
Multi-Microgrid Architectures | Encyclopedia.pub

https://encyclopedia.pub/entry/40622 1/14

Multi-Microgrid Architectures
Subjects: Engineering, Electrical & Electronic

Contributor: Diptish Saha , Najmeh Bazmohammadi , Juan C. Vasquez , Josep M. Guerrero

Several issues of individual microgrids (MGs) such as voltage and frequency fluctuations mainly due to the

intermittent nature of renewable energy sources’ (RESs) power production can be mitigated by interconnecting

multiple MGs and forming a multi-microgrid (MMG) system. MMG systems improve the reliability and resiliency of

power systems, increase RESs’ utilization, and provide cost-efficient power to the consumers. 

microgrid cluster  energy management system  multi-microgrid architectures

1. Introduction

In recent years, the electricity grids have undergone a big transformation due to the integration of a large number

of distributed energy resources (DERs). Since the power from renewable-based DERs is highly dependent on

environmental factors such as solar irradiance, ambient temperature, and wind velocity, energy storage systems

(ESSs) such as batteries are commonly deployed to smooth out power fluctuations . According to the U.S.

Department of Energy, an MG is defined as a group of interconnected loads and DERs within clearly defined

electrical boundaries that acts as a single controllable entity with respect to the grid. An MG can connect and

disconnect from the grid to enable it to operate in both grid-connected and islanded modes . Standalone MGs

can provide power to rural areas, and off-grid systems, where it is either difficult, expensive, or impossible to

establish a connection with the main power system. Some examples are electric ships , more electric aircraft

, space MGs, and satellite systems .

The conventional grid is a central power dispatch system where large power generation systems supply the loads

through long power transmission and distribution lines. The central power generation makes the dispatch system

unreliable as any disturbance or fault might result in the disconnection of many critical loads. Upon the introduction

of the MG concept, the conventional power system will be transformed into a distributed and more flexible power

system, where MGs can be automatically isolated from the main grid to prevent propagating disturbance or

affecting the normal operation of other parts of the system. However, these self-governing distributed systems

demand the development of an advanced control system. The control of MGs consists of the control of power

converters, power-sharing among the distributed generator (DG) units, controlling the voltage and frequency (at the

point of common coupling (PCC)) for grid-connected MGs, and charging and discharging of ESSs, among others.

Furthermore, the MG controller has to be intelligent enough to make decisions about the switch over from (to)

islanded to (from) grid-connected modes of operation. A significant amount of work has been performed by

researchers to establish the required control infrastructure for the operation of MGs. The control of different types

of power converters for coordinating the smooth operation of an MG is discussed in . The optimal operation of
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an MG is achieved in  by optimizing the usage of DG units and power exchange with the main grid. In , load

balance among three phases of a four-wire MG is maintained using single-phase converters connected among the

phases. In grid-connected mode, the voltage and frequency of the MG are dictated by the main grid and

maintained within the permissible range . On the other hand, islanded MGs become vulnerable to blackouts due

to the fluctuations in power from RESs and loads, thereby voltage and frequency disturbances . Droop-based

coordinated control of the RESs and ESSs is discussed in . Other aspects of MG control are addressed in 

.

The reduced number of synchronous generators and the massive incorporation of inverter-based RESs resulted in

the reduced inertia of power systems  and the instability and vulnerability of MGs. To resolve these issues,

instead of always connecting an MG to the main grid, the interconnection of MGs as a multi-microgrid (MMG)

network is suggested as a promising solution to enhance the stability and power quality of the power system 

. The Interconnection of MGs to form an MMG system facilitates more-efficient energy utilization, especially

renewable energy, through sharing of resources among MGs . As a result, the reliability of individual MGs and the

entire power system will be increased. The connections among MGs can be also altered to further improve the

reliability and stability of MGs . However, there are practical challenges that need to be appropriately dealt

with. The MMG concept also enhances the resiliency of MGs. In the case of low-probability, high-impact extreme

events such as natural disasters, an MMG system is capable of supporting the operation of the main grid, as well

as its MGs to maintain their main functionalities. If the power source of an MG is lost, other MGs can supply the

critical loads of the damaged MG for a while or until the damaged MG is restored to normal operation .

Furthermore, from a top-down point of view, in case the electricity system is undergoing a faulty operation, the

functional sections of the grid can be sectionalized to restore the electricity supply. The sectionalized system can

act as an MMG by synchronizing different sections for coordinated operation . In an MMG system, the

interconnection of closely located MGs can reduce the power transmission distances and, thereby, the power

losses. The reduced transmission losses and more-efficient utilization of power resources through power sharing

can help to provide more cost-efficient power to consumers. MGs in an MMG system might be of various types

such as residential, commercial, or industrial MGs with different load profiles. The complementary nature of the

generation and load profiles of MGs in an MMG system can support their efficient collaboration and power sharing,

thereby enhancing RESs utilization . Along with the many benefits provided by MMGs, various challenges and

complexities are involved, which can be classified into operation management, control, protection, and

communication issues. As there might be multiple stakeholders and mixed ownership in an MMG system, data

privacy and financial issues might also impose new challenges. In addition, the interoperability of multi-vendor

controllers and standardization process difficulties need to be addressed .

2. Multi-Microgrid Architectures

There are different ways in which MGs can be connected to form an MMG system. While in a single MG, RESs,

ESSs, and loads are connected to a single PCC, MMGs have multiple PCC and PCC locations. Different names
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are also used for MMGs including nested MGs , networked MGs , interconnected MGs , and coupled MGs

. However, all of them convey the same concept of interconnecting single MGs with each other.

The most-common way of forming an MMG system is directly connecting the MGs to the main grid. In this

architecture, different MGs are directly connected to the main grid, and there is no direct power line among MGs.

This architecture is in the form of a star and is known as a radial topology  and parallel-connected MGs with an

external grid , as shown in Figure 1a. In the grid-connected mode, the EMS is comparatively simple to implement

as there is only one single power line connecting the MGs to the main grid. An MG with an energy surplus/shortage

can sell/buy its energy to/from the main grid . In case of any disturbance in the upstream network, MGs can

disconnect from the main grid and switch to the islanded mode. However, there will also be no connection to other

MGs . Expanding and connecting new MGs to this architecture is relatively straightforward, if the MMG control

and communication system can support new MGs. As there are no direct power lines among the MGs, the energy

exchange takes place through the main grid power line. Hence, the main grid power line should have the required

capacity to support the power flow to an MG and also in between the MGs. Sharing of energy among the MGs in

this architecture may create power congestion and thermal stress in the power line of the main grid. The operator

has to ensure the safe operation and maintain the reliability of the network buses and the main grid .

Figure 1. Different architectures of MMGs. (a) Radial topology , parallel-connected MGs with an external grid .

(b) Daisy-chain topology . (c) Serial MGs on a single distribution feeder . (d) Interconnected MGs on multiple
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distribution feeders  (e) Mesh topology . (f) Grid series-interconnected MGs . (g) Ring formation . (h)

Mixed parallel-series connection .

To have a direct power exchange capability between the MGs, along with their connection to the main grid, the

adjacent MGs are directly connected in a daisy-chain topology , as shown in Figure 1b. This topology enables

an MG to exchange power with the adjacent MGs (in the case it is allowed by the system regulators), in addition to

the main grid, which increases the reliability of the MMG system. However, the technical challenges of coordinating

different MGs need to be addressed. A similar topology named parallel MGs on a single distribution feeder is

discussed in , where two adjacent MGs are connected by an exclusive power line and are also connected to the

main grid. Among several serially connected MGs, if only one of them is connected to the main grid, the

architecture is called a serial MG on a single distribution feeder , as shown in Figure 1c. Moreover, in an

interconnected MG on multiple distribution feeders architecture, serially interconnected MGs are separately

connected to different distribution feeders, as shown in Figure 1d . The implementation of EMS is comparatively

complex in these architectures as the power can be transferred from both the main grid and the neighboring MGs

. These MMG architectures have various operating switches, so the configuration of the MMG and MMG

clusters can change dynamically . Therefore, the EMS may have to consider several architectures while

scheduling the energy exchange for the stability of the MMG and the grid . The MGs’ operations in these MMGs

are strongly coupled, and their energy schedules are more connected . These MMG architectures are more

reliable than the radial topology as the MGs will have several alternatives for power exchange in case of faults or

natural calamities.

To further increase the energy exchange capability among MGs in an MMG system, all MGs in a radial topology

are connected by direct power lines, as can be seen in Figure 1e, which is called a mesh topology . A similar

topology named grid series interconnected MGs  (Figure 1f) is also introduced in which “n” MGs can be

interconnected. This MMG system must maintain the required voltage and frequency, as it is not connected to an

external grid. In this topology, the faulty section of the MMG system can be disconnected, and external support to

the sub-clusters in the MMG system is not completely lost. Therefore, this topology can have better performance

during the off-grid operation mode. Instead of connecting all the MGs, the MGs can also be connected to form a

ring, as shown in Figure 1g, which is called ring formation . In this architecture, the power exchange between two

MGs may take place through inter-mediator MGs, and the power line connecting the MGs must be capable of

transferring the required energy. In , a topology named mixed parallel-series connection (Figure 1h) is presented,

which is a combination of parallel MGs on a single distribution feeder and serial MGs on a single distribution feeder

. In this topology, there is the possibility of power exchange among the connected MGs if the MMG is not

connected to the main grid. The MMGs that can operate in both grid-connected and islanded modes can form a

cluster of MGs, which are called MG clusters , as shown in Figure 1h. These MG clusters have at least one

connection to the main grid  and can connect to the main grid at the time of need. In the mesh topology , and

grid series-interconnected MGs , the reliability of the MMG system increases due to the ability of direct power

exchange between the MGs, but at the expense of the increased establishment cost of power lines and control

complexity. However, there is the risk of fault propagation among MGs. Thus, a trade-off can be made between

reliability, establishment cost, and control complexity. In the mesh architecture, the MMG system can disconnect
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faulty MGs to restrict the voltage–frequency-related disturbances to the faulty MG and ensure the reliable operation

of the rest of the MG cluster.

It is worth mentioning that the MMG system does not always maintain the same architecture, but rather, the MMG

architecture encounters frequent changes due to the connection and disconnection of MGs from the MMG system

or the MG cluster from the main grid. These connections and disconnections are due to disturbances or support

the MGs’ needs in an MMG system. In this sense, advanced robust control techniques are required to establish

energy management, power sharing, disturbance and fault handling, and uncertainty mitigation in MMGs. Table 1

presents a review of the commonly used MMG architectures.

Table 1. Review of MMG architectures reported in the literature.

3. AC, DC, and Hybrid AC–DC Interconnection Technologies

Different MMG architectures are depending on the line and interconnection technologies . The line technology of

an MMG system can be AC, DC, or AC–DC . The AC transmission and distribution system is a very mature

technology and is widely used in residential, commercial, and industrial areas. Over the years, AC three-phase

systems have shown a higher efficiency and lower cost compared to single-phase systems . Load sharing among

MGs in an AC MMG system is discussed in . On the other hand, DC MGs eliminate synchronization

problems, the usage of bulky transformers, and harmonic and power quality issues while facilitating the parallel

operation of DERs. In the case of offshore renewable energy technology such as offshore wind farms, high voltage

MMG Architecture Ref.

Radial

Daisy-chain

Mesh

Ring

Serial

Mixed parallel-series connection

Serial MGs on a single
distribution feeder

Parallel MGs on a single
distribution feeder

Interconnected MGs on multiple
distribution feeders
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DC (HVDC) transmission is widely used . DC MGs are interconnected to form DC MG clusters in , and their

stability is analyzed considering the effect of constant power loads and interconnecting line impedance. Load

sharing with voltage improvement of two interconnected DC MGs is discussed in . Energy exchange in a DC

energy network connecting multiple houses is investigated in  using a peer-to-peer architecture. A fast fault

detection–protection scheme with simultaneous control of interconnected DC MGs is designed in . To exploit

the benefits of both AC and DC technologies, various hybrid AC–DC MGs are also investigated by researchers.

The EMS and optimal scheduling strategy of a hybrid AC–DC MMG system are discussed in , respectively.

Regarding the interconnection technology, the authors of  classify the MMG architectures based on the

interconnection of MMGs using either conventional power transformers or power converters. A conventional power

transformer can be used to interconnect two AC MGs, while a power converter must be used in the case of

interconnecting a hybrid MG. Power transformers are more reliable and less expensive than power converters and

provide electrical isolation. However, power transformers are less controllable for the energy and power-sharing

requirements of an MMG system . In this case, the power exchange between the MGs or an MG and the main

grid cannot be directly controlled. Power exchange takes place depending on the generated power of the MGs or

the main grid at the PCC . Furthermore, the voltage and frequency of one MG may be dictated by the main grid

or other MGs . Hence, the MG becomes vulnerable to disturbances at the main grid or other MGs. On the other

hand, power electronic converters are more expensive, but provide higher flexibility for the control and power

management of MMGs . The MG’s controller can send control signals to the local interconnecting power

converters for appropriate power exchange, thereby providing the capability to regulate power generation and

power exchange independently in an MG . Solid-state transformers or isolated converters can provide the

required electrical isolation while using power converters for interconnecting MGs.
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