manufacturing companies. Thus, today the scenario has

changed due to the universal environmental rules and regulations. Although there are different strategies to lessen the

impacts on our world, better utilization of resources or reducing the waste of production facilities become the main

research topics of the literature . One of the proper ways to achieve these goals should be by designing a better

schedule in a workshop environment.

It is our collective responsibility to reduce carbon emissions to mitigate the effects of greenhouse gas emissions, global

warming, and climate change. Environment-friendly production also has a positive impact on consumers, which also

increases their loyalty to the related companies. Therefore, most industries in the world attempt to lessen carbon

emissions by adopting different strategies. In recent years, several researchers have attempted to reduce carbon

emissions with the help of their potential research activities. Effective scheduling is an important method proposed by

some shop floor engineers and operational analysts to minimize carbon emissions . Scheduling always has a key role

in the manufacturing environment and operations management. Overall, scheduling can be identified as the process of

distributing existing inadequate resources in an effective manner to maximize or minimize certain objective functions .

Many scheduling environments are described in the literature, including flexible manufacturing system (FMS) scheduling,

job shop scheduling, hybrid flow shop (HFS) scheduling, flow shop scheduling, parallel machine scheduling, single

machine scheduling, and flexible job shop scheduling . Among them, HFS scheduling is an important research area as

many industries, such as textiles , furniture manufacturing , automobile component manufacturing , chemical

industries , electronics industries , etc., resemble the HFS environment. The general layout of an HFS environment

can be seen in Figure 1 .

Figure 1. Layout of an HFS environment.
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Arthanari and Ramamurthy  have addressed the HFS scheduling problems in their research. According to the research,

the HFS scheduling problem is a type of combinatorial optimization problem that is NP-hard, or non-deterministic

polynomial-time hard . Therefore, exact solution techniques for these problems are difficult to obtain when the

problem size ranges from moderate to large. Therefore, researchers use different types of heuristics and metaheuristics to

solve HFS scheduling problems. Nowadays, scheduling researchers also concentrate on the reduction of carbon

emissions. There is a discrepancy between the theoretical analysis and the actual requirements of industries, even though

numerous scheduling researchers have addressed various scheduling problems with various goal functions .

2. Scheduling Problems with Carbon Footprint Minimization Objective

There is a direct link between the energy consumption of a manufacturing facility and its environmental impact, which is

mostly analyzed as a carbon footprint. Mouzon & Yildirim  developed a novel greedy randomized adaptive

metaheuristic algorithm for multiple objectives to minimize the total energy consumption and total delay in a single

machine environment. By minimizing energy consumption, they reduced their carbon footprint. Fang et al.  developed a

novel mathematical approach to minimize the peak energy load, power consumption, and associated carbon footprint in a

cast iron plate manufacturing plant. An enhanced genetic simulated annealing algorithm (GSAA) was used to reduce the

makespan and energy consumption in a flexible flow shop environment . A multiobjective ant colony optimization

algorithm (MOACO) was presented by Luo et al.  for minimizing the makespan and electricity usage. A multi-objective

genetic algorithm (MOGA) was investigated by Liu and Huang  to decrease the carbon footprint by minimizing the total

weighted tardiness. In another multi-objective study, a teaching and learning-based optimization algorithm (MTLBOA) was

proposed by Lin et al.  for finding the best process constraints in turning industry with makespan and also the carbon

footprint.

Ding et al.  studied a hybrid model of the NEH heuristic and an iterated greedy algorithm to analyze the flow shop

scheduling environment with numerous objectives. They developed a multiobjective solution strategy with makespan

minimization and total carbon emission minimization in their work. They generated several random problem instances with

numerous numbers of jobs and machines to validate the given methods. The computational solutions were measured

against several algorithms given in the literature and proved to be better. Yan et al.  developed a multi-level

optimization solution approach to obtain better results for the energy-efficient flexible flow shop scheduling environment

under the makespan and total energy usage. After developing a mathematical model, the genetic algorithm (GA) was

used to find the optimal schedules. The effectiveness of the given method was investigated using a case study. Lei et al.

 introduced a teaching-learning-based optimization algorithm (TLBOA) for finding the minimum of the total energy

usage and total tardiness in an HFS problem. The HFS scheduling problem was divided into three sub-problems, and a

three-string coding method was used for the solution representation of these sub-problems. Several test instances were

solved to analyze the efficiency of the given approach. Liu et al.  investigated the efficiency of a fruit fly optimization

algorithm (FFOA) for minimizing the carbon footprints of all products and makespan in a flexible job shop environment

using the data from a case problem. They identified product carbon footprints using the relationships between resources

and products using these resources.

In their study, Zhang et al.  integrated the minimum values of total electricity usage and carbon footprint into the

objective function of their algorithm. Additionally, they incorporated the utilization of total energy and carbon emissions as

constraints in their proposed approach. The researchers put forth the use of integer programming as a means to solve the

mathematical model. Lu et al.  designed a multi-objective approach for the multi-stage HFS problems under makespan,

noise pollution, and overall energy consumption. An improved gray-wolf algorithm was used to solve the problems. Nasiri

et al.  used an integer programming method to reduce the sum of weighted tardiness and energy usage in an HFS

environment. Pan et al.  developed an effective imperialist competitive algorithm (ICA) for multiobjective, low-carbon

parallel machine scheduling. Piroozfard et al.  analyzed the minimization of the sum of the carbon footprint and total

late work indicators in a flexible job shop environment. To achieve this objective, they employed a MOGA. The authors

indicated that the choice of these two roles was indicative of aspirations rooted in sustainability and classical principles.

Wu et al.  analyzed a multi-criterion, flexible flow shop scheduling environment considering makespan and low-carbon

scheduling objectives. The carbon emissions were measured with the use of renewable and non-renewable energy on a

machine. They proposed a GA-based solution in their work. Meng et al.  analyzed the HFS problem to minimize the

overall energy consumption under makespan and energy usage that can be varied under machines with different turning

on/off state constraints. GA was used for solving the integrated mathematical model. Zhou and Liu  analyzed the effect

of environmental pollution and increasing energy costs within an HFS with fuzzy processing times. Total weighted delivery

time and energy usage were the objective functions. Chen et al.  have attempted to decrease the energy expenditure

and minimize the completion time of a production system. They developed a multi-objective mixed-integer modeling
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approach to achieve energy efficiency HFS with lot streaming for the minimizing of the sum of two objectives, which are

the makespan of the production and electric power usage.

Wang et al.  investigated a real-life scenario of a glass manufacturing business. A two-stage HFS in which machine

eligibility in the first phase and batch machine in the following phase were selected. Similar to previous studies, makespan

and total energy usage (which is preferred to reflect energy-efficient manufacturing) were used to measure the process.

They considered time-of-use electricity prices and machine states (given as online, off, and idle) in their research.

Different local search-based metaheuristics were used. The study conducted by Cai and Lei  addressed the

management of a distributed energy-efficient hybrid flow shop scheduling environment that incorporates fuzzy processing

time. To optimize the scheduling process, they introduced a cooperative shuffled frog-leaping algorithm (CSFLA). The

objective of the research was to simultaneously determine the optimal values for fuzzy makespan, total agreement index,

and fuzzy total energy usage. Shi et al.  studied a sustainable HFS environment under consideration of processing

time, energy consumption, and carbon emissions. Using GA, dynamic scheduling was analyzed. Wang and Wang 

investigated the energy-focused distributed HFS, considering makespan and energy usage. Using a multi-objective

approach, a hybridized cooperative memetic algorithm (HCMA) was proposed to obtain optimal solutions. Zuo et al. 

addressed the energy-efficient HFS scheduling problems considering the objectives of makespan, total tardiness, and

total energy usage. With these objectives, the green scheduling and sustainable manufacturing needs of policymakers

were achieved. Under variable speed constraints, an artificial bee colony algorithm (ABCA)-based solution methodology

was developed.

3. Pigeon-Inspired Optimization Algorithm (PIOA)

The pigeon-inspired optimization algorithm (PIOA) is a metaheuristic based on swarm intelligence that was developed by

Duan and Qiao . The algorithm imitates the natural action pattern of pigeons in nature. While moving within a swarm,

each member of this swarm (pigeons) has their own position, velocity, and personal best position; both of these are used

for understanding their moves in a search space. The search activity of pigeons can be analyzed in two different phases:

the first is based on their movements, while the second is related to the other pigeons in the swarm. The simple PIOA is

described in .

Goel  used PIOA to search for the shortest path from a given point and measured the efficiency of the approach using

Dijkstra’s algorithm. Hao et al.  enhanced the basic PIOA to solve the unmanned aerial vehicle (UAV) assignment

problem under energy consumption. Sun and Duan  modified the PIOA with the prey–predator strategy to prevent the

algorithm from trapping into a locally optimal solution. Their proposed approach was used for protein–protein interaction

(PIP) parameter adjustment. Zhang and Duan  suggested a predator–prey pigeon-inspired optimization (PPPIO)

algorithm to solve the three-dimensional path planning problem of UAVs. The authors put forth the concept of predator–

prey dynamics as a means to improve the overall characteristics of global optimization and accelerate the convergence

rate. The researchers demonstrated that the performance of the PPPIO technique outperformed both the PIOA and

particle swarm optimization (PSO) algorithms. Deng et al.  integrated the PIOA with membrane computing to address

the parameter design challenges encountered in an industrial motor.

According to the findings of Hu et al. , the utilization of PIOA in certain intricate settings results in the attainment of local

optima, a sluggish rate of convergence, and unstable solution attributes. Therefore, to deal with these shortcomings, they

applied an adaptive weighted approach to PIOA and analyzed the UAV route planning problem. Pei et al.  combined

PIOA with the quantum chaotic process to find the optimal fuzzy control strategy for a hybrid electric vehicle. Rehman et

al.  hybridized the PIOA with the GA to minimize electricity costs while minimizing user discomfort. Liu et al. 

developed an improved PIOA to cope with a nonlinear optimization problem. In the improved IPIOA, the authors

introduced PSO, an inverse factor, and a Gaussian factor, and better results were obtained. Shang et al.  addressed a

multi-objective PIO (MOPIO) approach to solve a community detection problem in network science with negative ratio

associations and ratio cuts. They proposed a crossover strategy to enhance the solution quality. They compared the

quality of results from their algorithm with other multi-objective algorithms studied in previous papers from the literature

and concluded that the MOPIO solution methodology provided better results. Modified and improved versions of binary

PIOA were studied by the researchers to solve optimization problems in different fields . The researchers have

created enhanced iterations of PIOA to address the challenges posed by the dynamic facility layout problem  and the

0–1 knapsack problem . An oppositional PIOA was suggested in  to solve the economic load dispatching problems.

There are only a few studies in which PIOA is applied to scheduling problems. Fu et al.  studied a fuzzy production

environment under maintenance. The MOPIO algorithm was developed using fuzzy makespan as the secondary

objective. Wu et al.  applied PIOA to address the flexible job shop scheduling problem (FJSP) to minimize the

makespan. Lei et al.  proposed a hybrid bat and pigeon for solving autonomous vehicle navigation and mapping. Ding
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and Dong  developed an improved PIOA to solve the continuous function optimization problem. Recently, Torky et al.

 solved the financial crisis problems using the PIOA.

4. Firefly Algorithm (FA)

The recent versions of FA and their applications were addressed in . The study conducted by Marichelvam et al. 

examined the HFS scheduling environment, specifically focusing on analyzing the makespan and mean flow time using

the FA. Karthikeyan et al.  proposed a solution methodology for addressing the challenges posed by multi-objective

flexible job shop scheduling problems. The integration of local search techniques with FA effectively manages the

maximum completion time, workload of the crucial machine, and total workload. In Fan et al. , a two-stage HFS

environment with part arrivals and on-time delivery rate criteria was solved with FA. Marichelvam and Geetha  used FA

to minimize the weighted sum of makespan, total flow time, and machine idle time in a multi-stage environment.

Chakaravarthy et al.  analyzed the performance of the FA against the AIS (artificial immune system) algorithm for

makespan and total flow time criteria in the m-machine flow shop scheduling problem. It is a given that both algorithms

give better solution quality than other well-known solution methodologies.

Marichelvam and Geetha  investigated total flow time minimization for the m-machine flow shop scheduling problems.

Qamhan et al.  integrated periodic maintenance, setup times, and release dates with makespan in a real-life problem. A

hybridized FA was used for the solution. A chaos-based FA was proposed by Lo et al.  to solve the permutation flow

shop scheduling problems under makespan. Kaya et al.  improved the efficiency of FA with chaos theory and local

search strategies for makespan in a flow shop scheduling environment. Rashid and Osman  studied the energy-

efficient HFS under makespan and energy utilization. Comparing FA against other well-known metaheuristics shows the

superiority of the developed FA in the problem. The details of the FA to solve various applications can be seen in .

Ghasemi et al.  developed a new version of FA with improved global exploration for optimization problems in

engineering. Bacanin et al.  solved the feature selection problem using the FA. Ezzeldin et al.  hybridized FA with GA

and a particle swarm optimization algorithm to solve water distribution network problems. Sheeba and Uma Maheswari 

proposed an enhanced FA for cloud computing applications. Recently, Villaruz et al.  suggested a scouting FA to solve

global optimization problems.
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