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Inspired by nature, significant research efforts have been made to discover the diverse range of biomaterials for

various biomedical applications such as drug development, disease diagnosis, biomedical testing, therapy, etc.

Polymers as bioinspired materials with extreme wettable properties, such as superhydrophilic and

superhydrophobic surfaces, have received considerable interest in the past due to their multiple applications in

anti-fogging, anti-icing, self-cleaning, oil–water separation, biosensing, and effective transportation of water. Apart

from the numerous technological applications for extreme wetting and self-cleaning products, recently, super-

wettable surfaces based on polymeric materials have also emerged as excellent candidates in studying biological

processes. 
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1. Extreme Wetting Surfaces Inspired by Nature and Their
Applications in Biomedicine

For various biomedical uses, analysis, practical cell culture biomedical devices, and lab-on-one-chip systems may

be used directly on bioinspired surfaces with intense weaving functionality. This segment provides new advances in

the platforms that are bioinspired.

1.1. Cell Configuration for Studying Cellular Interactions

The topology and chemistry of surfaces are very dependent on protein adsorption and attachment to cells. With

patterned superhydrophilic and superhydrophobic surfaces , cell interactions have been

thoroughly investigated. Piret et al. noted the selective adhesion of Chinese hamster ovary K1 cells to

micropatterns on a surface of a superhydrophobic area . Likewise, Ishizak’s research team demonstrated that

physicochemical properties of surface (e.g., robustness, weight resistance) influence cell interactions and cell–cell

adhesion . Specifically, the mouse 3T3 fibroblast cells adhered to the superhydrophilic areas immediately after

seeding, while the cells scarcely adhered to superhydrophobic planes. The preference for protein absorption was

due to the variation in cell attachment in superhydrophobic areas. The cultured cells modified their shapes and

directions of adhesion selectively, based on the distance between superhydrophilic areas. Moreover, there was

direct contact between cells in adjacent locations under a designated cell gap of 250 μm cell–cell. In terms of

tissue and organism growth in distinct but neighboring compartments, multiple-cell-type cultivation proved to be

important for imitating and analyzing different biological actions, such as intercellular connectivity and cell

signaling. Multiple cell patterning forms were applied to a porous, hydrophilic/hydrophobic boundary substratum by
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Efremov et al. . These hydrophilic substrates with a superhydrophobic border were developed in two stages:

firstly, a hydrophilic nanoporous layer of the polymer was generated through a UV polymerization reaction.

Afterward, the hydrophilic polymer coating was placed over a hydrophobic, photographic material. With a

photomask, the UV was radiated again to make the superhydrophobic boundaries. The resulting surface was used

in a reciprocal culture medium through pre-patterned cell co-cultivation for cell migration and signaling. The

movement of MLTy-mCherry and HeLa-GFP cell lines through the thin, superhydrophobic periphery to different

geometries was tracked within three days of co-culture. Cell movement was avoided by the thin boundary and

could be utilized without intermingling to cultivate different types of cells correctly. At the same time, Wnt proteins

were also used for the cell signaling process, a crucial class of proteins issued by the association of border areas.

Precisely, the Wnt ligand was cultured that expressed zebrafish fibroblast Pac-2 cells that neighbored each pattern

without direct cell interaction. In the tissue’s extracellular space, the proteins migrated independently without any

interaction with the cell. Interactions between cell–cell and cell–biomaterial on flat, 2D surfaces have been

extensively studied, but experiments have been more useful in 3D, as micro-environments are best imitated in vivo

. In hydrophilic, patterned, superhydrophobic substrates between cells and polymers, Salgado et al.

 analyzed 3D interactions. UV/ozone irradiation was carried out by a superhydrophobic PS substrate using a

square-patterned photomask. By comparing wettability in several 3D hydrogel sizes, the hydrophilic patterns could

be repositioned (Figure 1a(i)). Fibroblast, L929, and MC3T3-E1 pre-osteoblast cells were employed for testing 3D

cell–hydrogel interactions. Among 24 various hydrogels, alginate (Alg) with various amounts of chitosan (Chi),

hyaluronic acid (HA), gelatin (G), and collagen (Coll) were combined. The cytotoxicity of various compositions of

hydrogel (total 24) was studied for 24 h (Figure 1a) and 5 μL of cell-mixed polymer/crossline solutions was

deposited on the substratum. Followed by cell cultivation for 24 h, all the materials were evaluated for cell

quantification and cell viability and assessed for cell metabolic activity. The fluorescence imaging studies of live

(green) and dead (red) cells in hydrogels, after 24 h of culture, are shown in Figure 1b. Dead cells were

comparatively low in a 40% Alg containing HA/G mixture but high in a 40% Alg–Coll mixture. It was observed that,

for L929 fibroblast cells, 70% of the Alg hydrogels containing HA and Coll and hydrogels containing Chi

demonstrated high and low viability. For Coll- and HA-style hydrogels with 70% Alg, L929 cells were of high viability

but with low compatibility. Additionally, even though the bone native tissue and pre-bone (osteoid) represent the

most abundant protein structure, the presence of Coll enhanced pre-osteoblast cell viability.
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Figure 1. (a) (i) 3D hydrogel array of patterned hydrophilic marks; (ii) pictures before and after immersion in culture

medium for 24 h; (b) fluorescence imaging of live (green) and dead (red) cells after cell culture for 24 h using 24

diverse hydrogels. Reprinted with permission from . Copyright 2012 Oxford University Press.

1.2. Functional 3D Cell Spheroids

Cell culture in 3D conditions makes it possible to study interactions between the cell and extracellular matrix (ECM)

more easily. Particularly, 3D cell spheroids offer cells with larger micro-environments in vivo . Moreover, they

also hold significant interest due to improved therapeutic capacities relative to cells grown on two-dimensional

substrates. Traditionally, with classical dish cultivation, the hanging drop technique, and spinner flask culture 

, 3D cellular spheroids have been developed. By regulating their cell size and viability, hanging drop cultures

can be associated with the hydrophilic patterned superhydrophobic surface . Employing mussel-inspired

adhesive polymer pDA , Lee et al. performed photolithography on the fluorosilane-coated superhydrophobic

substrate to acquire the wettability-patterned surface. The hanging drop technique was employed for culturing rat

islet cells (ICs) and human mesenchymal stem cells (MSCs) on the pDA-patterned surface. The active surface

acquisition of 3D MSC spheroids increased the secretion of its vascular endothelial growth factor (VEGF) to an

approximately 300% higher level compared to the level reached by the spinner flake culture. IC spheroids were

also shown to improve glucose stimulus sensitivity by about 200%. In contrast with those cultivated with the

technique of hanging drops on traditional Petri dishes, the uniformity, feasibility, and functionality of spheroid cells

were increased. Such observations indicate that, by increasing cell–cell behavior, a spherical gout form increases

cell–cell and cell–matrix interactions. Thus, it is helpful on superhydrophobic surfaces without hydrophilic

architecture for hanging drop spheroid culture. The superhydrophobic, surface, 3D micro-environments

dramatically decrease the cell cultivation media volume and avoid any soil contact. Neto and co-workers used a

superhydrophobic surface patterned in micro-morphology for spheroid cultivation . By applying force, the

superhydrophobic surface of PS was primed and the surface was dented into sharp tips. Water droplets displayed

a strong CA on the indentation as the water was fixed into the indentation. The preserved superhydrophobic

features contributed to the creation of spherical water droplets on the surface and contact areas between the

droplets and reduction of the surface. On the superhydrophobic surface of the mechanically modified PS, 3D

spheroids were developed (Figure 2a(i)). Droplets-based cells continued, suspended from the indented base,

despite the surface being rotated upside-down. Using different cell densities or drug concentrations, a cell spheroid

combinatory study was performed and established using gravitational power. Mouse-immortalized lung fibroblast

cell line L929 droplets were dispensed and cultured at two densities of thirty and forty thousand cells/droplet on the

inverted superhydrophobic surface. The compound was subjected to varying levels of anti-cancer drug doxorubicin

after 24 h of cell culture to determine the dose-dependent reaction of the tumor spheroid. In Figure 2a(ii,iii), the

results of drug screening achieved from the stained fluorescent images are demonstrated. The cell ratios in both

spheroids between live (green) and dead (red) decreased as the dose decreased. Additionally, such ratios were

larger at the lower density of spheroid. In comparison, dead cells collected mainly in the inner spheroid (Figure

2a(iii)) since it was more difficult to determine nutrients and waste releases in larger and denser spheroids.
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Figure 2. (a) (i) Sticking drop culture on a superhydrophobic surface with hollow shapes; (ii) the ratios of life

(green) and dead (red) cells after introducing different doxorubicin concentrations; (iii) fluorescence imaging of

L929 spheroids in doxorubicin-treated spheroids. (b) (i) Culture medium droplets on Si NWs coated with Pd and

exposed with H  at various tile angles; (ii) post four days of culture at different cell densities and medium sizes,

live/dead cell staining, size distribution, and VEGF protein secretion from spheroids. (n = 3, **: p < 0.01 compared

to the density of 1.25 × 10  cells/mL, ##: p < 0.01 compared to the density of 2.5 × 10  cells/mL). Reprinted with

permission from . Copyright 2014 John Wiley and Sons.

The superhydrophobic surface with reversible adhesion properties was demonstrated by Seo et al.  to reduce

cell–interface interactions during hanging drop spheroid culture. The gas-triggered adhesion to the hydrogen-

sensitive surface of the superhydrophobic surface is shown in Figure 3c,d by deposition of Pd to Si NWs. Pd-

coated Si NW arrays are adhesion swapping features that, using an attachment system without patterns, are

specifically applied to 3D spheroid forming. The adhesion switch properties of Pd-coated Si NW arrays are directly

applied to 3D spheroid formation using the hanging drop technique without any patterning process. Due the

adhesion properties of Pd-coated Si NW arrays after exposure to H , droplets of variable sizes containing human

adipose-derived stem cells (hADSC) were adhered and maintained under ambient air, as shown in Figure 2b(i).

Figure 2b(ii) indicates the viability of spheroids after four days of culture and the controllability of spheroid size by

different cell densities (1.25, 2.5, and 5.0 × 10  cells/mL) and different medium volumes (10, 15, and 20µL). It was

demonstrated that the secretion of VEGF from hADSC spheroids depended on the size of the spheroids. Improved

cell density paracrine behavior and culture medium volume adaptation were observed in hADSC spheroids. A

decreased distribution and substantially improved VEGF secretions of hADSC spheroids were observed relative to

traditional spinner bottles and Petri dishes. In contrast to the Petri-dish strategies, this drop-out strategy increased

the efficacy of hADSC, paracrine seclusion, mitochondrial metabolic processes, apoptosis, and ECM. Additionally,

an angiogenic potential was assessed as an operative assay for hADSC spheroids. The conditioned media

obtained in Pd-coated Si NW pads from hADSC spheroids increased the proliferation of human endothelial cells

and accelerated capacity formation.
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Figure 3. (a) Photoswitchable adhesion with UV and visible light excitation; (b) dynamic adhesion capability of LCP

film; (c) (i) the volume of Pd layers deposited expanded on arrays of Si NWs under air and hydrogen atmosphere,

(ii) the angles of contact confirming superhydrophobicity under similar conditions; (d) pictures of moving water

droplets under similar conditions. Reprinted with permission from [107,108]. Copyright 2012 the Royal Chemical

Society (RSC) and copyright 2013 John Wiley and Sons.

1.3. Biomedical Devices

In clinical applications for implantable biomedical instruments, the adhesion of harmful biomedical materials to the

surface must be avoided. Thus, if the implanted system requires prevention of inflammation or infection in

cell/tissue culture systems, an antibacterial surface property is highly desirable. Different methods for the

development of antibacterial surfaces have been reported . A superhydrophobic

surface inspired by biological structures has become a favorable antibacterial surface due to the anti-fouling

capability that could circumvent surface bacteria from adhering . Privett et al.  also produced

xerogels which contained silica colloids, fluoroalkoxysilane, and silane backbone. The superhydrophobic

characteristics of the coated surface of the xerogel were facilitated by fluorinated silica nanoparticles for low

surface energy and a hierarchical structure. The antibacterial properties of the xerogel were described by a

conventional cell flow assay using Gram-negative Pseudomonas aeruginasa (P. aeruginasa) and Gram-positive

Staphylococcus aureus (S. aureus). Microbial adhesion to the superhydrophobic xerogel surface was decreased by
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98% and 99% relative to the blank area. The antibacterial properties of surfaces with Gram-negative bacteria were

reported by Feschauf et al. , using superhydrophobic polycarbonate (PC) and polyethylene (PE) and PS

substrates. Using a basic casting method, the superhydrophobic PC, PE, and PS surfaces were acquired from a

micro/nanostructured PDMS casting. A total of 10 μL of E. coli was cultured to test standardized PS, PC, and PE

surface anti-bacterial properties. Then, a bacterial E. coli solution was cultivated for 24 h (Figure 4). Fewer than

100 colony-forming units (CFUs) were observed on PS- and PE-based superhydrophobic surfaces after 24 h,

whereas no bacterial growth was observed on the PC substrate. Moreover, 100 CFUs were observed each for flat

PS and PC, while 25,800 were observed for PE. These findings suggest that, relative to flat surfaces,

superhydrophobic surfaces efficiently reduce adhesion of bacteria to <0.1%. Because of the wide variety of anti-

fouling properties, liquid slippery surfaces often have tremendous potential for various medical applications in

comparison to different liquids and environmental pressures. Over a wide range of temperatures, heats, surface

tensions, and multiple conditions they retain repellency . Epstein’s research team  showed the importance of

a slippery surface to avert binding biofilm. On a smooth, slippery surface, the bacteria were presented, which could

not be anchored on the mobile interface compared to solid interface. Irrespective of the principal solid, porous

structure, separate biofilm accumulations were stopped by a slippery surface over more than a week. In contrast to

common, polyethylene glycol, anti-fouling surfaces, it also decreased bacterial attachment by 96–96.6%. To

minimize the morbidity and mortality caused by thrombosis, Leslie et al.  used slippery properties on tubing and

catheters of indwelling medical devices. They developed a tethered perfluorocarbon coating (TP) at the top of the

tube followed by its coating with a liquid perfluorodecalin (LP) surface to attain anti-thrombogenic and non-

adhesive surfaces. The thin, moving liquid layer permitted the tethered-liquid perfluorocarbon (TLP) surface to

resist fluids effectively also after the surface contacted an immiscible liquid, such as blood (Figure 4b(i)). The

surface was cleaned almost immediately from a new, whole human droplet of blood (Figure 4b(ii)). Compared to

the uncoated surfaces of acrylic and polysulfone, they showed (Figure 4c(i)) a decrease in the adhesion and

polymerization of the TLP surface. The slithery condition also decreased the adhesion of platelets in contrast to

uncoated surfaces. These findings demonstrated that the smooth surface decreased fibrin polymerization and

inhibited adherence, as well as plates activation. To realize an arteriogenic shunt for in vivo analysis of the anti-

thrombogenic effect of the slippery surface, polycarbonate connectors, TLP-treated polyurethane cannulae, and

medicinal, polyvinyl chloride (PVC)-based heart pulmonary perfusion tubes were studied. Compared with control

tubes, Figure 4c(ii) displays polymer TLP-treated tubes that minimize occlusive thrombosis post flow for 8 h. Such

noteworthy, anti-fouling properties can, therefore, be used in several additional applications.
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Figure 4. (a) The growth of bacteria on structured and smooth PS and PC substrates; (b) (i) the smooth surfaces

after coating with tethered-liquid perfluorocarbon (TLP) showing blood repellency; (ii) the images of the slippery

surface showing slipping of a blood droplet; (c) (i) fluorescence images of fibrinogen on polysulfone or acrylic

surfaces in the presence and absence of TLP coating; (ii) the images of polycarbonate connectors, polyurethane

cannulae, and PVC tubing in the presence and absence of TLP coating. Reproduced from  under CC BY

license. Reprinted with permission from . Copyright 2014 Nature Publishing Group.

1.4. Lab-on-a-Chip Based on Open Channel Droplets

In terms of fast penetration into the sample fluid, energy consumption and low samples, quick chemical and

biological reactions , such as microfluidic droplet systems, have many advantages

compared to traditional closed-channel, microfluidic applications. A gout-based microfluidic system  was

introduced on a superhydrophobic, porous oxide membrane by You et al. To direct the water droplets, they inserted

hydrophilic PDAs on superhydrophobic surfaces. A square pDA for more complex droplet handling was also

planned in the middle of the pDA micro-line. A fluid droplet traveled along the micro-lines by momentum, stopping

at the square, which showed adequate surface energy to catch the droplet. Such an immobilized droplet was

pushed downwards by inserting a second droplet. With this droplet capacity to combine, preparation of

monodispersed gold nanoparticles and rapid, structural protein changes were introduced. For chemical and

biological organic solvent-based reactions and experiments, however, superhydrophobic hydrophilic patterned

surfaces could not be employed. For compatibility with different solvents, a pDA, micropatterned slippery surface

was introduced by You et al. . To attain a fluid-guiding feature, PDA micro-lines were engineered on a

nanostructured surface before lubricant infiltration. Multiple solvents, for example, gasoline, dimethyl sulfoxide,

water, dimethylformamide, 1,2-dichloroethane, n-hexane, toluene, acetone, and diesel oils, were compatible with

the produced slippery device. Any solvent with a surface tension larger than that of the lubricant could be depleted

by gravitational force along the micro-lines by the infused lubricant located on top of the pDA micro-line. They

implemented the square shape pattern for the gout mixture in the pDA micro-line intersection with the same

aforementioned process (Figure 5a(i)) . The chemical reactions using an organic solvent were carried out on the

slippery surface of the pDA micro-model due to the broad compatibility of solvents. The organic reaction was

performed between benzaldehyde and ortho-phenylenediamine to create 2-arylbenzimidazole. The droplet of THF

solution composed of two reactants, as well as a THF, was dropped on the oily surface, as shown in Figure 5a(ii).

By fast and homogeneous mixing, the reaction rate (70.3%) improved relative to the standard bulk reaction using a

vial (52.1%). Furthermore, the surface was cleared and used again after ultrasonication.
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Figure 5. (a) (i) The movement of the droplet and its mixing on a slippery system fabricated with pDA (ii) THF-

based chemical reaction on the slithery surface; (b) (i) regulation of motions of water (movement, mixing, and

examination) on PDMS substrate appended with micropillar arrays; (ii) the dimple structure’s SEM picture; (iii)

water droplet image on the substrate of PDMS; (c) (i) the measurement system for SERS; (ii) formation of minor,

interfering lipidoid-RNA complex; (d) SERS measurement spectra (in situ/ex situ) for R6G/Ag NP droplet mixture

and an evaporated R6G/Ag NP droplet; (e) fluorescence imaging and flow cytometry studies of transfected GFP-

Hela cells. Scale bar-200 µm (n = 3, ** p < 0.01, compared to the conventional group). Reprinted with permission

from . Copyright 2014 American Chemical Society (ACS) and copyright 2015 Nature Publishing Group.

Decorated droplet-handling systems only had minimal control over fluid processes, for instance, start and stop

motion. Newly developed by Seo et al., the superhydrophobic PDMS substrate contained micropillar arrays for

programmed water droplet manipulation (Figure 5b(i)) . When applying the substrate, the vacuum pressure on

the suspended PDMS substratum was expanded (Figure 5b(ii)) to form a local, pale structure. Decreased

performance and superhydrophobicity of the micropillar array was observed (Figure 5). In the interface region

between the substrate and water droplets, the dimple arrangement could be used to monitor the motions of water

droplets individually. The curvature was positive at the boundary of the pillars adjacent to the PDMS, and the width

was greater than the flat substratum distance. The lower number of micropillars decreased the adhesiveness of the

water and allowed isolation from the droplet substratum. The flow of water drops on the substratum also could not

be conveniently regulated through the vacuum dimple structure; however, the moving direction could also be

readily built without any additional pattern. Surface-enhanced Raman spectroscopy (SERS) analyzed the

substrate’s analytical efficiency (Figure 5c(i)). Rhodamine 6G (R6G) in situ/ex situ SERS tests were carried out at

different concentrations (Figure 5d). In situ, individual water droplets consisting of Ag nanoparticles and R6G

molecules were determined by the SERS and combined at the Raman detection point before the collection of data.

The lower limit of detection for R6G/Ag NP was calculated to be 10  M, owing to disseminated R6G and Ag

molecules in a mixed droplet. The mixture was evaporated and its components condensed to resolve this detection

[61][62]
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cap within an area of a certain length. The R6G molecules were also observed at 10  M because of the

aggregation of Ag NPs and R6G for ex situ SERS calculation. To manufacture regular, intracellular, gene transfer

nanoparticles, they used the platform. In the lipid (ND98) complexes with green fluorescent protein (GFP) siRNA, a

basic method of mixing and blending outlets was used (siGFP). On the platform, homogenous mixing of droplets

and the efficiency of transfections to GFP-HeLa cells from the platform’s lipidoid-siRNA complexes (78.8% ± 0.5%),

in contrast to classical manual pipetting mixing (70.0%), could be achieved, as shown in Figure 5e.

1.5. Fluorescent Intelligence Sensing Based on Bioinspired Super-Wettable
Patterns

In analytical chemistry, fluorescence is a popular detection method. In a light-absorption process, fluorescence is a

luminescence process induced by an appropriate molecule under light excitation. Fluorescence intensity is

measurable at specific excitation/emission wavelengths. Under dilute concentrations, the amplitude of fluorescence

would be equal to the fluorophore concentration. Several groups recently focused their efforts on the fabrication of

bioinspired super-wettable microchips for profound fluorescence-based detection. These examples will be

highlighted in the following text: mainly their features such as anchoring and enriching capabilities for biosensing.

The analytes were stored in microdroplets that were enclosed inside the superhydrophilic microwells with the

superhydrophobic substrate serving as a wall to keep the microdroplets from spreading. Huang and co-workers

recorded sensitive detection of metal ions by integrating the fluorescence technique, as seen in Figure 6a, by

using the anchoring capacities of bioinspired micro-patterns. A hydrophilic, photonic-crystal, colloidal microchip was

created by assembling hydrophilic, photonic-crystal, colloidal particles on a hydrophilic–hydrophobic patterned

substrate. The developed microchip improved fluorescence detection in multiple channels selectively, as well as

performed highly effective testing under discriminative conditions using twelve metal ions . Such a well-

performing, patterned microchip demonstrates a modern use of bioinspired microchips in detection and their crucial

role in the development of sophisticated fluorescent devices and advanced discriminative analysis.

−15
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Figure 6. Super-wettable fluorescence finding. (a) High-performance metal-ion recognition using a bioinspired

photonic-crystal microchip; (b) ultra-trace DNA identification using super-wettable microchips; (c) example of free

prostate-specific antigen (f-PSA) detection on homogeneous super-wettable microchips in a schematic diagram;

(d) a green super-wettable miRNA biochip built on TiO  substrate. Reprinted with permission from .

Copyright 2013, 2015 Wiley-VCH and copyright 2018 Elsevier B.V.

The “analyte solution concentration in the hydrophilic region increases as the microdroplet evaporates, which is

ideal for capturing the analyte for ultra-trace detection. In Figure 6b , ultra-trace fluorescent DNA detection is

demonstrated by using the super-wettable microchips’ enrichment ability. UV-based etching of the octadecyl

trichlorosilane (OTS), functionalized, superhydrophobic, nanodendritic Si coating through a photomask and

deposition of candle soot were employed to create this super-wettable microchip. The analyte was captured from

an extremely diluted solution by constant evaporation and emission signals were eventually intensified to attain the

recognition of DNA with a low detection limit (10  M). Aggregation-induced emission enhancement (AIEE) and

evaporation-induced enhancement were accomplished concurrently by incorporating AIE molecules onto a super-

wettable microchip . As a result of the synergetic enhancement, a miRNA biosensor with enhanced efficiency

(detection limit-1 pM, linear range-10  to 10  M) can be achieved. The super-wettable microchip’s overall

fluorescence strength was just half that of industrial hydrophilic or hydrophobic glass substrates. Due to the coffee

rings, however, unequal signal propagation occurred on the hydrophilic and hydrophobic surfaces, possibly limiting

repeatability. The sensitive and precise identification of biomarkers included excellent spots in the superhydrophilic

microwells. The coffee-ring effect could be reduced in super-wettable microchips, and the homogeneity of

superhydrophilic spots could be increased, as seen in Figure 6c . The superior Marangoni effect in the

superhydrophilic spot and the reduced outward flow, owing to the large hydrodynamic flow resistance of 3D Si

nanodendritic structure, contributed to this phenomenon. Figure 6d  displays the sustainable super-

wettable biochips for miRNA identification. The nanodendritic TiO  nanostructure was made hydrothermally on

FTO-coated glass substrates, then modified with OTS and exposed to UV light via a photomask. By using its

anchoring and enrichment abilities, super-wettable fluorescence detection provides a sensitive technique that could

be especially useful in biomarker sampling, diagnosis, and disease monitoring. However, the need for large

instruments and complicated biomolecule fluorescent labeling can restrict their use in point-of-care (PoC)

detection. Integration of bioinspired micropatterns with compact fluorescence instruments for point-of-care research

will be a potential priority.

Aside from the above-discussed papers, recent years have witnessed several other polymeric-materials-based,

super-wettable surfaces for applications in diverse research areas . To summarize,

some common polymeric-material-based, super-wettable surfaces utilized for various applications are illustrated in

Table 1.

Table 1. Some common polymeric materials used in the fabrication of super-wettable surfaces.

2
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Polymeric Materials Fabrication Method Application Wetting Property Reference

Hyaluronic acid (HA) Phase separation
Tissue

engineering
Hydrophobic Ref 

Polyethylene (PE)
Shrink-induced
mold method

Antibacterial Superhydrophobic Ref 

Polycarbonate (PC)
Shrink-induced
mold method

Antibacterial Superhydrophobic Ref 

Polystyrene (PS)
Electrohydrodynamics

(EHD)
Tissue

engineering
Superhydrophobic Ref 

1H,1H,2H,2H-perfluoro-decyl
trichlorosilane (PFDTS)

Wet chemical
self-assembly

Conductive
stainless steel

Superhydrophobic Ref 

Poly(vinyl alcohol) (PVA) Solvent evaporation Petal effects
Hydrophilic-

Superhydrophobic
Ref 

Poly(p-xylylene) (PPX) Soft lithography Self-cleaning Superhydrophobic Ref 

Polydimethyl siloxane
(PDMS)

Soft lithography
Water

adhesion
Hydrophilic-

Superhydrophobic
Ref 

Polydopamine (PD) Soft lithography
Water

adhesion
Hydrophilic-

Superhydrophobic
Ref 

Polytetrafluoroethylene
(PTFE)

Sol-gel strategy
Water

adhesion
Superhydrophobic Ref 

Polyvinylpyrrolidone (PVP) Sol-gel strategy Self-cleaning Superhydrophobic Ref 

Polyamide (PA) Dip-coating method
Water and oil

separation
Superhydrophobic Ref 

Silane-modified polymer
(SMP)

Spray-coating method
Water and oil

separation
Superhydrophobic Ref 
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