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Late Pleistocene–Holocene rocks from the western part of Cocos-Nazca Spreading Centre (C-NSC) include

ferromanganese crusts that elucidate the geochemistry and mineralogy of a deep-sea geological setting.

Geochemical, mineralogical and petrological signatures indicate complex formation influenced by mild

hydrothermal processes. These crusts consist mostly of mixed birnessite, todorokite-buserite, and Mn-(Fe)

vernadite with traces of diagenetic manganates (asbolane), Fe-oxides and oxyhydroxides or hydrothermally

associated and relatively pure Mn-oxyhydroxides (manganite). The average Mn/Fe ratio is 2.7, which suggests

predominant mixed hydrogenous-early diagenetic crusts with hydrothermal influences. The mean concentrations of

three prospective metals (Ni, Cu and Co) are low: 0.17, 0.08 and 0.025 wt %, respectively. The total content of

ΣREY is also low, and ranges from 81 to 741 mg/kg (mean 339 mg/kg).
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1. Introduction

Despite more than 40 years of research on marine ferromanganese (Fe-Mn) crusts, knowledge remains limited and

new discoveries provide added geochemical and mineralogical data on formation mechanisms, from either

Exclusive Economic Zones (EEZ) , or from waters outside national jurisdictions . Recently, high-

resolution analyses of critical minerals and elements have focused on crusts formation to distinguish hydrogenetic

and diagenetic origins . In addition, numerous studies have addressed the identification and distribution of critical

metals, such as rare earth elements and yttrium (REY), cobalt or platinum in mineral phases . Studies of

crusts from the South China Sea, Western Pacific Ocean and Canary Island Seamount Province note that light

REY are preferentially adsorbed onto δ-MnO  (vernadite), while heavy REY are associated with amorphous Fe-

oxides and hydroxides, mainly FeOOH. Several authors concentrate on growth rate estimation and crustal

formation stages reconstruction , while others focus on mineral resource assessment at regional and local

scales, with particular emphasis on critical elements (e.g., Co, Te, REY) . The Be isotope age models indicate

continuous growth from ocean substrate to surface at Takuyo-Daigo Seamount, NW Pacific, with a fairly constant

growth rate of 2.3–3.5 mm/Myr during the past 17 Ma .
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Marine Fe-Mn deposits are traditionally divided into three genetic classes: hydrogenetic, diagenetic and

hydrothermal . Additionally, mixed-signature crusts have been found . Hydrogenetic Fe-Mn crusts form by

precipitation from cold ambient bottom waters, or by a combination of hydrogenetic-hydrothermal input in areas of

hydrothermal venting, such as oceanic spreading centres, volcanic arcs, and hotspot volcanoes . Hydrogenetic

Fe-Mn crusts contain subequal amounts of Fe and Mn, enriched in Co, Pb, Te, Bi, and Pt relative to concentrations

in lithosphere and sea water . These Fe-Mn crusts usually form at hard rock substrates throughout the oceanic

basins, including flanks and summits of seamounts, ridges, plateaus, and abyssal hills, at depths between 400 and

7000 m where rocks have been swept clean of sediments at least intermittently for millions of years. In some

instances, the Fe-Mn crusts form oxyhydroxide-rich pavements up to 250 mm thick (mean thickness varying within

2–4 cm), mostly on rock outcrops, or coatings on talus debris . The thickest crusts occur in a depth interval of

800 to 2500 m and indicate high concentrations of critical metals . Some studies set this depth in the anoxic

zone at depths of about 1 to 1.5 km . Crust nucleation is extremely slow, with mean growth rates of 1–5

mm/Myr. Mn-oxide hydrothermal crusts, sometimes called “stratabound”, precipitate directly from low temperature

hydrothermal fluids, and usually grow significantly at a more rapid rate, even up to 1600–1800 mm/Myr .

A number of relatively thin Fe-Mn crusts were unexpectedly discovered and recovered during the April–May 2018

Cocos-Nazca cruise (R/V Sally Ride, Leg 1806), recovered in areas close to the regional spreading centre axis. A

few samples were recognized as Fe-Mn crust. The aim of this contribution is to provide detailed geochemical and

mineralogical study of initial Fe-Mn crusts collected from the western portion of Cocos-Nazca Rift (C-NR), with

analysis to determine their formation conditions. 

2. Ferromanganese Crust Occurrences in the Cocos-Nazca
Ridge

The Galapagos Spreading Center (GSC) located east of the Cocos-Nazca (C-N) region, at approximately 98° W,

extensively studied in 1970s and 80s, provide detailed geophysical and geochemical data of the eastern GSC flank

. Here, increased heat-flow and associated hydrothermal activity was discovered in a number of localities,

especially near seafloor mounds . Deep Sea Drilling Project (DSDP) Leg 70 provided Fe-Mn crusts with

included encrustations of hydrothermal mounds and sedimentary sections . These localities occur within a

zone of high biological productivity associated with sedimentation processes . Sediment thickness consists of

foraminifer-nannofossil oozes interbedded with hydrothermally associated nontronite-rich pelagic and siliceous

foraminifer-nannofossil oozes  that increase rapidly and regularly away from the spreading axis. In some

cases, the uppermost sediment layer was covered by hydrothermal Fe-Mn crusts and metal-rich muds, especially

within intensely oxidized greenish nontronite-rich association . Based on magneto- and biostratigraphy, the

hydrothermal activity in the eastern GSC started about 300 ka .

The Fe-Mn crusts recovered during Leg 70 consist of brownish-black, flat to saucer-shaped angular fragments,

ranging from 10–40 mm width to 1–5 mm thickness. Surface textures were finely granular, though some samples

showed botryoidal-concretionary growth patterns . Several fragments were brittle, with freshly broken pieces

showing in cross-section dense metallic luster, locally micro-laminated and ubiquitously covered with a thin (<2

[16][17] [10]

[18]

[19]

[20]

[21]

[22][23][24]

[25]

[26]

[27][28][29]

[30][31][32]

[31]

[33][34]

[31]

[35]

[31]



Mineralogy and Geochemistry of Ferromanganese Crusts | Encyclopedia.pub

https://encyclopedia.pub/entry/23352 3/6

mm) coating of soft and porous black Mn-oxides. X-ray diffraction analyses indicated the presence of intermixed

todorokite-buserite and birnessite, with lesser unidentified amorphous Fe-Mn phases. Varentsov et al. 

suggested that the Leg 70 crusts formed in a less oxidized environment, possibly the result of growth at a slightly

subsurface level or influenced by discharged hydrothermal plume solutions. Additionally, admixtures of dioctahedral

Fe-rich smectite (nontronite), Fe-mica (celadonite), quartz, feldspars, zeolites (phillipsite), calcite, goethite and

halite were observed. U-Pb dating estimated that the Fe-Mn crusts formed on mound tops at about 20–60 ka .

Moore and Vogt  first studied C-N hydrothermal and hydrothermally altered hydrogenetic manganese crusts and

described 2–6 cm thick intervals from two sites near the Galapagos spreading axis. Those samples were

characterized by low Fe/Mn and  Th/ U ratios, as well as deposition rates several orders of magnitude faster

than more common hydrogenetic nodules, with estimated age of these crusts given as 2400 to 300 ka . A few

hydrothermal and mixed hydrothermal-hydrogenetic crusts were discovered around hydrothermal vents in the

eastern part of GSC during the GARIMAS project (Galapagos Rift Massive Sulphides) during the middle 1980s

aboard the R/V Sonne. These samples were dominated mainly by Mn (up to 82% as MnO) and some were

characterized by increased Fe content (45–55% as Fe O ). These iron-rich samples were composed mainly of

amorphic Fe-oxides, birnessite and clay minerals (mainly montmorillonite and illite) . REE concentration

in GARIMAS samples was low and ranged from 1.3–9.0 mg/kg. The samples are likely younger than previously

described crusts, since the collection sites are west of C-NSC at a distance near (16 km) to the spreading axis.
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