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The presence of lipoarabinomannan (LAM) in the Mycobacterium tuberculosis (Mtb) cell envelope was first

reported close to 100 years ago. Since then, numerous studies have been dedicated to the isolation, purification,

structural definition, and elucidation of the biological properties of Mtb LAM. The significance of LAM remains high

to this date, mainly due to its distinct immunological properties in conjunction with its role as a biomarker for

diagnostic tests due to its identification in urine, and thus can serve as a point-of-care diagnostic test for

tuberculosis (TB). LAM has been thoroughly studied and massive amounts of information on this intriguing

molecule are now available. 

tuberculosis  Mycobacterium tuberculosis  lipoarabinomannan  lipoglycan  mycobacteria

1. Introduction

The hallmark of Mycobacterium tuberculosis (Mtb) is a complex hydrophobic lipid-rich cell envelope . The

dominant features have been studied by electron microscopy  and biochemical fractionation studies . The Mtb

cell envelope is mainly composed of four distinct entities . Surrounding the cytosol is the cytoplasmic membrane

or innermost membrane, which is similar to other bacterial membranes in thickness and mainly composed of

proteins and phospholipids such as phosphatidic acid (PA), diphosphatidylglycerol (PG), phosphatidylcholine (PC),

phosphatidylethanolamine (PE), and the phosphatidyl-myo-inositol mannosides (PIMs). The cell envelope

lipoarabinomannan (LAM) and lipomannan (LM) are lipoglycans found anchored in the plasma membrane via a

phosphatidyl-myo-inositol moiety that is the structural basis of the PIMs. Beyond the cell membrane, peptidoglycan

(PG) and its attached arabinogalactan (AG), which together form the AGP complex (AGP), are apparently located

in the periplasmic space. Outermost is an outer membrane or “mycomembrane”, which consists of the mycolic

acids that form a distinct layer . This peripheral lipid-rich cell envelope and its distinct components have been

defined as virulent factors due to their ability to trigger a host response detrimental to the host and favoring the

establishment of an Mtb infection. A debate still exists on the exact location of the PIMs, LM, and LAM. The latter

may be anchored in the plasma membrane during its biosynthesis but also exposed on the cell envelope surface.

Evidence of the existence of “kettle holes” on the cell envelope poles, which could allow the surface exposure of

plasma membrane anchored LAM , could explain this seeming contradiction. The concept of the exposure

of LAM on the surface is supported by quantitative transmission electron microscopy studies indicating that LAM is

mainly located in the bacillus poles/tips and within cell envelope surface depressions . Meanwhile, the

concept of LAM anchored to the plasma membrane is supported by the need for mechanical and chemical steps to
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extract LAM from the bacterial cell envelope  and by the fact that many steps in the LAM biosynthesis are

associated with the plasma membrane .

2. Defining the Basic Structure of LAM

A timeline of the evolution of LAM structural studies is presented in Figure 1. Briefly, in 1925, Laidlaw and Dudley

 used a mild alkaline extraction of a defatted human strain of Mtb to obtain a novel component that contained

31% pentose. Later, Heidelberger and Menzel using dilute acetic acid on defatted Mtb , as well as Laidlaw and

Dudley and Mueller using culture filtrate, showed the presence of a serologically active polysaccharide rich in D-

arabinose and D-mannose . The presence of this polysaccharide was confirmed further in avian and bovine

strains . Over the next 10 years, several studies followed, all concluding the presence of a certain

polysaccharide composed of D-mannose, D-arabinose, and an unidentified sugar acid that reacted as haptens.

Figure 1. Schematic Representation of the evolution of Mtb LAM structural studies. Approximate timeline for last

100 years starting in 1925.

The potential first evidence of a mycobacterial LAM-like structure was established in 1935 by Chargaff and

Schaefer, who identified the polysaccharide, designated as fraction A, as being a soluble, dextrorotatory, weak acid

containing 77% reducing sugars and 3% amino sugars, mainly composed of mannose and arabinose together with

small amounts of inositol .

In 1977, a serologically active and LAM-related D-arabino-D-mannan from Mtb was characterized with a 2:1 ratio of

arabinose:mannose. This arabinomannan consisted of α-(1 → 5)-linked D-arabinose residues and α-(1 → 6)- and

(1 → 2)-linked D-mannose residues. Further methylation and enzymatic degradation studies using Arthrobacter sp.

α-D-mannosidase and M-2 enzyme (D-arabinan hydrolase) provided evidence of the existence of short side chains

built up from α-(1 → 2)-D-mannosidic linkages that were attached to an α-(1 → 6)-linked mannan backbone .

In 1979, Weber and Gray  isolated an acidic arabinomannan from M. smegmatis and defined the presence of 56

arabinosyl and 11 mannosyl residues, 2 phosphates, 6 mono-esterified succinates, and 4 ether-linked lactate

groups. Subsequently, this acidic polysaccharide was separated into phosphorylated and non-phosphorylated
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forms with similar structures, wherein the main structural feature was the presence of chains of contiguous

arabinofuranosyl residues linked α-(1 → 5).

Close to 50 years since the first reported evidence of a polysaccharide containing arabinose, mannose, inositol,

and phosphorous in Mtb, in 1986, Hunter et al. structurally defined a family of major arabinose- and mannose-

containing phosphorylated lipopolysaccharides isolated from Mtb and M. leprae . LAM-B, as designated, eluting

off an ion exchange column, in addition to arabinose and mannose, also contained glycerol and a myo-inositol 1-

phosphate, as well as acylations with lactate, succinate, palmitate, and 10-methyloctadecanoate. Other studies

followed that provided details of the arabinose-to-mannose ratios and the presence of palmitic, stearic, and

tuberculostearic acids as the main fatty acids .

Chatterjee and colleagues, using enzymatic treatments, subsequently focused on the exact architecture of the

arabinan domain, establishing that its internal regions consist of branched 3,5-linked α-D-Araf units with stretches

of linear 5-linked α-D-Araf residues attached at both branch positions, whereas the non-reducing terminal

segments of the LAM arabinan domain consist of either of the two arrangements, Ara : β-D-Araf-(1 → 2)-α-D-Araf-

(1 → 5)-α-D-Araf-(1 → 5)-α-D-Araf → or Ara : [β-D-Araf-(1 → 2)-α-D-Araf-(1 → ]  → (3 and 5)-α-D-Araf-(1 → 5)-α-

D-Araf →  (Figure 2). Two subsequent studies by Chatterjee and colleagues further refined the LAM structure.

The first focused on describing the structural environment of the PI anchor, showing clearly the presence of the 1-

(sn-glycerol-3-phospho)-D-myo-inositol-2,6-bis-α-D-mannoside unit, indistinguishable from that derived from

phosphatidyl-myo-inositol dimannoside (PIM ). The same study also demonstrated that the C-6 position of inositol

is the site of attachment of the mannan core of LAM, which consists of an α(1 → 6)-linked backbone with several

α(1 → 2)-side chains . In a parallel study, Chatterjee and colleagues also demonstrated that the termini of LAM

from virulent Mtb strains, unlike those from attenuated Mtb strains, are extensively capped with mannosyl (Manp)

residues, either with a single α-D-Manp, a dimannoside (α-D-Manp-(1 → 2)-α-D-Manp) or a trimannoside (α-D-

Manp-(1 → 2)-α-D-Manp-(1 → 2)-α-D-Manp). Thereby, the functionally important so-called mannose-capped LAM

or Man-LAM was identified (Figure 3).

Figure 2. Schematic representation of ManLAM from Mtb. The antiLAM monoclonal antibodies (mAbs) CS-35,

A194-01, and CHCS9-08 are shown to react with the LAM arabinan terminal arrangements (Ara  and Ara ,
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respectively). These three mAbs are widely used in immunoassays for TB diagnosis. The cartoon is based on a

screening of 12 synthetic arabinan glycoconjugates by Dr. Todd Lowary . In order to identify which motifs of LAM

are being recognized by anti-LAM antibodies, an exhaustive digestion of LAM with commercially available α-

mannosidase (derived from Jack Beans) is performed. This digestion removes the mannose caps of LAM (depicted

as grey hexagons). An additional digestion using an endo-arabinanase (in-house isolated from Cellulomonas)

releases arabinan fragments from the D-arabinan domain, mainly Ara , Ara , and Ara  fragments. These enzymatic

digestions allowed the identification of the Ara  and Ara  motifs as the ones being recognized by monoclonal

antibodies against LAM and were used in the development of TB diagnosis downstream.

[26]

4 5 6

4 6



Collected Thoughts on Mycobacterial Lipoarabinomannan | Encyclopedia.pub

https://encyclopedia.pub/entry/52595 5/14

Figure 3. Dominant arabinan termini of Mtb lipoarabinomannan from culture. Only non-reducing ends are shown.

The terminal structures evolved after extensive enzymatic degradation of LAM followed by liquid chromatography

with tandem mass spectrometry (LC/MS-MS) analyses . Abbreviations: Ara = D-Arabiniose, Man = D-Mannose,

Suc = Succinates.

3. Evolution of LAM Structural Studies across Species

Essentially, LAM throughout contains four structural domains: a mannosylated phosphatidyl myo-inositol (PI)

anchor, a D-mannan core, a D-arabinan domain, and different capping motifs that contribute to species and strain

diversity . The mannan core consists of a chain of α-(1 → 6)-linked mannopyranose (Manp) residues, some

of which are modified by the addition of α-(1 → 2)-linked Manp motifs, usually, but not always, as a single residue.

An arabinan, composed of solely D-arabinofuranose (Araf) residues, is attached to the non-reducing end of the

mannan core . Capping motifs can be added at specific positions contributing to intra- and inter-species

structural variability . Fast-growing mycobacterial species predominately produce AraLAM (uncapped LAM) or

PILAM (phosphoinositol capped, as defined for M. smegmatis) . Slow-growing mycobacteria like Mtb and M.

leprae produce LAM with α-(1 → 2)-linked Manp capping residues, giving a molecule referred to as ManLAM .

Within the Mtb complex group, variations regarding primarily the degree of terminal mannose capping present in

ManLAM can range between 40–70% . Some fast-growing and/or non-pathogenic mycobacteria also

produce ManLAM; however, these differ in the Man content of the capping motifs. In addition to Manp capping,

ManLAM from strains of the Mtb complex group also contains a unique residue –MTX on the terminal Manp caps

.

The extreme heterogeneity in LAM is evident from the broad diffuse band observed on a SDS-polyacrylamide gel

electrophoresis (PAGE) analysis of LAM and LM  and its capacity to be separated in different isoforms , as

well as from several recent matrix-assisted laser desorption/ionization—mass spectrometry (MALDI-MS) studies,

which provided an indication of the mean distribution of true molecular mass. It has been shown that native LAM

from M. bovis BCG and Mtb gives a broad peak centered at 17.3 kDa before deacylation and 16.7 kDa after

deacylation, with a reported size distribution range of ±4 kDa depending on the studied strains . With recent

advances in MS instrumentation, a peak centered at m/z 14439.921, providing a molecular mass of approx. 15 kDa

for LAM, has been reported (Chatterjee et al., personal communication) (Figure 4).
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Figure 4. MALDI-TOF analysis of LAM from Mtb. The mass spectrometry (MS) was done on Bruker ultrafleXtreme

matrix-assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS), indicating a molecular mass for

ManLAM of approximately 15 kDa. Heterogeneity in mass of 162 m/z corresponds to a hexose and 100 m/z

corresponds to succinates.

4. Biological Properties of Mtb LAM

Mtb LAM was widely studied in the 1990s. Studies started to reveal the immunological properties of LAM, initially

as a potential candidate for ELISA-based diagnosis of TB and leprosy , as well as its capacity to inhibit the

activation of macrophages, among other immunological features .

Early data published include LAM-induced abrogation of T-cell activation ; inhibition of various IFN-γ-induced

functions including macrophage microbicidal and tumoricidal activity ; scavenging of potentially cytotoxic oxygen

free radicals ; inhibition of protein kinase C activity ; and evocation of a large array of cytokines associated

with macrophages such as TNF , GM-CSF, IL-1α, IL-1β, IL-6, and IL-10 . In 1991, Chan and

colleagues provided the first evidence of the role of Mtb LAM in downregulating macrophage effector functions by

scavenging potentially cytotoxic oxygen free radicals, inhibiting protein kinase C activity, and blocking the

transcriptional activation of IFN-γ inducible genes . Related to the use of LAM by Mtb to recognize and infect

host cells, it has been reported that both the mannose receptor (MR) and DC-SIGN in phagocytes recognize and

bind to LAM, and this binding can result in efficient internalization of Mtb to its intracellular niche within host cells 

.

Of the many biological properties that Mtb ManLAM has exhibited, one has led us to understand how critical this

molecule is for the persistence of Mtb within host cells. First, Schlesinger and colleagues showed that ManLAM is

recognized by macrophages . This finding was later supported by others . Subsequently, Deretic and others
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showed the capacity of Mtb ManLAM to block phagosome acidification , and later, Schlesinger and colleagues

showed how Mtb exploits the ManLAM/MR route  to gain entry into macrophages and survive , potentially

generating the perfect niche for survival and subsequent immune responses deriving into granuloma formation and

thus, contributing to the persistence of Mtb in a latent stage in the host.

5. LAM as a Diagnosis Biomarker for TB Disease

Mtb LAM represents up to 15% of the bacterial mass . This molecule is firmly but non-covalently

attached to the inner membrane and extends to the exterior of the cell envelope , where it interacts as a potent

virulence factor modulating host immune responses . Importantly, the linear terminus Ara  (β-D-Araf-(1 → 2)-α-

D-Araf-(1→5)-α-D-Araf-(1 → 5)-α-D-Araf) (Figure 2) and a branched terminus Ara : ([β-D-Araf-(1→2)-α-D-Araf-

(1-)  → 3, and →5]-α-D-Araf-(1→5)-α-D-Araf) (Figure 2) are shown to be the epitopes recognized by anti-LAM

monoclonal antibodies (mAb) .

LAM has been validated to be present in variable concentrations in sputum, serum, and urine . In recent

years, several laboratories including ours have made significant advances toward developing urinary LAM-based

diagnostics for active TB . A point-of-care (POC) test that readily diagnoses active TB would reduce

diagnostic delays, interrupt transmission with appropriate therapy, and address many of the current gaps in global

TB control (Stop TB Partnership in collaboration with Imperial College London). The development of sensitive POC

methods to detect LAM in non-invasive samples such as urine using immunoassays is currently stagnant due to

the suboptimal sensitivity of the assays. Current methods are also limited in applicability to TB diagnosis only in

people living with HIV and severe disease . However, there are studies showing that LAM can be also

detected in urine from active TB cases without HIV co-infection . Recently, as an alternative to urine, groups

have focused their attention on other non-invasive samples such as exhaled breath condensate (EBC), in which

ManLAM seems to be present in significant amounts .
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