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Underground sewerage systems (USSs) are a vital part of public infrastructure that contributes to collecting wastewater or

stormwater from various sources and conveying it to storage tanks or sewer treatment facilities. A healthy USS with

proper functionality can effectively prevent urban waterlogging and play a positive role in the sustainable development of

water resources. Since it was first introduced in the 1960s, computer vision (CV) has become a mature technology that is

used to realize promising automation for sewer inspections.

Keywords: survey ; computer vision ; defect inspection ; condition assessment ; sewer pipes

1. Introduction

1.1. Background

Underground sewerage systems (USSs) are a vital part of public infrastructure that contributes to collecting wastewater or

stormwater from various sources and conveying it to storage tanks or sewer treatment facilities. A healthy USS with

proper functionality can effectively prevent urban waterlogging and play a positive role in the sustainable development of

water resources. However, sewer defects caused by different influence factors such as age and material directly affect the

degradation of pipeline conditions. It was reported in previous studies that the conditions of USSs in some places are

unsatisfactory and deteriorate over time. For example, a considerable proportion (20.8%) of Canadian sewers is graded

as poor and very poor. The rehabilitation of these USSs is needed in the following decade in order to ensure normal

operations and services on a continuing basis . Currently, the maintenance and management of USSs have become

challenging problems for municipalities worldwide due to the huge economic costs . In 2019, a report in the United

States of America (USA) estimated that utilities spent more than USD 3 billion on wastewater pipe replacements and

repairs, which addressed 4692 miles of pipeline .

1.2. Defect Inspection Framework

Since it was first introduced in the 1960s , computer vision (CV) has become a mature technology that is used to realize

promising automation for sewer inspections. In order to meet the increasing demands on USSs, a CV-based defect

inspection system is required to identify, locate, or segment the varied defects prior to the rehabilitation process. As

illustrated in Figure 1, an efficient defect inspection framework for underground sewer pipelines should cover five stages.

In the data acquisition stage, there are many available techniques such as closed-circuit television (CCTV), sewer

scanner and evaluation technology (SSET), and totally integrated sonar and camera systems (TISCITs) . CCTV-based

inspections rely on a remotely controlled tractor or robot with a mounted CCTV camera . An SSET is a type of method

that acquires the scanned data from a suite of sensor devices . The TISCIT system utilizes sonar and CCTV cameras to

obtain a 360° view of the sewer conditions . As mentioned in several studies , CCTV-based inspections are the

most widely used methods due to the advantages of economics, safety, and simplicity. Nevertheless, the performance of

CCTV-based inspections is limited by the quality of the acquired data. Therefore, image-based learning methods require

pre-processing algorithms to remove noise and enhance the resolution of the collected images. Many studies on sewer

inspections have recently applied image pre-processing before examining the defects .
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Figure 1. There are five stages in the defect inspection framework, which include (a) the data acquisition stage based on

various sensors (CCTV, sonar, or scanner), (b) the data processing stage for the collected data, (c) the defect inspection

stage containing different algorithms (defect classification, detection, and segmentation), (d) the risk assessment for

detected defects using image post-processing, and (e) the final report generation stage for the condition evaluation.

2. Defect Inspection

In this section, several classic algorithms are illustrated, and the research tendency is analyzed. Figure 2 provides a brief

description of the algorithms in each category.  In order to comprehensively analyze these studies, the publication time,

title, utilized methodology, advantages, and disadvantages for each study are covered. Moreover, the specific proportion

of each inspection algorithm is computed in Figure 3. It is clear that the defect classification accounts for the most

significant percentages in all the investigated studies.



Figure 2. The classification map of the existing algorithms for each category. The dotted boxes represent the main stages

of the algorithms.

Figure 3. Proportions of the investigated studies using different inspection algorithms.

2.1. Defect Classification

Due to the recent advancements in ML, both the scientific community and industry have attempted to apply ML-based

pattern recognition in various areas, such as agriculture , resource management , and construction . At present,

many types of defect classification algorithms have been presented for both binary and multi-class classification tasks.

2.2. Defect Detection

Rather than the classification algorithms that merely offer each defect a class type, object detection is conducted to locate

and classify the objects among the predefined classes using rectangular bounding boxes (BBs) as well as confidence

scores (CSs). In recent studies, object detection technology has been increasingly applied in several fields, such as

intelligent transportation , smart agriculture , and autonomous construction . The generic object

detection consists of the one-stage approaches and the two-stage approaches. The classic one-stage detectors based on

regression include YOLO , SSD , CornerNet , and RetinaNet . The two-stage detectors are based on region

proposals, including Fast R-CNN , Faster R-CNN , and R-FCN .

2.3. Defect Segmentation

Defect segmentation algorithms can predict defect categories and pixel-level location information with exact shapes,

which is becoming increasingly significant for the research on sewer condition assessment by re-coding the exact defect

attributes and analyzing the specific severity of each defect. The previous segmentation methods were mainly based on

mathematical morphology . However, the morphology segmentation approaches were inefficient compared to the

DL-based segmentation methods. As a result, the defect segmentation methods based on DL have been recently

explored in various fields.

3. Dataset and Evaluation Metric

The performances of all the algorithms were tested and are reported based on a specific dataset using specific metrics.

As a result, datasets and protocols were two primary determining factors in the algorithm evaluation process. The

evaluation results are not convincing if the dataset is not representative, or the used metric is poor. It is challenging to

judge what method is the SOTA because the existing methods in sewer inspections utilize different datasets and

protocols. Therefore, benchmark datasets and standard evaluation protocols are necessary to be provided for future

studies.

3.1. Dataset

3.1.1. Dataset Collection

Currently, many data collection robotic systems have emerged that are capable of assisting workers with sewer inspection

and spot repair. Table 1 lists the latest advanced robots along with their respective information, including the robot’s

name, company, pipe diameter, camera feature, country, and main strong points. Figure 4 introduces several

representative robots that are widely utilized to acquire images or videos from underground infrastructures. As shown in

Figure 4a, LETS 6.0 is a versatile and powerful inspection system that can be quickly set up to operate in 150 mm or
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larger pipes. A representative work (Robocam 6) of the Korean company TAP Electronics is shown in Figure 4b.

Robocam 6 is the best model to increase the inspection performance without the considerable cost of replacing the

equipment. Figure 4c is the X5-HS robot that was developed in China, which is a typical robotic crawler with a high-

definition camera. In Figure 4d, Robocam 3000, sold by Japan, is the only large-scale system that is specially devised for

inspecting pipes ranging from 250 mm to 3000 mm. It used to be unrealistic to apply the crawler in huge pipelines in

Korea.

Figure 4. Representative inspection robots for data acquisition. (a) LETS 6.0, (b) Robocam 6, (c) X5-HS, and (d)

Robocam 3000.

Table 1. The detailed information of the latest robots for sewer inspection.

Name Company
Pipe

Diameter

Camera

Feature
Country Strong Point

CAM160 (https://goolnk.com/YrYQob

accessed on 20 February 2022)

Sewer

Robotics

200–500

mm
NA USA

● Auto horizon

adjustment

● Intensity

adjustable LED

lighting

● Multifunctional

LETS 6.0

(https://ariesindustries.com/products/

accessed on 20 February 2022)

ARIES

INDUSTRIES

150 mm

or larger

Self-leveling

lateral

camera or a

Pan and tilt

camera

USA

● Slim tractor

profile

● Superior lateral

camera

● Simultaneously

acquire mainline

and lateral videos



Name Company
Pipe

Diameter

Camera

Feature
Country Strong Point

wolverine® 2.02
ARIES

INDUSTRIES

150–450

mm
NA USA

● Powerful

crawler to

maneuver

obstacles

● Minimum set

uptime

● Camera with

lens cleaning

technique

X5-HS (https://goolnk.com/Rym02W

accessed on 20 February 2022)
EASY-SIGHT

300–

3000 mm

≥2 million

pixels
China

● High-definition

● Freely choose

wireless and

wired connection

and control

● Display and

save videos in

real time

Robocam 6

(https://goolnk.com/43pdGA accessed

on 20 February 2022)

TAP

Electronics

600 mm

or more

Sony 130-

megapixel

Exmor 1/3-

inch CMOS

Korea

● High-resolution

● All-in-one

subtitle system

RoboCam Innovation4
TAP

Electronics

600 mm

or more

Sony 130-

megapixel

Exmor 1/3-

inch CMOS

Korea

● Best digital

record

performance

● Super white

LED lighting

● Cableless

Robocam 30004

TAP

Electronics’

Japanese

subsidiary

250–

3000 mm

Sony 1.3-

megapixel

Exmor

CMOS color

Japan

● Can be utilized

in huge pipelines

● Optical 10X

zoom

performance

3.1.2. Benchmarked Dataset

Open-source sewer defect data is necessary for academia to promote fair comparisons in automatic multi-defect

classification tasks. In this survey, a publicly available benchmark dataset called Sewer-ML  for vision-based defect

classification is introduced. The Sewer-ML dataset, acquired from Danish companies, contains 1.3 million images labeled

by sewer experts with rich experience. Figure 5 shows some sample images from the Sewer-ML dataset, and each image

includes one or more classes of defects. The recorded text in the image was redacted using a Gaussian blur kernel to

protect private information. Besides, the detailed information of the datasets used in recent papers is described in Table 2.

This research summarizes 32 datasets from different countries in the world, of which the USA has 12 datasets, accounting

for the largest proportion. The largest dataset contains 2,202,582 images, whereas the smallest dataset has only 32
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images. Since the images were acquired by various types of equipment, the collected images have varied resolutions

ranging from 64 × 64 to 4000 × 46,000.

Figure 5. Sample images from the Sewer-ML dataset that has a wide diversity of materials and shapes.

Table 2. Research datasets for sewer defects in recent studies.

ID Defect Type
Image

Resolution
Equipment

Number of

Images
Country Ref.

1
Broken, crack, deposit, fracture, hole,

root, tap
NA NA 4056 Canada

2

Connection, crack, debris, deposit,

infiltration, material change, normal,

root

1440 × 720–

320 × 256

RedZone

Solo CCTV

crawler

12,000 USA

3

Attached deposit, defective

connection, displaced joint, fissure,

infiltration, ingress, intruding

connection, porous, root, sealing,

settled deposit, surface

1040 × 1040

Front-facing and

back-facing

camera with a

185∘ wide lens

2,202,582
The

Netherlands

4

Dataset 1: defective, normal

NA NA

40,000

China
Dataset 2: barrier, deposit,

disjunction, fracture, stagger, water
15,000

5
Broken, deformation, deposit, other,

joint offset, normal, obstacle, water

1435 ×

1054–296 ×

166

NA 18,333 China

6

Attached deposits, collapse,

deformation, displaced joint,

infiltration, joint damage, settled

deposit

NA NA 1045 China
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ID Defect Type
Image

Resolution
Equipment

Number of

Images
Country Ref.

7
Circumferential crack, longitudinal

crack, multiple crack
320 × 240 NA 335 USA

8
Debris, joint faulty, joint open,

longitudinal, protruding, surface
NA

Robo Cam 6 with

a 1/3-in. SONY

Exmor CMOS

camera

48,274 South Korea

9
Broken, crack, debris, joint faulty, joint

open, normal, protruding, surface
1280 × 720

Robo Cam 6 with

a megapixel

Exmor CMOS

sensor

115,170 South Korea

10
Crack, deposit, else, infiltration, joint,

root, surface
NA Remote cameras 2424 UK

11
Broken, crack, deposit, fracture, hole,

root, tap
NA NA 1451 Canada

12 Crack, deposit, infiltration, root
1440 × 720–

320 × 256

RedZone  Solo

CCTV crawler
3000 USA

13 Connection, fracture, root
1507 × 720–

720 × 576

Front facing CCTV

cameras
3600 USA

14 Crack, deposit, root
928 × 576–

352 × 256
NA 3000 USA

15 Crack, deposit, root 512 × 256 NA 1880 USA

16 Crack, infiltration, joint, protruding
1073 × 749–

296 × 237
NA 1106 China

17 Crack, non-crack 64 × 64 NA 40,810 Australia

18 Crack, normal, spalling

4000 ×

46,000–3168

× 4752

Canon EOS.

Tripods and

stabilizers

294 China

19 Collapse, crack, root NA SSET system 239 USA

20

Clean pipe, collapsed pipe, eroded

joint, eroded lateral, misaligned joint,

perfect joint, perfect lateral

NA SSET system 500 USA

21 Cracks, joint, reduction, spalling 512 × 512
CCTV or Aqua

Zoom camera
1096 Canada
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ID Defect Type
Image

Resolution
Equipment

Number of

Images
Country Ref.

22 Defective, normal NA CCTV (Fisheye) 192 USA

23 Deposits, normal, root
1507 × 720–

720 × 576

Front-facing CCTV

cameras
3800 USA

24 Crack, non-crack 240 × 320 CCTV 200 South Korea

25 Faulty, normal NA CCTV 8000 UK

26 Blur, deposition, intrusion, obstacle NA CCTV 12,000 NA

27 Crack, deposit, displaced joint, ovality NA CCTV (Fisheye) 32 Qatar

29 Crack, non-crack
320 × 240–

20 × 20
CCTV 100 NA

30
Barrier, deposition, distortion, fraction,

inserted
600 × 480

CCTV and quick-

view (QV)

cameras

10,000 China

31 Fracture NA CCTV 2100 USA

32 Broken, crack, fracture, joint open NA CCTV 291 China

3.2. Evaluation Metric

The studied performances are ambiguous and unreliable if there is no suitable metric. In order to present a

comprehensive evaluation, multitudinous methods are proposed in recent studies. Detailed descriptions of different

evaluation metrics are explained in Table 3. Table 4 presents the performances of the investigated algorithms on different

datasets in terms of different metrics.

Table 3. Overview of the evaluation metrics in the recent studies.

Metric Description Ref.

Precision The proportion of positive samples in all positive prediction samples

Recall The proportion of positive prediction samples in all positive samples

Accuracy The proportion of correct prediction in all prediction samples

F1-score Harmonic mean of precision and recall

FAR False alarm rate in all prediction samples

True

accuracy

The proportion of all predictions excluding the missed defective images among the entire actual

images
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Metric Description Ref.

AUROC Area under the receiver operator characteristic (ROC) curve

AUPR Area under the precision-recall curve

mAP
mAP first calculates the average precision values for different recall values for one class, and

then takes the average of all classes

Detection

rate
The ratio of the number of the detected defects to total number of defects

Error rate The ratio of the number of mistakenly detected defects to the number of non-defects

PA Pixel accuracy calculating the overall accuracy of all pixels in the image

mPA The average of pixel accuracy for all categories

mIoU The ratio of intersection and union between predictions and GTs

fwIoU
Frequency-weighted IoU measuring the mean IoU value weighing the pixel frequency of each

class

Table 4. Performances of different algorithms in terms of different evaluation metrics.

ID
Number of

Images
Algorithm Task

Performance

Ref.

Accuracy (%) Processing Speed

1 3 classes Multiple binary CNNs Classification

Accuracy: 86.2

Precision: 87.7

Recall: 90.6

NA

2 12 classes Single CNN Classification
AUROC: 87.1

AUPR: 6.8
NA
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ID
Number of

Images
Algorithm Task

Performance

Ref.

Accuracy (%) Processing Speed

3

Dataset 1: 2

classes

Two-level hierarchical CNNs Classification

Accuracy: 94.5

Precision: 96.84

Recall: 92

F1-score: 94.36
1.109 h for 200

videos

Dataset 2: 6

classes

Accuracy: 94.96

Precision: 85.13

Recall: 84.61

F1-score: 84.86

4 8 classes Deep CNN Classification Accuracy: 64.8 NA

5 6 classes CNN Classification Accuracy: 96.58 NA

6 8 classes CNN Classification Accuracy: 97.6 0.15 s/image

7 7 classes Multi-class random forest Classification Accuracy: 71 25 FPS

8 7 classes SVM Classification Accuracy: 84.1 NA

9 3 classes SVM Classification
Recall: 90.3

Precision: 90.3
10 FPS

10 3 classes CNN Classification

Accuracy: 96.7

Precision: 99.8

Recall: 93.6

F1-score: 96.6

15 min 30 images

11 3 classes
RotBoost and statistical

feature vector
Classification Accuracy: 89.96 1.5 s/image

12 7 classes Neuro-fuzzy classifier Classification Accuracy: 91.36 NA

13 4 classes Multi-layer perceptions Classification Accuracy: 98.2 NA

14 2 classes Rule-based classifier Classification

Accuracy: 87

FAR: 18

Recall: 89

NA
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ID
Number of

Images
Algorithm Task

Performance

Ref.

Accuracy (%) Processing Speed

15 2 classes OCSVM Classification Accuracy: 75 NA

16 4 classes CNN Classification

Recall: 88

Precision: 84

Accuracy: 85

NA

17 2 class Rule-based classifier Classification

Accuracy: 84

FAR: 21

True accuracy:

95

NA

18 4 classes RBN Classification Accuracy: 95 NA

19 7 classes YOLOv3 Detection mAP: 85.37 33 FPS

20 4 classes Faster R-CNN Detection mAP: 83 9 FPS

21 3 classes Faster R-CNN Detection mAP: 77 110 ms/image

22 3 classes Faster R-CNN Detection

Precision: 88.99

Recall: 87.96

F1-score: 88.21

110 ms/image

23 2 classes CNN Detection
Accuracy: 96

Precision: 90
0.2782 s/image

24 3 classes

Faster R-CNN

Detection

mAP: 71.8 110 ms/image

SSD mAP: 69.5 57 ms/image

YOLOv3 mAP: 53 33 ms/image

25 2 classes Rule-based detector Detection

Detection rate:

89.2

Error rate: 4.44

1 FPS

26 2 classes GA and CNN Detection
Detection rate:

92.3
NA

27 5 classes SRPN Detection
mAP: 50.8

Recall: 82.4
153 ms/image
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ID
Number of

Images
Algorithm Task

Performance

Ref.

Accuracy (%) Processing Speed

28 1 class CNN and YOLOv3 Detection AP: 71 65 ms/image

29 3 classes DilaSeg-CRF Segmentation

PA: 98.69

mPA: 91.57

mIoU: 84.85

fwIoU: 97.47

107 ms/image

30 4 classes PipeUNet Segmentation mIoU: 76.37 32 FPS

As shown in Table 4, accuracy is the most commonly used metric in the classification tasks 

. In addition to this, other subsidiary metrics such as precision , recall , and

F1-score  are also well supported. Furthermore, AUROC and AUPR are calculated in  to measure the

classification results, and FAR is used in  to check the false alarm rate in all the predictions. In contrast to

classification, mAP is a principal metric for detection tasks . In another study , precision, recall, and F1-

score are reported in conjunction to provide a comprehensive estimation for defect detection. Heo et al.  assessed the

model performance based on the detection rate and the error rate. Kumar and Abraham  report the average precision

(AP), which is similar to the mAP but for each class. For the segmentation tasks, the mIoU is considered as an important

metric that is used in many studies . Apart from the mIoU, the per-class pixel accuracy (PA), mean pixel accuracy

(mPA), and frequency-weighted IoU (fwIoU) are applied to evaluate the segmented results at the pixel level.
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