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Smart agriculture, or precision agriculture, is a crucial way to achieve greater yields by utilizing the natural deposits

in a diverse environment. The yield of a crop may vary from year to year depending on the variations in climate,

soil parameters and fertilizers used. Automation in the agricultural industry moderates the usage of resources and

can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop

seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitlets, flowers or fruits

at various phases of growth is labour intensive as well as an expensive procedure for crop yield estimation.

Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation

in image analysis with computer vision and deep learning models provides precise field and yield maps. In this

review, it has been observed that the application of deep learning techniques has provided a better accuracy for

smart farming. The crops taken for the study are fruits such as grapes, apples, citrus, tomatoes and vegetables

such as sugarcane, corn, soybean, cucumber, maize, wheat. The research works which are carried out in this

research paper are available as products for applications such as robot harvesting, weed detection and pest

infestation. The methods which made use of conventional deep learning techniques have provided an average

accuracy of 92.51%.

precision agriculture  crop yield estimation  plant disease detection  robot harvesting

post harvesting

1. Introduction

Smart farming helps farmers plan their work with the data obtained with agricultural drones, satellites and sensors.

The detailed topography, climate forecasts, temperature and acidity of the soil can be accessed by sensors

positioned on the agricultural farms. Precision agriculture affords farmers with compilations of statistics to:

create an outline of the agricultural land

detect environmental risks

manage the usage of fertilizers and pesticides

forecast crop yields

organize for harvest
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improve the marketing and distribution of the farm products.

According to the 2011 census, in India nearly 54.6% of the entire workforce is dedicated to agricultural and

associated sector tasks, which in 2017–2018 accounted for 17.1% of the nation’s Gross Value Added. To safeguard

from the risks inherent to agriculture, the Ministry of Agriculture and Farmers Welfare announced an insurance

scheme for crops in 1985. Problems have emerged in the scheme technology to collect data and lessen the delays

in responding to insurance claims by the farmers. Crop yield estimation is mandatory for this and are recorded by

conducting Crop Cutting Experiments (CCE) conducted in regions of the states by the Government of India. The

directorate of Economics and Statistics is presently guiding Crop Cutting Experiments for 13 chief crops under the

General Crop Estimation Scheme. To improve the quality of statistics collection of Crop Cutting Experiments,

Global Positioning System (GPS) data such as elevation of fields, area, latitude and longitude are being recorded

by remote sensing . The vegetation indices acquired through the satellite images track the phenological profiles

of the crops throughout the year .

The conventional crop yield estimation requires crop acreages along with sample assessments that depend on

crop cutting experiments. The crop yield data is the most essential data for the area-yield insurance schemes such

as Pradhan Mantri Fasal Bima Yojana (PMFBY) in India. The PMFBY scheme was launched to support the Indian

farmers financially during times of crop failure caused by natural disasters or pest attacks . To implement these

national scale agricultural policies, crop cutting experiments are carried out by government officers in various

regions in different districts of the state. Because the costs involved are pretty high, the desired crop data from

large specific regions is limited to small scale crop cutting experiments and surveys of small zones. The present-

day industry methods for yield estimation use automated computer vision technology to detect and estimate the

count of various harvests . The progress in computing capabilities has provided appropriate techniques for small

area yield estimation. The proficiency of crop yield estimation can be improved by using remote sensing data for a

considerably larger area . Satellite images are quantitatively processed to obtain high accuracy in agricultural

applications such as crop yield estimation .

The crop yield prediction has been possible by counting the number of flowers and comparinf this number with the

count of fruits prior to harvesting stage for citrus trees . The bloom intensity existing in an orchard influences the

crop management in the early season. The estimation of flower count with a deep learning model will be effectual

for crop yield prediction, thinning and pruning which impact the fruit yield . The prediction of vine yield helps the

farmer to prepare for harvest, transport the crop and plan for distribution in the market. The plant diseases during

the flowering and fruit development stage may affect crop yield forecasts. Deep learning classifier models are

advanced to execute crop disease identification to operate in agricultural farms under controlled and real cultivation

environments .

At Iwate University, Japan, a robotic harvester with a machine vision system was able to recognize Fuji apples on

the tree and estimate the fruit yield with an accuracy of 88%. The bimodal distribution of the enhanced image with

its histogram uses optimal thresholding segmentation to extract the fruit portion from the background . The

maturity level for tomato berries can be detected with a supervised backpropagation neural network classifier, with

the green, orange and red color extraction technique as explained in . Agricultural robots execute their farm
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duties either as self-propelled autonomous vehicles or manually controlled smart machines. The autonomous

vehicles may be an unmanned aerial vehicle (UAV) or an unmanned ground vehicle (UGV) guided by GPS and a

global navigation satellite system (GNSS). The autonomous agricultural tasks that can be accomplished by the

larger robots range from seeding to harvesting and post-harvesting tasks as well in some cases.

Automation in agriculture to perform farm duties must face challenges due to lighting conditions and crop variations

. In Norway, an autonomous strawberry harvester was developed considering light variations. The machine

vision system changed its color threshold in response to alterations in the light intensity . Robot harvesting

machines achieve lower accuracy in spotting and picking crops due to occlusions caused by leaves and twigs 

. Modern machine vision techniques and machine learning models with assorted sensors and cameras can

overcome these inadequacies. The basic system of a robot harvester must perform functions such as: detect the

fruit or detect the disease, pick the fruit/ berry without damaging it, guide the harvester to navigate the field,

maneuver irrespective of the lighting and weather conditions, be cost-effective and have a simple mechanical

design .

2. Deep Architectures in Smart Farming

A deep convolutional neural network (DCNN) is a multi-layered neuron, which is trained with complex patterns

provided with appropriately classified features of an image. The InceptionV3 model assists as a conventional

image feature extractor to classify fruit and background pixels in an image. The classifier localizes the fruits to

count the quantities of fruit present  and classify the species of tomato . A K-nearest neighbour (KNN)

classifier was employed to classify the fruit pixels in trained datasets with a threshold pixel value set as a fruit pixel.

The SVM functions for pattern classification as well as linear regression assessment, based on the selected

features. Darknet classifier with a trained “you only look once” (YOLO) model detected iceberg lettuce  and

grapes  with edges for harvesting using a Vegebot. YOLO models offer a high objects detection rate in real-time

when compared to faster region-based CNN (FRCNN) .

The AdaBoost model structures the strong traditional classifier by combining the weak classifiers linearly with

minimal thresholding tasks and Haar-like features to detect tomato berries with an accuracy of 96% . A multi-

modal faster region-based CNN model constructs an efficient fruit yield detection technique with multifarious

modalities by the fusion of RGB and near-infrared images and has improved the performance up to 0.83 F1 score

. The dataset images were fed to the R-CNN model to generate the feature map for classification.

The spatiotemporal exploration from remote sensing image data of normalized difference vegetation indices were

trained with a spiking neural network (SNN) to plan crop yield prediction and crop yield estimation of winter wheat

. A better prediction algorithm for corn, soybean  and paddy crops was proposed with a (feed forward back

propagation) artificial neural network (ANN) and later with a fusion of multiple linear regression (MLR). The linear

discriminant analysis (LDA) approach eradicates the imbalance generated from the performance value attained

through an ANN classifier . The fusion of huge datasets was implemented and compared with various machine

learning models like SVM, DL, extremely randomized trees (ERT) and random forest (RF) for the estimation of corn
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yield . The deep learning (DL) model succeeded with high accuracies with respect to correlation coefficients.

The detection of flowers in an image accomplished by a deep learning model in semantic segmentation of CNN

and SVM classifier helps crop yield management. The image segmentation techniques and canopy features were

used by backpropagation neural network (BPNN) model to train the system for the apple yield prediction . The

SVM and kNN classifiers were efficient, with an accuracy of 98.49% and 98.50%. Deep convolutional neural

networks were developed to identify plant diseases and to predict the macronutrient deficiencies during the

flowering and fruit development stage . The visual geometry group (VGG) CNN architecture identified plant

diseases with the leaf images of the plants and communicated the results to farmers through smart phones .

The endemic fungal infection diagnosis in the winter wheat  was validated and trained with Imagenet datasets

and implemented with an adaptive deep CNN. The deep CNN model with GoogleNet classified nine diseases in

the tomato leaves . The defects in the external regions and the occlusion of flower and berries of tomatoes were

identified with deep autoencoders and a residual neural network (ResNet) 50 classifier . A leaf-based disease

identification model was developed with a random forest classifier trained with HOG features and could detect

diseases on papaya leaves .

Ripeness estimation is required in the agricultural industry to know the quality and level of maturity of the fruit. The

ripening of tomatoes was detected with the fusion of features extracted and classified using a weighted relevance

vector machine (RVM) as a bilayer classification approach for harvesting agrobots. The maturity levels in tomatoes

were detected with the color features classified with BPNN model. A fuzzy rule-based classification (FRBCS)

approach was proposed based on the color feature with decision trees (DT) and Mamdani fuzzy technique to

estimate six stages of maturity level in tomato berries . A mature-tomato can be identified with a SVM classifier

trained by HOG features along with false elimination and overlap removal features.

3.Advantages and Disadvantages

The acquired images may be prone to be degradation caused by misfocus of the camera, poor lighting conditions

or sensor noise. The image enhancement techniques have a visual impact on the desired information in a real time

captured image. The image enhancement techniques do not afford augmented results unless the color

modifications are made under multiple light sources. The median filter removes the blurred effect and reduces the

noise. The nonlinear filtering technique can be employed to upgrade the quality of blurred images with the light

source being refined. Adding noise to the image can improve the image in certain applications.

The image segmentation techniques are easy to implement and modify to classify pixels with less computation.

The threshold segmentation requires appropriate lighting conditions. The optimal threshold value has to be

selected, but it may not be pertinent for every application. Any background complexity increases the error rate and

computation time. The color-based segmentation has constraints due to the non-uniform light sensitivity. Otsu

thresholds excel in the detection of edges and select the threshold value based on the features provided to the

image. The watershed segmentation provides continuous boundaries however, with consequent complexity in the

calculation of the gradients. The texture and shape-based segmentation are time-consuming and provide blurred
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boundaries. To optimize the computer vision technology, further exploration in unstable agricultural environments

has to be formulated.

The feature selection process reduces the quantity of input data while developing a predictive classifier model.

Haar wavelet features combined with an AdaBoost classifier achieved high accuracy. The feature selection

prioritizes the existing features in a dataset. The PCA can outperform other features with high accuracy by the

pixel-level identification of input as original image compared with the input features. The SIFT detection algorithm

requires scaling of local features in the images. The HOG method can extract global features by computing the

edge gradient. HOG+FCR+NMS achieved a computation time of 0.95s for maturity detection. The hybrid

approaches in feature extraction can improve classification and computation time.

The DL model with SVM, BPNN classifiers outperformed other classifiers. The SVM classifiers provide less error

with effective prediction but require abundant datasets and are more complex and delicate to handle varied

datatypes. The TensorFlow library endeavors to uncover optimal policy and does not wait till the termination to

update the utility function. K-NN classifiers are robust in classifying the data with zero cost in learning process.

These classifiers require large datasets with high computation for mixed data. The DL can extract the required

features based on color, texture, shape and SIFT feature extraction processes. The combination of ANN and MLR

classifier provided the highest accuracy in crop prediction. DL classifiers were used in a wide range of agricultural

applications with an average performance F1 score of 0.8. Errors occurred due to the occlusion of leaves or cluster

of fruits. The fruit detection for robot harvesting and yield estimation outperformed using a combination of CNN and

linear regression models. The need of large datasets as input for training increases the computation time for DL

approach. The SVM classifiers provide high accuracy with improved computation time. The fusion of the classifiers

with assorted features may improve the computer vision technique and DL model.
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