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Various scopes are suggested for the utilization of red mud to maintain a sustainable environment. The potential use of

red mud covers the valuable metal recovery that could emphasize the use of red mud as a resource. Red mud could act

as reduced slag in the metallurgical field for the extraction of minerals and metals for upscale application. Although many

studies have revealed the potential utilization of red mud, most of them are only limited to a lab-scale basis. 
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1. Introduction

Red mud is one of the by-products generated in the aluminum industry from the ore of bauxite during the calcination

process for the extraction of aluminum dioxide. The term “red mud” is established and derived from the two words of “red”,

which refers to the color, and “mud”, which refers to the waste generated after the alumina extraction from the bauxite ore,

by a calcination process. Generally, 2.5–3 kg of red mud is produced in each 1 kg of Al production from the bauxite

industry . As the global production of aluminum is approximately 64 million tons, this result in 160 million tons of red mud

to dispose of. The current method of red mud disposal is to simply pump it into ponds or dry up the red mud with a special

liner . In both approaches, a large amount of land is used and ultimately the land should be maintained properly, rather

than disposing of the product as waste to the surrounding area, causing serious environmental issues and health hazards.

The alkaline nature of red mud and dried-up dust disposable to the environment could be minimized by spraying water on

the dry red mud powders. Furthermore, the alkaline nature of red mud inhibits the vegetation growth in those areas, thus it

must be corrected by adding acidic flux before its disposal into the surroundings. Given all these environmental

implications, it would be appropriate to think of a new use for red mud. “Waste is a resource if we use it. Otherwise, it is

waste if we waste it” . Thus, the red mud residue, after the extraction of the minerals, could be considered as a potential

building material for the construction of roads, landfill sites, and building materials. Recently, a combination of red mud–fly

ash composite could find application in the preparation of geopolymers as an alternative material for the construction

industry .

The recovery of critical raw materials from red mud involves many benefits including environmental, social, financial,

economic, and technological benefits . The content of metals such as Ti, Si, Fe, Na, and Al in red mud is 2–12%, 1–

9%, 14–45%, 1–6% and 5–14% respectively. Apart from representing a huge solution in the construction sector, when

present in a large quantity, red mud as a resource opens up various possibilities for the extraction of minerals and ions

such as the major elements Fe, Ti, Mn, Al and Ca, Na, Si, Cr, Mn, V, La, Sc, Y. Rare earth elements (REE) such as Ce

(102 mg/kg), La (56 mg/kg), Sc (47 mg/kg), Nd (45 mg/kg), Sm (9 mg/kg) are also valuable elements present inside red

mud. REE are the most important critical raw materials for the European Union . Red mud can be also considered as

sintered ceramics for electroceramic materials .

In powder technology, red mud could be considered as resource for the recovery of metals such as Fe, Ti, Mn, Na, K .

Simultaneously, red mud could be used as a coating material for various composites against harsh environments and

high-temperature sintering, against wear and corrosive behavior . Unlike the recovery of metal ions, which will

certainly not be the main business for the red mud, it could also act as the main component for construction and road fill

materials . Fly ash with acidic nature inhibits agglomeration of the volatilization of heavy metals at low temperatures

within the red mud combination .

In Figure 1 the combination of various technologies that could be implemented for a complete utilization strategy is shown.

The comprehensive utilization of red mud as a resource opens up in various sectors such as red mud-based geopolymers

in the construction and metal extraction industries. Synergetic utilization of red mud emerges as flue gas in the

geopolymer industry sector for an alternative binder in cement material. The exploitation of these potential techniques, for

metal extraction from red mud, is subordinate to the establishment of a small plant, near the aluminum industry, for

resource utilization . The reduction of red mud and fly ash mixtures proved the formation of reduced slag in the
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sintering process during lab-scale experiments. Based on the latter, it is possible to design a synergetic utilization for the

red mud/fly ash mixture. It has been seen that the hazardous heavy metals could be recovered as alloy from the reduced

slag . Therefore, this environmentally friendly co-reduction process could be implemented as one sound solution for

red mud and fly ash, leading to complete utilization of the resources, thus representing a zero-waste technology . The

optimized parameters for the reduction process were chosen as 20 wt.% fly ash with 80 wt.% red mud, at a temperature

of 1100 °C for 2 h. The sintered slag contained CaO, SiO , Al O , and FeO, as well as a glass phase, which is similar to

ground-granulated blast-furnace slag and supports broad future applications. It has also been seen that the treatment of

the red mud’s alkaline nature with an additive for surface modification will enhance the utilization on an upscale basis 

. The major and minor elements of red mud are quantified in Table 1.

Figure 1. Scheme representing the technologies implemented in red mud for its complete utilization in various sectors.

Table 1. Quantification of major elements (wt.%) and minor elements (Conc. Mg/kg) of red mud.

Red Mud Compositions

Major Elements Wt.% Minor Elements Concentration (mg/kg) Refs.

Fe O 30–60 U 50–60

Al O 10–20 Ga 60–80

SiO 3–50 V 730

Na O 2–10 Zr 1230

CaO 2–8 Sc 60–120

TiO 8.50 Cr 497

P O 0.25 Mn 85

MgO 0.10 Y 60–150

K O 0.06 Ni 31

– – Zn 20

– – La 0.1–1%

– – Th 20–30

The composition shows the presence of heavy irons and minerals of Fe, Si, and Ti in the major quantity. Red mud could

be considered as bricks, road surface material, and in the cement industry with potential use for building applications.

However, this approach is limited due to the alkaline nature of the material. The alkaline nature of red mud is reduced by

the acidic counterpart of fly ash, generating the neutral nature of the composite. The latter could be the most significant

solution for the vastness of the problem, but careful consideration is required for this application. After the Al content, Fe

represents the second-largest amount of metal that is separated by a magnetic separator. The nonmagnetic part of the

residue can be considered as a construction material. Furthermore, some researchers searched for producing steel and

cement from red mud . Additionally, the recovery of Al, caustic soda, and lime could be used as catalyst for enhancing

the Bayer process for increased Al production. However, despite the invaluable outcomes obtained from all techniques

associated with red mud utilization, they are not practically suitable to use for recycling large amounts of red mud
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(currently 160 million tons annually ). The amount or iron in red mud is the largest, which, when disposed with red mud

annually, represents a waste of metal . Thus, metal recovery from red mud opens a wide field for potential utilization as

resource.

2. Sources and Utilization of Red Mud
2.1. Relevant Sources for Literature Review

A broad range of literature sources, dating from 1991 to 2021, in the areas of red mud and red mud composites were

reviewed for this article. The databases searched for this literature survey include various sources such as MDPI, Scopus,

Science Direct, Google Scholar, and Springer. Articles, conference proceedings, data, reviews, chapters, and books of

similar topics were filtered using search terms such as “red mud”, “composite”, “mineral”, “microstructure evolution”,

“metal ion recovery”, “mineralogical characteristics of the materials”. Section 1 in the introduction includes all the potential

previous studies in this area. Section 2 includes various types of red mud and composites with potential applications. The

basic and advanced application of red mud and composite is followed in Section 3 with emphasis on some recent

literature surveys. Section 4 compares the data with the present scenario through an exhaustive literature survey. Figure 2

displays the total publication from 2010–2021 in the area of red mud that consider it as a source of metal and ions.

Figure 2. Total publications as function of year for red mud considered as source of ions (data collected from Web of

Science).

2.2. Utilization of Red Mud as Metal Resource

Although researchers highlight that red mud is a large contributor to the construction sector, it is generally recognized as

waste material. The term “waste” creates, both psychologically and from a media viewpoint, an obstacle in the application

areas. Thus, replacing the term “waste” with “resource” could add significant interest in the extraction of minerals and their

use. In this work, an investigation was carried out for review in the area of utilization of red mud as a source of metallic

ions and resource material. Red mud, added with various weight percentages of fly ash to neutralize the acidity,

undergoes the sintering process for the conversion into a reduced slag material. This sintered product could act as a basic

resource for the extraction of metal ions and as a major by-product for the mineral industry. Figure 3 illustrates the red

mud utilization from the as-received stage towards the final stage for industrial utilization.

Figure 3. Schematic flow sheet on the iron, alumina, and slag for recovery of various metals.

The dry red mud undergoes magnetic and non-magnetic separation that follows up the smelting process for iron recovery.

Non-magnetic parts undergo the leaching process for Al recovery. Figure 3 portrays the flow sheet of various types of red
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mud utilization. Preliminary treatment involves the magnetic separations of bulk iron parts from the red mud. Accordingly,

the magnetic and non-magnetic parts undergo different treatment in the further steps for iron recovery on the acceptable

norms. If the magnetic parts are non-acceptable, they undergo smelting for iron recovery. The non-magnetic parts

undergo leaching for alumina recovery and the residue undergoes slag recovery as the utilization of the major parts. A key

point to benefit in terms of human resources and the economy could be the establishment of a plant for the beneficiation

of red mud as resource alongside the bauxite industry. Particularly, to avoid transportation costs, the waste utilization

facility processes and tools such as electric arc furnace, sintering of red mud, and leaching facility should be present in

the proximal areas of the aluminum industry. One of the innovative processes in the production of pig iron is a by-product

from reduced red mud by the carbothermal reduction process. The various process and active areas in which red mud

can be treated can be divided into major and minor activities (Figure 4). Red mud can be used as a primary resource in

the construction industry, for example, as bricks and other suitable materials for making houses, or as material for

pavement. Red mud could be used in the industrial sector of iron recovery or metal extraction and smelting for the by-

product of pig iron and calcium titanium-rich compounds for recovery of titanium. Finally, it can be used in the

carbothermal reduction process for iron recovery, which could be a possible step for steel making. The rest of the residual

red mud could be considered as the reductant for alumina recovery. Major use in the areas of construction and landfill

opens the application of red mud in combination with metal recoveries such as Al, Fe, and its integrated combination

towards the reduction process for the steelmaking. Integrating the red mud with other materials could improve its use in

synergetic utilization .

Figure 4. The various areas of red mud utilizations.

Foaming ceramics are emerging as a new group of materials that could improve performance that could act as energy-

saving materials . Sintering and thermal plasma open the possibility of the synthesis of energy-saving materials by

generating porosity in the sintered material . In these cases, sintering is one of the effective processes of using

carbo-thermal reduction inside the furnace that facilitates the formation of sintered slag. The quantity of fly ash content

(wt.%) reduces the mixture of red mud and fly ash that undergoes chemical and physical reduction processes as a

function of sintering temperature. The mineralogical evolution in the sintered product and the end-product was examined

to confirm the presence of minerals and ions at the end of the process.

2.3. Sources of Metal Ions

In this article, an effort was made to create a review in the area of utilization of red mud as a source of metal ions. Various

steps and process related to the mineralogical evolution of various metal and rare earth ions in red mud are covered and

discussed. Simultaneously, the application of red mud in various fields is covered, where red mud could be given

importance as a resource rather than waste.

Table 2 shows the red mud generated from various plants with different chemical compositions.

Table 2. Major elemental composition of red mud from various locations in the countries.
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Composition wt.%

Location Al O Fe O SiO TiO CaO Na O Mn P O V O Gd O MgO K O LOI REFs

Ajka
Aluminum
Industry,
Hungary

16–
18 33–48 9–15 4–6 0.5–

3.5 8–12 - - 0.2–
0.3 - 0.3–

1 - -

Aluminium
Pechiney,
Gardanne,

France

15.00 26.62 4.98 15.76 22.21 1.02 - -- - - 0.95 - 12.10

Bauxite ore
refinery,
Guinea

26.60 48.40 5.50 - 1.30 - - - - - 0.90 - 14.60

ALCOA
factory, San

Cibrao
(Northwest of

Spain)

12.00 37.00 9.00 20.00 6.00 5.00 - - - - - - -

Korea
Chemical Co. 23.70 16.60 22.90 6.70 6.70 11.60 - - - - - - -

Shandong
Aluminium

Factory, China
7.96 6.57 21.90 - 38.84 2.32 - - - - 1.60 0.41 17.42

Greek red
mud, Greece 15.60 42.50 9.20 5.90 19.70 2.40 - - - - - - -

Slurry pond
from Worsley

Alumina,
Australia

15.00 60.00 5.00 5.00 - 16.00 - - - - - - -

Alpart factory
and the Alcan
Ewartonred
mud pond,

Jamaica

18.80 45.30 4.30 6.40 3.10 1.50 - - - - - -  

Shandong
Aluminium

Corporation,
Shandong,

China

6.93 12.76 19.14 3.43 46.02 2.37 - - - - 1.15 1.20 5.73

Alumina-
aluminio of
San Ciprian,
Lugo, Spain

20.10 31.80 6.10 22.60 4.78 4.70 - - - - 0.20 0.03  

Etibank
Seydiehir

Aluminium
Plant, Konya,

Turkey

20.39 36.94 15.74 4.98 2.23 10.10 - - 0.05 - -   8.19

Aluminium of
Greece S.A. 15.65 45.58 6.96 7.07 14.84 3.26 - - - - - 0.07 -

Eurallumina
alumina plant,

Italy
17.19 30.45 9.58 8.61 7.77 12.06 - - - - 0.86 0.30 12.38

Queensland
Alumina Ltd.

refinery,
Gladstone,
Australia

25.45 34.05 17.06 4.90 3.69 2.74 - - - - 1.86 0.20 -

Seydiehir
Aluminium

Plant, Konya,
Turkey

14.10 38.30 2.50 - 4.10 - - - - - - -  
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Composition wt.%

Location Al O Fe O SiO TiO CaO Na O Mn P O V O Gd O MgO K O LOI REFs

HINDALCO
Renukoot,

India
21.9 28.1 7.5 15.6 10.2 4.5 – – – – - - 12.2

IND ALMuri,
India 24.3 24.5 6.2 18.0 – 5.3 – – – – - - –

BALCO
Kobra, India 19.4 27.9 7.3 16.4 11.8 3.3 – – – – - - 12.6

NALCo
Damanjodi,

India
14.8 54.8 6.4 3.7 2.5 4.8 1.1 0.67 0.38 0.01 - - 9.5

INDALBelgam,
India 19.2 44.5 7.0 13.5 0.8 4.0 – – – – -- - 10.0

MALCO
Mettur Dam,

India
14.0 18.0 56.0 50.0 2.0–

4.0
6.0–
9.0 – 1.0–

2.0 – – - - 12.60

3. Physical and Chemical Properties of Red Mud
3.1. Particle Size Distribution and pH of Red Mud

Red mud, generated as waste in the aluminum industry and generally disposed of in the surrounding areas, was supplied

from an Indian bauxite producer (Bharat Aluminium Company Ltd., BALCO, Korba, Chhattisgarh, India). Fly ash was

supplied from the thermal power plant (Coal Plant, India). The slurry red mud received directly from the aluminum industry

contains a lot of water and moisture. Red mud needs to be dried at 100 °C for 24 h, to remove the water and chemicals

such as volatile compounds in a standard furnace in an air medium. The particle sizes of the red mud and pH change as a

function of time, as shown in Figure 5  .

Figure 5. (a) Particle size distribution versus cumulative proportion in red mud as the residue from the alumina industry;

(b) pH as a function of time. Reprint with permission from ref. . Copyright 2004, Wiley.

Red mud consists of various fine-size particles within the range of 0.1–100 µm. Average particles fall within the range of 1

µm. The alkaline nature of red mud decreases as the function of the day, from fresh red mud to aged, and becomes

stable. Red mud was mixed with fly ash contents from 0 to 20 Vol% to observe the effect of neutralization of alkaline

components with acidic flux by using agate mortar.

3.2. Ternary Phase Diagram of the CaO–Al O –SiO  System

Observation of the mineral compounds in the system of the CaO–Al O –SiO  phase diagram reveals the red mud–fly ash

falling into the category (Figure 6).
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Figure 6. Ternary phase diagram of the CaO–SiO –Al O  system that covers red mud and fly ash zones. Reprint with

permission from ref. . Copyright 2013, Elsevier.

Thus, their presence in such a diagram could open up the possibility of mixtures of red mud and fly ash for utilization as

an alternative cement category for construction purposes. The mixture falls within the zone of slag that could be boosted

as a source of metal extraction as well and act as compatible material for alternative cement in the construction industry.

3.3. Phase Transformation during Thermal Decomposition

Differential thermal analysis of red mud showed the combined effect of the decomposition reaction, concerning the weight

loss and the associated energy changes.  Figure 7  shows the evolution of red mud as the function of temperature

concerning exo- and endothermic reactions .

Figure 7. Differential thermal analysis of red mud with peak evolution and weight loss as a function of the temperature.

Reprint with permission from ref. . Copyright 2015, Elsevier.

Gibbsite phase emerges between 320 and 330 °C whichderives from the decomposition of x-Al O . The decomposition

reaction of goethite FeO(OH) into hematite and water occurs as follows:

2α-FeO(OH) (s) → Fe O (s) + H O (g)

(1)

whilst the gibbsite decomposes into boehmite and x-alumina in the range of 230–330 °C

Al(OH)  (s) → AlO(OH) (s) ↑(water evaporates)

(2)
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2AlO(OH) (s) → Al O (s) ↑ (water evaporates)

(3)

Furthermore, goethite continues to decompose into hematite at 440 °C,

3 Fe O  (s) → 2Fe O  (s) + ½O  (g)

(4)

The alumina phase of red mud is very stable until higher temperatures. In the range of 900–1100 °C the formation of

nepheline from cancrinite occurs

3CaO (s) + Al O  (s) → Ca Al O  (s)

(5)

and further decomposition reactions happen above 1100 °C

Fe O  (s) → 2FeO (s) + ½O  (g)

(6)

2FeO (s) + TiO  (s) → Fe TiO  (s)

(7)

3CaO (s) + Fe O  (s) +3 SiO  (s) → Ca Fe Si O  (s)

(8)

7Ca Al O  (s) → Ca Al O  (s) + 9CaO (s)

(9)

Ca Al O  (s) + Na O (s) → Na Ca Al O  (s) + xCaO (s)

(10)

The weight loss of the sample of red mud is observed significantly towards higher temperatures. At 1000 °C, there is

significant weight loss and more than 10 wt.% loss is observed. DTA analysis reveals the behavior of red mud sintered at

a higher temperature.

3.4. Microstructure of Sintered Compound at 1100 °C Temperature

The sintering process further facilitates the mixture as the form of the pellet. Cylindrical pellets were prepared with a

dimension of 0.5 × 2.5 cm  by using water as a binder at a pressure of 50 MPa. The pellet of red mud–fly ash mixtures

with various contents undergoes co-reduction in the graphite resistance furnace for sintering at various temperatures,

1000–1050–1100 °C, for a duration of 2 h in a static argon atmosphere, followed by cooling (2 h).

In Figure 6, the microstructure evolution of as-received red mud in dry condition and sintered samples are presented.

Globular particles, with fine size in a range from a few microns to the maximum particle size of 100 µm, are displayed

(Figure 8a). The sintered composite of red mud-fly ash at the various wt.% shows the evolution of various phases as the

function of temperature (Figure 8b–d). Iron phases of magnetite are shown in a lighter color and the darker region

belongs to the quartz. Whereas, sintered red mud–fly ash composite shows isolated pores, elongated shape, and size of

the crystals and ceramic matrix with some former phases. The sintered sample with 20 wt.% of fly ash shows that the

porosity in sintered composite increased with irregular (Fe O ), goethite (FeO(OH)), iron (Fe), hercynite (FeAl O ), and

aluminum silicates. Additionally, 20 wt.% of fly ash and sintering at various temperatures allows conversion of complex

phases towards simpler phases of compounds of magnetite, iron, calcium aluminosilicate, sodium aluminum silicates, and

Goethite phases .
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Figure 8.  (a) Surface features of the red mud at RT; (b) sintered red mud without fly ash content; (c) sintered red mud

with 10 wt.% of fly ash content; (d) sintered red mud with 20 wt.% of fly ash content at 1100 °C sintered temperature.

Reprint with permission from ref. . Copyright 2015, Elsevier.

3.5. Phase Evolution of Sintered Sample as a Function of Temperature

Figure 9 displays the various phases of magnetite, calcium aluminum silicate, sodium aluminum silicate, goethite, iron,

and perovskite as a function of sintering temperature. The phases show a trending behavior with fly ash mixtures of 10

wt.% (Figure 9a,b). On increasing the percentage of fly ash content (up to 20 wt.%) phase evolution is more stable and

distinct (Figure 9c). Metal ions into the various phases are more prominent at lower sintering temperatures without the

addition of fly ash . However, the phases are more distinct and accurate with more specific phases of simpler

compounds at a higher sintering temperature of 1100 °C with 20 wt.% of fly ash content. The reduced sintered slag

contains various metal ions and mineral sources for the recovery of metal and ions for further utilization in industry 

.

Figure 9.  Evolution of various compounds as the function of sintering temperature: (a) sintered red mud without any

additives; (b) sintered red mud with 10 wt.% of fly ash content; (c) sintered red mud + 20 wt.% fly ash mixture. Reprint

with permission from ref. . Copyright 2015, Elsevier.

3.6. Carbo-Thermal Smelting Technology
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Carbo-thermal reduction of bauxite is developing as a promising alternative technology for the aluminum and aluminum

alloy industries. In this process, carbon or coke are used as a reductant for solid-state reduction technology. As a result,

metallic iron, ferroalloy of silicon and aluminum, titanium carbides could be obtained as the by-products . Based on

the smelting technology, we performed previous work on using fly ash additive with the red mud that undergoes sintering

technology for the building materials. A combination of smelting and reduction processes allows a reduction in the

temperature of 1200–1500 °C to produce slag phase and cast iron if the C content in the cast iron is within the range of 2–

2.3%. Another direct route for separation of iron from red mud is the roasting method followed by magnetic separation.

Iron (Fe) could be separated from red mud using various methods, either by leaching or by sintering or roasting. As one of

the major elements, Fe should be extracted from red mud following various reaction, as outlined below .

Fe O  (s) + C (s) → Fe O  (s) + CO (g)

(11)

Fe O  (s) + 3C (s) → Fe (s) + 3CO (g)

(12)

CO  (g) + C (s) → 2CO (g)

(13)

3Fe O  (s) + CO (g) → 2Fe O  (s) + CO  (g)

(14)

Fe O  (s) + CO (g) → 3FeO (s) + CO  (g)

(15)

FeO (s) + CO (g) → Fe (s) + CO  (g)

(16)

FeO (s) + C(s) → Fe (s) + CO (g)

(17)

The phases were more prominent in the reduced sample of red mud when 20 wt.% of fly ash was used, which is shown in

the SEM images reported in Figure 10.
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Figure 10. Micrograph of the sintered red mud with 20 wt.% of fly ash content in 1100 °C sintered temperature. Reprint

with permission from ref. . Copyright 2015, Elsevier.

The evolution of the different phases developed in the reduced sample sintered up to 1100 °C was recorded with the XRD

technique and is shown in Figure 11.

Figure 11.  (a) Diffraction profile of red mud and sintered red mud at various temperatures; (b) diffraction profile of red

mud and sintered red mud with 10 wt.% fly ash; and (c) diffraction profile of red mud and sintered red mud with 20 wt.% of

fly ash content. Reprint with permission from ref. . Copyright 2015, Elsevier.

Iron is the major element in red mud that could directly reduce the carbon-bearing pellets of red mud with coal at a

temperature of 1400 °C for 30 min . The obtained products contain 96.52% iron with low Mn and Si contents. However,

P and S contents are high.
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4. Fields of Application of Red Mud

A considerable environmental concern associated with red mud is associated with its high pH value and its small amounts

of heavy metals. These days, the aluminum industries are more focused on producing a cleaner residue from bauxite.

4.1. Thermal Plasma Technology for the Production of By-Products from Red Mud

The thermal plasma technology boom, as a prospective area of waste management, is widely reported in the literature

and could be used as a technology to reduce the amount of red mud to produce pig iron . Red mud mixed with

carbon graphite undergoes a smelting process to produce pig iron with 71% recovery. This process allows for reduced

energy consumption with recovery of metals from the red mud. Waste treatment is considered one of the efficient methods

in the energy sector and thermal power plants. Simultaneously, pig iron could be extracted from red mud by adding a

fluxing agent of graphite and fluxes .

4.2. Mixing Technology for Use of Red Mud as an Additive for Construction Materials

Mixing technology is a methodological way of approaching red mud as an alternative replacement of cement. Partially, red

mud can be used in slag for the cementitious material that can be used effectively in building sectors . Red mud is

also considered to add a neutralization effect of the hydration properties of cement materials in the construction industry.

Bricks and prisms are some of the resources that could be derived from the red-mud-based geopolymer matrix in areas of

the building sector. Red mud is considered as environmentally friendly, self-sensing concrete blended with by-product

waste. Red mud is also considered as one of the potential additives for durability and mechanical performance of cement

mortars. Geopolymerization of red mud and the slag from ferronickel could emerge as advanced inorganic polymeric

material with exceptional physical and chemical properties .

4.3. Separation and Extraction Technology

The separation of the magnetic materials from red mud is considered to be the preliminary step for the separation of iron

particles. Simultaneously, extraction technology is more effective in leaching such as chemical technology for the

separation of various minerals. The leaching of red mud or sintered red mud is very effective in various sectors for the

adsorbents and catalyst categories . The red mud–fly ash mixtures could be considered as a sustainable acid

mine drainage management system. Slag and cement mortar containing non thermally treated dried red mud is

considered as opening demand for potential utilization. Red mud is considered an effective additive in geopolymer

materials for the adsorption of heavy metal ions.

4.4. Coating Technology

Coating technology opens the door for applications in pigment areas using Ti as pigment ion. Red mud could be used as a

coating by thermal plasma spray technologies for wear resistance coating or corrosive resistance coating layers that could

stand as a barrier against environmental conditions . Coatings based on red mud offer an important erosion wear

resistance, which can further be improved. Red mud could act as deposition material for surface modification technologies

in the plating, diffusion process, surface hardening, and thin-film coating sectors. The red mud–polyester composite

coating could act as neutron shielding materials from injurious effects of radiation , thus representing an

innovative application of red mud in the industrial sector.

Red mud has emerged as a significant contribution to the hybrid composite. Red mud can be used as a resource for

transferring a waste-management approach with natural fibers. A hybrid composite concept has been developed for the

potential in a red-mud-based geopolymer matrix with the incorporation of fibers .

4.5. Economic and Social Impact

The potential application of red mud in the various industrial sectors proves that valuable resources will have a significant

impact on the economic prospects, boosting economic growth through its potential as a valuable by-product. The social

impact will increase only by using it as a resource rather than dumping as waste that holds a threat for environmental

pollution . The significant use of red mud as a resource will reduce the risk of environmental hazards and socially

benefit environmental conditions.

4.6. Value Recovery and Strategic Utilization

The valuable elements in red mud can be recovered by acid leaching, solid-state carbo-thermic reduction, magnetic and

fluidized bed separation, as well as smelting in a blast furnace. In the framework of considering red mud as a resource,

we need to improve various steps of metal recovery as one of the potential applications for the pigment industries.
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The elemental composition and its derivation from red mud, bauxite residue, and their respective Raman spectra for

various elements are shown in Figure 12  . A red mud image scan analysis shows minerals and ions present in the

sample (Figure 12) .

Figure 12.  Backscattered image of red mud and elemental image analysis for various elements of Al, Fe, Ce, Ca, F.

Reprinted from ref. .

An insight investigation was carried out on various phases of rare earth elements in red mud. This approach leads to a

mineralogical insight view with output to improve the rare earth elements recovery process. The distinct rare earth

element (REE) phases are also contained within the lateritic bauxite (Figure 12).

The REE mineral content includes aluminum, cerium, phosphorous, and then other REEs. Thus, REE phases can be

identified as belonging to the florencite group. The compositional analysis of elements is done by EDS spectrum exhibiting

a pronounced phosphorus X-ray peak of Figure 13.

Figure 13.  The mineralogical composition of red mud shows the presence of the florencite group of light rare earth

elements, grain Zr grain, Al, matrix, and Al–Fe phase. Reprinted from ref. .

The composition of grains resembles rhabdophane–Ce which has been detected in the bauxite phase . REE

phosphate do not dissolve easily in sodium hydroxide which is generally used in the metal recovery process of bauxite.

LREEs are found as calcium containing phosphate phases in bauxite residue, more specifically as cerium phosphates

(Figure 14a). It can be seen from the EDS spectrum of an analysed particle, exhibiting a pronounced phosphorus X-ray

peak. A wide variation in chemical composition in morphological features is shown in Figure 14b.
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Figure 14.  (a) Elemental composition of red mud shows the enlarged area of cerium phosphate and (b) its respective

EDS spectrum. Reprinted from ref. .

Some LREE particles contain minor percentages of iron, titanium, and sodium oxide content (Figure 15a). The texture of

ferrotitanate grains appears anhedral. Others showed distinct zonation expressed in wide variation in chemical

composition as well as in morphological features. Most aggregates of anhedral globular crystallites can be observed on

examining larger particles that exhibit a different reaction stage that has been observed in Figure 15b.

Figure 15.  Neodymium–lanthanum as predominant LREE particles, of which (a) is partly reacted; and (b) exhibits a

zonation (I–III) relating to reaction stages with Bayer liquor. Within zone II of (b), deposition of a sodium aluminosilicate

phase (Na-Al-Si) is indicated. Reprinted from ref. .

The concentration of REE elements and major elements from red mud was investigated using ICP-OES and XRD

elemental composition (Figure 16).

Figure 16.  (a) REE concentration; (b) major element concentration from ICP-OES and XRD elemental composition

obtained from red mud. Reprinted from ref. .

Lightweight alloys for the transportation industry are in serious demand due to their unique and desired properties as

alloys. Bauxite residue is considered as a source hub for these alloys with metals with considerable Ti and Sc contents.

The combination of hydrogen peroxide (H O ) and sulfuric acid (H SO ) is used for leaching solution at 90 °C for 30 min

to extract Sc and Ti of 68% and 91%, respectively (Figure 17).
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Figure 17.  Visual representation of (a) the mineralogical distribution of BR; (b) phase distribution before and after

leaching; (c) mineralogical distribution of the leach residue after leaching with 2.5 M H SO ; and (d) mineralogical

distribution of the leach residue after leaching with 2.5 M H SO :2.5 M H O  with S/L = 1/10 at 75 °C for 2 h. Reprinted

from ref. .

Figure 17 displays the three different minerals (red mud, red mud + H SO , Red mud + H O :H SO ) that revealed a very

distinct distribution within three samples. Red mud shows the presence of Fe, Ca, Al, and Si oxide with high non-

stoichiometric intergrowth oxides. When H SO   is incorporated, only Si mineral is detected in addition to others, with

almost all Fe in leach residue extract as rhomoclase phase . On incorporating H O :H SO  leaching solution, the

quartz phase is mostly affected with increasing leaching efficiency. There are inhomogeneous particles with particle sizes

ranging from 1 µm to 40 µm. Most of the rare earth particles are based on the Fe-based compositions in combination with

Ca, Na, Ti (Fe) O compounds . However, the minor elements are based on the C, P, Mn also present in the red mud

resources Figure 17a,b. Figure 17b represents aggregates of the globular region within the red mud particles that may be

caused by a cluster of rare earth elements in the reactive combined stage.

The leaching process is one of the effective ways to extract Ti and Fe from the mineralogical sample. The leaching

solution of the sulfuric acid and hydrochloric acid is commonly approved for the extraction process . The 67% extraction

of Ti from red mud with H SO  could be achieved by the leaching process . Ti and Fe have different reaction processes

in the leaching mechanism for the extraction within the solvent of H SO  and HCl at different rates. The mechanism of the

process is represented in Figure 18.
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Figure 18. Mineral distribution of red mud shows the presence of various elements and the leaching behavior at various

leaching solution and the reacting particle with HCL and H SO  solution as the function of time. Reprinted from ref. .

5. Discussion

Red mud contains various sources of elements in the category of major, minor, and rare earth elements. In the past 11

years, researchers have been more motivated towards the valuable recovery of metal ions from red mud as resources.

Although the primary use of red mud is based on the areas of construction sectors , the

most valuable secondary concern still arises in the field of metal and mineral sectors. Researchers have focused on

various metals present in major and minor quantities in red mud and of which significant amounts could be removed using

various processes, such as sintering and carbothermal smelting processes using metallurgical routes 

. Additional methods, such as the chemical process of leaching, are also investigated as one of

the beneficiary ways to extract various categories of elements from red mud . The economic

cost of red mud handling and use is one of the important issues associated with the bauxite industry. The general costs of

properly handling red mud in some countries are approximately 12 EUR/ton. The general costs of properly handling red

mud in various countries are outlined in Table 3.

Table 3. General cost of properly handing RM in some countries. Reprinted from ref. .

3. Physical and Chemical Properties of Red Mud
3.1. Particle Size Distribution and pH of Red Mud

Red mud, generated as waste in the aluminum industry and generally disposed of in the surrounding areas, was supplied

from an Indian bauxite producer (Bharat Aluminium Company Ltd., BALCO, Korba, Chhattisgarh, India). Fly ash was

supplied from the thermal power plant (Coal Plant, India). The slurry red mud received directly from the aluminum industry

contains a lot of water and moisture. Red mud needs to be dried at 100 °C for 24 h, to remove the water and chemicals

such as volatile compounds in a standard furnace in an air medium. The particle sizes of the red mud and pH change as a

function of time, as shown in Figure 5  .

Figure 5. (a) Particle size distribution versus cumulative proportion in red mud as the residue from the alumina industry;

(b) pH as a function of time. Reprint with permission from ref. . Copyright 2004, Wiley.

Red mud consists of various fine-size particles within the range of 0.1–100 µm. Average particles fall within the range of 1

µm. The alkaline nature of red mud decreases as the function of the day, from fresh red mud to aged, and becomes

stable. Red mud was mixed with fly ash contents from 0 to 20 Vol% to observe the effect of neutralization of alkaline

components with acidic flux by using agate mortar.

3.2. Ternary Phase Diagram of the CaO–Al O –SiO  System

Observation of the mineral compounds in the system of the CaO–Al O –SiO  phase diagram reveals the red mud–fly ash

falling into the category (Figure 6).
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Figure 6. Ternary phase diagram of the CaO–SiO –Al O  system that covers red mud and fly ash zones. Reprint with

permission from ref. . Copyright 2013, Elsevier.

Thus, their presence in such a diagram could open up the possibility of mixtures of red mud and fly ash for utilization as

an alternative cement category for construction purposes. The mixture falls within the zone of slag that could be boosted

as a source of metal extraction as well and act as compatible material for alternative cement in the construction industry.

3.3. Phase Transformation during Thermal Decomposition

Differential thermal analysis of red mud showed the combined effect of the decomposition reaction, concerning the weight

loss and the associated energy changes.  Figure 7  shows the evolution of red mud as the function of temperature

concerning exo- and endothermic reactions .

Figure 7. Differential thermal analysis of red mud with peak evolution and weight loss as a function of the temperature.

Reprint with permission from ref. . Copyright 2015, Elsevier.

Gibbsite phase emerges between 320 and 330 °C whichderives from the decomposition of x-Al O . The decomposition

reaction of goethite FeO(OH) into hematite and water occurs as follows:

2α-FeO(OH) (s) → Fe O (s) + H O (g)

(1)

whilst the gibbsite decomposes into boehmite and x-alumina in the range of 230–330 °C

Al(OH)  (s) → AlO(OH) (s) ↑(water evaporates)

(2)
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2AlO(OH) (s) → Al O (s) ↑ (water evaporates)

(3)

Furthermore, goethite continues to decompose into hematite at 440 °C,

3 Fe O  (s) → 2Fe O  (s) + ½O  (g)

(4)

The alumina phase of red mud is very stable until higher temperatures. In the range of 900–1100 °C the formation of

nepheline from cancrinite occurs

3CaO (s) + Al O  (s) → Ca Al O  (s)

(5)

and further decomposition reactions happen above 1100 °C

Fe O  (s) → 2FeO (s) + ½O  (g)

(6)

2FeO (s) + TiO  (s) → Fe TiO  (s)

(7)

3CaO (s) + Fe O  (s) +3 SiO  (s) → Ca Fe Si O  (s)

(8)

7Ca Al O  (s) → Ca Al O  (s) + 9CaO (s)

(9)

Ca Al O  (s) + Na O (s) → Na Ca Al O  (s) + xCaO (s)

(10)

The weight loss of the sample of red mud is observed significantly towards higher temperatures. At 1000 °C, there is

significant weight loss and more than 10 wt.% loss is observed. DTA analysis reveals the behavior of red mud sintered at

a higher temperature.

3.4. Microstructure of Sintered Compound at 1100 °C Temperature

The sintering process further facilitates the mixture as the form of the pellet. Cylindrical pellets were prepared with a

dimension of 0.5 × 2.5 cm  by using water as a binder at a pressure of 50 MPa. The pellet of red mud–fly ash mixtures

with various contents undergoes co-reduction in the graphite resistance furnace for sintering at various temperatures,

1000–1050–1100 °C, for a duration of 2 h in a static argon atmosphere, followed by cooling (2 h).

In Figure 6, the microstructure evolution of as-received red mud in dry condition and sintered samples are presented.

Globular particles, with fine size in a range from a few microns to the maximum particle size of 100 µm, are displayed

(Figure 8a). The sintered composite of red mud-fly ash at the various wt.% shows the evolution of various phases as the

function of temperature (Figure 8b–d). Iron phases of magnetite are shown in a lighter color and the darker region

belongs to the quartz. Whereas, sintered red mud–fly ash composite shows isolated pores, elongated shape, and size of

the crystals and ceramic matrix with some former phases. The sintered sample with 20 wt.% of fly ash shows that the

porosity in sintered composite increased with irregular (Fe O ), goethite (FeO(OH)), iron (Fe), hercynite (FeAl O ), and

aluminum silicates. Additionally, 20 wt.% of fly ash and sintering at various temperatures allows conversion of complex

phases towards simpler phases of compounds of magnetite, iron, calcium aluminosilicate, sodium aluminum silicates, and

Goethite phases .
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Figure 8.  (a) Surface features of the red mud at RT; (b) sintered red mud without fly ash content; (c) sintered red mud

with 10 wt.% of fly ash content; (d) sintered red mud with 20 wt.% of fly ash content at 1100 °C sintered temperature.

Reprint with permission from ref. . Copyright 2015, Elsevier.

3.5. Phase Evolution of Sintered Sample as a Function of Temperature

Figure 9 displays the various phases of magnetite, calcium aluminum silicate, sodium aluminum silicate, goethite, iron,

and perovskite as a function of sintering temperature. The phases show a trending behavior with fly ash mixtures of 10

wt.% (Figure 9a,b). On increasing the percentage of fly ash content (up to 20 wt.%) phase evolution is more stable and

distinct (Figure 9c). Metal ions into the various phases are more prominent at lower sintering temperatures without the

addition of fly ash . However, the phases are more distinct and accurate with more specific phases of simpler

compounds at a higher sintering temperature of 1100 °C with 20 wt.% of fly ash content. The reduced sintered slag

contains various metal ions and mineral sources for the recovery of metal and ions for further utilization in industry 

.

Figure 9.  Evolution of various compounds as the function of sintering temperature: (a) sintered red mud without any

additives; (b) sintered red mud with 10 wt.% of fly ash content; (c) sintered red mud + 20 wt.% fly ash mixture. Reprint

with permission from ref. . Copyright 2015, Elsevier.

3.6. Carbo-Thermal Smelting Technology
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Carbo-thermal reduction of bauxite is developing as a promising alternative technology for the aluminum and aluminum

alloy industries. In this process, carbon or coke are used as a reductant for solid-state reduction technology. As a result,

metallic iron, ferroalloy of silicon and aluminum, titanium carbides could be obtained as the by-products . Based on

the smelting technology, we performed previous work on using fly ash additive with the red mud that undergoes sintering

technology for the building materials. A combination of smelting and reduction processes allows a reduction in the

temperature of 1200–1500 °C to produce slag phase and cast iron if the C content in the cast iron is within the range of 2–

2.3%. Another direct route for separation of iron from red mud is the roasting method followed by magnetic separation.

Iron (Fe) could be separated from red mud using various methods, either by leaching or by sintering or roasting. As one of

the major elements, Fe should be extracted from red mud following various reaction, as outlined below .

Fe O  (s) + C (s) → Fe O  (s) + CO (g)

(11)

Fe O  (s) + 3C (s) → Fe (s) + 3CO (g)

(12)

CO  (g) + C (s) → 2CO (g)

(13)

3Fe O  (s) + CO (g) → 2Fe O  (s) + CO  (g)

(14)

Fe O  (s) + CO (g) → 3FeO (s) + CO  (g)

(15)

FeO (s) + CO (g) → Fe (s) + CO  (g)

(16)

FeO (s) + C(s) → Fe (s) + CO (g)

(17)

The phases were more prominent in the reduced sample of red mud when 20 wt.% of fly ash was used, which is shown in

the SEM images reported in Figure 10.
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Figure 10. Micrograph of the sintered red mud with 20 wt.% of fly ash content in 1100 °C sintered temperature. Reprint

with permission from ref. . Copyright 2015, Elsevier.

The evolution of the different phases developed in the reduced sample sintered up to 1100 °C was recorded with the XRD

technique and is shown in Figure 11.

Figure 11.  (a) Diffraction profile of red mud and sintered red mud at various temperatures; (b) diffraction profile of red

mud and sintered red mud with 10 wt.% fly ash; and (c) diffraction profile of red mud and sintered red mud with 20 wt.% of

fly ash content. Reprint with permission from ref. . Copyright 2015, Elsevier.

Iron is the major element in red mud that could directly reduce the carbon-bearing pellets of red mud with coal at a

temperature of 1400 °C for 30 min . The obtained products contain 96.52% iron with low Mn and Si contents. However,

P and S contents are high.
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4. Fields of Application of Red Mud

A considerable environmental concern associated with red mud is associated with its high pH value and its small amounts

of heavy metals. These days, the aluminum industries are more focused on producing a cleaner residue from bauxite.

4.1. Thermal Plasma Technology for the Production of By-Products from Red Mud

The thermal plasma technology boom, as a prospective area of waste management, is widely reported in the literature

and could be used as a technology to reduce the amount of red mud to produce pig iron . Red mud mixed with

carbon graphite undergoes a smelting process to produce pig iron with 71% recovery. This process allows for reduced

energy consumption with recovery of metals from the red mud. Waste treatment is considered one of the efficient methods

in the energy sector and thermal power plants. Simultaneously, pig iron could be extracted from red mud by adding a

fluxing agent of graphite and fluxes .

4.2. Mixing Technology for Use of Red Mud as an Additive for Construction Materials

Mixing technology is a methodological way of approaching red mud as an alternative replacement of cement. Partially, red

mud can be used in slag for the cementitious material that can be used effectively in building sectors . Red mud is

also considered to add a neutralization effect of the hydration properties of cement materials in the construction industry.

Bricks and prisms are some of the resources that could be derived from the red-mud-based geopolymer matrix in areas of

the building sector. Red mud is considered as environmentally friendly, self-sensing concrete blended with by-product

waste. Red mud is also considered as one of the potential additives for durability and mechanical performance of cement

mortars. Geopolymerization of red mud and the slag from ferronickel could emerge as advanced inorganic polymeric

material with exceptional physical and chemical properties .

4.3. Separation and Extraction Technology

The separation of the magnetic materials from red mud is considered to be the preliminary step for the separation of iron

particles. Simultaneously, extraction technology is more effective in leaching such as chemical technology for the

separation of various minerals. The leaching of red mud or sintered red mud is very effective in various sectors for the

adsorbents and catalyst categories . The red mud–fly ash mixtures could be considered as a sustainable acid

mine drainage management system. Slag and cement mortar containing non thermally treated dried red mud is

considered as opening demand for potential utilization. Red mud is considered an effective additive in geopolymer

materials for the adsorption of heavy metal ions.

4.4. Coating Technology

Coating technology opens the door for applications in pigment areas using Ti as pigment ion. Red mud could be used as a

coating by thermal plasma spray technologies for wear resistance coating or corrosive resistance coating layers that could

stand as a barrier against environmental conditions . Coatings based on red mud offer an important erosion wear

resistance, which can further be improved. Red mud could act as deposition material for surface modification technologies

in the plating, diffusion process, surface hardening, and thin-film coating sectors. The red mud–polyester composite

coating could act as neutron shielding materials from injurious effects of radiation , thus representing an

innovative application of red mud in the industrial sector.

Red mud has emerged as a significant contribution to the hybrid composite. Red mud can be used as a resource for

transferring a waste-management approach with natural fibers. A hybrid composite concept has been developed for the

potential in a red-mud-based geopolymer matrix with the incorporation of fibers .

4.5. Economic and Social Impact

The potential application of red mud in the various industrial sectors proves that valuable resources will have a significant

impact on the economic prospects, boosting economic growth through its potential as a valuable by-product. The social

impact will increase only by using it as a resource rather than dumping as waste that holds a threat for environmental

pollution . The significant use of red mud as a resource will reduce the risk of environmental hazards and socially

benefit environmental conditions.

4.6. Value Recovery and Strategic Utilization

The valuable elements in red mud can be recovered by acid leaching, solid-state carbo-thermic reduction, magnetic and

fluidized bed separation, as well as smelting in a blast furnace. In the framework of considering red mud as a resource,

we need to improve various steps of metal recovery as one of the potential applications for the pigment industries.
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The elemental composition and its derivation from red mud, bauxite residue, and their respective Raman spectra for

various elements are shown in Figure 12  . A red mud image scan analysis shows minerals and ions present in the

sample (Figure 12) .

Figure 12.  Backscattered image of red mud and elemental image analysis for various elements of Al, Fe, Ce, Ca, F.

Reprinted from ref. .

An insight investigation was carried out on various phases of rare earth elements in red mud. This approach leads to a

mineralogical insight view with output to improve the rare earth elements recovery process. The distinct rare earth

element (REE) phases are also contained within the lateritic bauxite (Figure 12).

The REE mineral content includes aluminum, cerium, phosphorous, and then other REEs. Thus, REE phases can be

identified as belonging to the florencite group. The compositional analysis of elements is done by EDS spectrum exhibiting

a pronounced phosphorus X-ray peak of Figure 13.

Figure 13.  The mineralogical composition of red mud shows the presence of the florencite group of light rare earth

elements, grain Zr grain, Al, matrix, and Al–Fe phase. Reprinted from ref. .

The composition of grains resembles rhabdophane–Ce which has been detected in the bauxite phase . REE

phosphate do not dissolve easily in sodium hydroxide which is generally used in the metal recovery process of bauxite.

LREEs are found as calcium containing phosphate phases in bauxite residue, more specifically as cerium phosphates

(Figure 14a). It can be seen from the EDS spectrum of an analysed particle, exhibiting a pronounced phosphorus X-ray

peak. A wide variation in chemical composition in morphological features is shown in Figure 14b.
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Figure 14.  (a) Elemental composition of red mud shows the enlarged area of cerium phosphate and (b) its respective

EDS spectrum. Reprinted from ref. .

Some LREE particles contain minor percentages of iron, titanium, and sodium oxide content (Figure 15a). The texture of

ferrotitanate grains appears anhedral. Others showed distinct zonation expressed in wide variation in chemical

composition as well as in morphological features. Most aggregates of anhedral globular crystallites can be observed on

examining larger particles that exhibit a different reaction stage that has been observed in Figure 15b.

Figure 15.  Neodymium–lanthanum as predominant LREE particles, of which (a) is partly reacted; and (b) exhibits a

zonation (I–III) relating to reaction stages with Bayer liquor. Within zone II of (b), deposition of a sodium aluminosilicate

phase (Na-Al-Si) is indicated. Reprinted from ref. .

The concentration of REE elements and major elements from red mud was investigated using ICP-OES and XRD

elemental composition (Figure 16).

Figure 16.  (a) REE concentration; (b) major element concentration from ICP-OES and XRD elemental composition

obtained from red mud. Reprinted from ref. .

Lightweight alloys for the transportation industry are in serious demand due to their unique and desired properties as

alloys. Bauxite residue is considered as a source hub for these alloys with metals with considerable Ti and Sc contents.

The combination of hydrogen peroxide (H O ) and sulfuric acid (H SO ) is used for leaching solution at 90 °C for 30 min

to extract Sc and Ti of 68% and 91%, respectively (Figure 17).
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Figure 17.  Visual representation of (a) the mineralogical distribution of BR; (b) phase distribution before and after

leaching; (c) mineralogical distribution of the leach residue after leaching with 2.5 M H SO ; and (d) mineralogical

distribution of the leach residue after leaching with 2.5 M H SO :2.5 M H O  with S/L = 1/10 at 75 °C for 2 h. Reprinted

from ref. .

Figure 17 displays the three different minerals (red mud, red mud + H SO , Red mud + H O :H SO ) that revealed a very

distinct distribution within three samples. Red mud shows the presence of Fe, Ca, Al, and Si oxide with high non-

stoichiometric intergrowth oxides. When H SO   is incorporated, only Si mineral is detected in addition to others, with

almost all Fe in leach residue extract as rhomoclase phase . On incorporating H O :H SO  leaching solution, the

quartz phase is mostly affected with increasing leaching efficiency. There are inhomogeneous particles with particle sizes

ranging from 1 µm to 40 µm. Most of the rare earth particles are based on the Fe-based compositions in combination with

Ca, Na, Ti (Fe) O compounds . However, the minor elements are based on the C, P, Mn also present in the red mud

resources Figure 17a,b. Figure 17b represents aggregates of the globular region within the red mud particles that may be

caused by a cluster of rare earth elements in the reactive combined stage.

The leaching process is one of the effective ways to extract Ti and Fe from the mineralogical sample. The leaching

solution of the sulfuric acid and hydrochloric acid is commonly approved for the extraction process . The 67%

extraction of Ti from red mud with H SO   could be achieved by the leaching process . Ti and Fe have different

reaction processes in the leaching mechanism for the extraction within the solvent of H SO  and HCl at different rates.

The mechanism of the process is represented in Figure 18.
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Figure 18. Mineral distribution of red mud shows the presence of various elements and the leaching behavior at various

leaching solution and the reacting particle with HCL and H SO  solution as the function of time. Reprinted from ref. .

5. Discussion

Red mud contains various sources of elements in the category of major, minor, and rare earth elements. In the past 11

years, researchers have been more motivated towards the valuable recovery of metal ions from red mud as resources.

Although the primary use of red mud is based on the areas of construction sectors , the

most valuable secondary concern still arises in the field of metal and mineral sectors. Researchers have focused on

various metals present in major and minor quantities in red mud and of which significant amounts could be removed using

various processes, such as sintering and carbothermal smelting processes using metallurgical routes 

. Additional methods, such as the chemical process of leaching, are also investigated as one of

the beneficiary ways to extract various categories of elements from red mud . The economic

cost of red mud handling and use is one of the important issues associated with the bauxite industry. The general costs of

properly handling red mud in some countries are approximately 12 EUR/ton. The general costs of properly handling red

mud in various countries are outlined in Table 3.

Table 3. General cost of properly handing RM in some countries. Reprinted from ref. .

The amount of funds will increase by government and industry based on the capacity of alumina production.

Nevertheless, it is highly beneficial to construct in-house facility for metal extraction that will reduce the expense of

transportation of red mud to other location.

6. Conclusions

A unique cost-effective and environmentally sustainable technique is very challenging to achieve. The recovery of metals

and minerals from red mud using multiple different potential techniques need to be emphasized and implemented.

Recovery of Fe (44 Wt.%), Al (18.2 Wt.%), Si (14.3 Wt.%), Ti (9.3 Wt.%), Na (6.2 Wt.%), Ca (4.4 Wt.%) as major elements

and of Mg, V, Mn, Cr, K as minor elements, and rare earth elements such as Ce (102 mg/kg), La (56 mg/kg), Sc (47

mg/kg), Nd (45 mg/kg), Sm (9 mg/kg) need to be processed from red mud by use of several steps. The establishment of

the red mud industry as potential resources on the recovery of metal ions will open up new strategies for the metal

industries and pigment sectors. Although a lot of studies have been carried out on the recovery of metals, this step is still

very limited to the laboratory scale. The lab-scale approach needs to be enhanced in commercial ways to recover metals

from red mud as resources. The development of neutralization of red mud and the extraction of metals from red mud do

require a good understanding of chemistry and the reduction process of red mud.
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