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Diabetes mellitus is a chronic endocrine disease, affecting more than 400 million people around the world. Patients with
poorly controlled blood glucose levels are liable to suffer from life-threatening complications, such as cardiovascular,
neuropathy, retinopathy and even premature death. Today, subcutaneous parenteral is still the most common route for
insulin therapy. Oral insulin administration is favourable and convenient to the patients. In contrast to injection route, oral
insulin delivery mimics the physiological pathway of endogenous insulin secretion. However, oral insulin has poor
bioavailability (less than 2%) due to the harsh physiological environment through the gastrointestinal tract (GIT). Over the
last few decades, many attempts have been made to achieve an effective oral insulin formulation with high bioavailability
using insulin encapsulation into nanoparticles as advanced technology. Various natural polymers have been employed to
fabricate nanoparticles as a delivery vehicle for insulin oral administration. Chitosan, a natural polymer, is extensively
studied due to the attractive properties, such as biodegradability, biocompatibility, bioactivity, nontoxicity and polycationic
nature. Numerous studies were conducted to evaluate chitosan and chitosan derivatives-based nanoparticles capabilities
for oral insulin delivery. This review highlights strategies that have been applied in the recent five years to fabricate
chitosan/chitosan derivatives-based nanoparticles for oral insulin delivery. A summary of the barriers hurdle insulin
absorption rendering its low bioavailability such as physical, chemical and enzymatic barriers are highlighted with an
emphasis on the most common methods of chitosan nanoparticles preparation. Nanocarriers are able to improve the
absorption of insulin through GIT, deliver insulin to the blood circulation and lower blood glucose levels. In spite of some
drawbacks encountered in this technology, chitosan and chitosan derivatives-based nanoparticles are greatly promising
entities for oral insulin delivery.
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| 1. Introduction

Diabetes mellitus (DM), one of the major epidemics worldwide of the 21st century, is a chronic disease that developed in
about 451 million people in 2017 and this number is anticipated to increase to 693 million by 2045 worldwide W2, To date,
subcutaneous injections remain the conventional way to deliver insulin daily. However, this route is associated with
several drawbacks including poor patient compliance as a result of needle fears, allergic reactions, pain and hypoglycemic
episodes . Oral insulin delivery, on the other hand, has been the research of interest globally for decades. Effective oral
insulin dose must survive along the gastrointestinal tract (GIT), cross the mucus layer, transport through the intestinal
epithelial cells, enter the liver via portal vein and finally reach the systemic circulation . However, mere oral
administration of insulin is encountered with enzymatic and physiological barriers that negate insulin absorption through
intestinal epithelial cells. Such hurdles render insulin poor oral bioavailability, despite the oral route is the most favourable
mode of diabetes management [,

In order to circumvent the above mentioned challenges, numerous studies have been carried out to develop efficient oral
insulin delivery systems where nanotechnology appeared to be a favourable platform. Currently, the application of
nanomaterials attracts wider attention in pharmaceutical and biomedical research. Nanoparticulates are defined as
entities that are synthesized using nanomaterials that endow unique functionality to the delivery system. The drug content
and release profiles of nanosystems are tailorable simply by modulating their starting material composition and physical
traits 2. Generally, nanocarriers can be classified according to their compositional structure into polymeric nanoparticle,
lipid-based nanoparticles and inorganic nanoparticle (Figure 1) €. In the last two decades, great interest was granted to
polymeric and lipid-based nanoparticles over inorganic metal ones for proteins/peptides oral delivery, owing to their
biocompatibility and biodegradability, as well as promising clinical outcomes W&, Polymeric nanoparticles being inert and
non-immunogenicity, it enables them to escape from endosomal recognition and avoiding of degradation by lysosomes (€,
Moreover, while nanoparticles generally facilitate insulin transportation in the intestine by both transcellular and
paracellular pathways, polymeric nanoparticles significantly enhance insulin absorption through paracellular pathway by
reversely opening the tight junctions between adjacent cells [&. Thus, of all the nanoparticle used in drug delivery designs,



polymeric nanoparticles have gained great interest. Furthermore, methods of formulation are widely available therefore,
the range of applications has been expanding to include variety of hydrophilic and hydrophobic dugs of chemical drug
classes and dosage forms 291 The smart nanocarriers, synthesized from stimulus-responsive building blocks as part of
a polymeric structure, can be controlled to release drugs in response to environmental stimuli such as temperature and
pH. In addition, nanocarriers can be decorated with targeting ligand for site-specific drug delivery 2. Polymeric
nanoparticles can be either synthesized from biodegradable synthetic polymers, such as poly(lactide-glycolide) (PLGA)
copolymers, polyacrylates, or from natural polymers, such as chitosan, alginate, collagen and albumin. Notable
advantages of the natural polymeric-based nanoparticles render them particularly unique due to their abundance in
nature, non-toxic with established safety profile and easily modifiable (3.

Among all polysaccharides, chitosan has been the primary interest for many investigators in the designing of oral drug
delivery system as a function of its biodegradable, biocompatible, smooth of processing and its digestibility by colonic
microbial enzymes to emerge colon-targeted delivery of drugs 4. Nanoparticles-based chitosan are particularly
favourable for the mucosal route due to low toxicity, tunable physiochemical properties and mucoadhesion. There are
several methods to formulate chitosan nanoparticles, such as ionic gelation, polyelectrolyte complexation, reverse
micellar, emulsion solvent diffusion and electrospraying techniques 2. Careful selection of nanoparticles composition and
method of preparation is essential to meet the objectives of protecting the encapsulant (insulin) and deliver it in a sufficient
manner to the blood circulation hence, improve its bioavailability. Thus, the nanoparticle formulator must precisely match
the desired chemical and physical attributes of chitosan with reference to the biological environment, with chitosan
processing technique 29,

What makes chitosan unique over other polysaccharides for oral drug delivery is its chemical structure that allows specific
modifications through modulation in the chitosan amine or hydroxy! functional groups 8. With regards to pharmaceutical
applications, these chemical moieties can be utilised to conjugate drugs directly or via linkers. Abundance of amino
groups on the backbone of chitosan would enable any amine related conjugations with other molecules, such as
methacrylation 12 and carboxymethylation 18],
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Figure 1. Common nanocarriers used for oral protein/peptide delivery.

This entry will discuss how recent developments in chitosan/chitosan derivatives-based nanotechnology have been
emerged in a multitude of platforms for safe and efficient delivery of insulin orally for the treatment of DM.

1.1. Diabetes Mellitus

Diabetes mellitus is a chronic endocrine disease in which an elevation of blood glucose level occurs as a result of reduced
or inability of pancreas to produce insulin or due to peripheral tissue uptake defects of insulin 29, Diabetes can primarily
be classified into two types: type 1 diabetes mellitus (TLDM) and type 2 diabetes mellitus (T2DM). In T1DM, the pancreas
terminates or reduces insulin production due to pancreatic B-cell destruction, whereas in T2DM, the cells manifest low
sensitivity towards insulin and consequently both types lead to hyperglycemia 2%. Poorly controlled blood glucose levels
can bring about serious adverse effects in cardiovascular system, nervous system, retina, and even early death [21[22],
hence exogenous insulin intake is imperative in patients with TIDM and advanced T2DM [23],



1.2. Insulin

Insulin is an anabolic polypeptide hormone, synthesized in high amounts by islets of Langerhans of pancreatic -cells and
is responsible to maintain blood glucose level at normal ranges. Proinsulin (an insulin prohormone precursor) is
composed of three domains: an amino-terminal B chain, a carboxy-terminal A chain, and a connecting peptide in the
middle denoted by C-peptide. By the cleavage of C-peptide, insulin is formed as a quaternary macromolecule composed
of two polypeptide chains, A chain (21 amino acid residues) and B chain (30 amino acid residues) that are linked by
disulphide bonds (Figure 2) 24, In 1922, insulin was first successfully isolated by a team of Canadian scientists in Toronto;
a discovery that brought about a true medical success and a milestone in the history of treating diabetes 22, While insulin
has been available for treating diabetes for almost a century now, to date, the most common insulin therapy is to be
administered to diabetic patients through the parenteral route. Even though this route is still the best route in terms of
effectiveness, insulin administered subcutaneously is delivered directly to the peripheral circulation, unmet the
endogenous insulin pathway 28l As a result, insulin enters the liver, which is the main target organ of insulin, at a much
lower concentration than normal endogenous insulin which may give rise to hyperinsulinemia, weight gain, and
hypoglycemic risks 24, Moreover, injection is invasive and may induce local tissue necrosis, infection, and allergy that in
long-term treatment may lead to low patient compliance and serious complications such as, nerve damage, insulin

resistance and hypokalemia [28]. Therefore, alternative routes for insulin delivery were widely investigated recently, such
as pulmonary, nasal, buccal, transdermal and oral (29,
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Figure 2. Structure of human insulin.

1.3. Oral Insulin Delivery

Among all alternative routes for insulin administration, oral route is the most favourable approach and mimics the
endogenous insulin pathway. After oral administration, insulin is absorbed from intestinal lumen and transported via portal
circulation to the liver in which the first pass effect takes place, generating a high porto-systemic gradient (Figure 3).
Insulin then reaches peripheral circulation at relatively low levels, imitating physiological insulin pathway and avoiding side
effects associated with subcutaneous route such as, hypoglycemic episodes and weight gain B, However, insulin oral

administration is usually characterised by poor bioavailability (<2%) B, due to enzymatic degradation, low stability at
different pHs and low permeability of GIT 22,
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and rapid mixing to fabricate highly uniform insulin-loaded nanoparticles. This method enables advantage of continuous
production of nanoparticles with controlled and reducible particle size (45 nm) while maintaining high encapsulation
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Incorporating chitosan-insulin polyelectrolyte complex (CS-Ins-PEC) with lecithin liposomes to formulate chitosan/lithin
liposomal nanovesicles was investigated by Al-Remawi et al., as a possible carrier for insulin oral delivery. Insulin was first
reacted with chitosan to form Ins-CS PEC, then the PEC was added to the negatively charged liposomal dispersion
developing Ins-CS PEC-associated lecithin liposomes. The optimal formulation possessed high net zeta potential around
-30 mV and small particle size of 105 nm + 17 nm when the ratios of Ins-Cs complex to lecithin was 9% (v/v). The
encapsulation efficiency was slightly improved due to the presence of chitosan to interact with insulin comparable to



similar chitosan-free formulations 3], For in vivo study, blood glucose lowering effect was observed after 2 h of oral
administration accompanied with a prolonged effect up to 8 h. However, the effect was modest that can be attributed to
the relatively poor association efficiency 84!, Table 2 represents the most recent examples of the compositions, method of

preparations and attributes of insulin loaded chitosan-based nanoparticles.

Table 2. Examples of chitosan-based nanoparticles-loaded insulin.

. i i . Entrapment In Vitro i
i Preparation Particle Size Zeta Potential . . Dose In Vivo
Nanocarrier Efficiency Insulin . Reference
Method (nm) (mv) (lU/kg) Observation
(%) Release
Insulin-loaded
Chitosan (CS) A burst CS/ALG NPs
release with (50 and 100
MW (25-65 kDa), max. of 26.7% IU/kg)
83-86% of insulin Oral showed
release was reduction in
Deacetylation found in pH 50- the blood
Polyelectrolyte 100 [z6]
Degree(DD) . 216 +3.89 78.3 1.2, followed glucose level
complexation
by a sc: to 143 and
* sustained and 104 mg/dL,
Alginate (ALG) prolonged 5 respectively,
insulin release with
MW (1.03 x 105 (79-84%) sustained
g/mol) through 24 h. effectupto 9
h.
AtpH 2.5
after 2 h, Plasma
Medium MW, 75%, insulin release glucose level
85% deacetylated Nanoparticle Nanoparticle frc_)m ) Oral: reduced to
Chitosan microemuilsion 68.7% after 3
lonic gelation 356.5+43.4 46.5 ) was 48.1%. 50 h and it -
* method : : : : maintained at
(Microemultion)  (Microemultion) At pH 6.8 SC:
TPP after 2 h, the 664% of the
_ 99.1+28.7 131 release was initial blood
ratio 6:1 51.29% and glucose level
after 3 h it after 8 h.
was 66.1%.
In simulated
. intestinal fluid
Chitosan 25 kDa,
(SIF) buffer,
+ insulin release
profile
Chondroitin sulphate showed a
lonic gelation 510-670 -1to-5 2.18+0.70  gradual - - 9

(ChS) 20-30 KDa

release of the

+ protein
reaching 65%

Polyethylene glycol in4h

5000 Da (PEG) follow’ed by a

plateau.



90 KDa MW,

85% deacetylated
chitosan

TPP

Chitosan

(28 kDa)

+

Lecithin liposomes
+

L-Arginine

Low MW 50-190
kDa,

275.0%

deacetylated
chitosan

Iota—carragee nan
(CMCi)

Flash
nanocomplexation
using multi-inlet
vortex mixer

CS-insulin
dispersion
(polyelectrolyte
complexation)
added to lecithin
liposomal
dispersion

Polyelectrolyte
complexation
method

46.2£2.7

105+ 17

613 £41

94+12

-30

52.5+0.5

91.0+1.7

20

86.9+2.6

The amount

of released
insulin at pH Gradual but
2.5 was about Oral: distinct

16%, while reduction of
negligible 60 or blood glucose
amount at pH 120 levels by 51%
6.6, and a sc: (60 1U/kg)
sustained and 59%
release of 10 (120 1U/kg)
insulin within within 8 h.
a few hours at
pH7.4
A significant
Insulin was effect was
rapidly observed at 2
released in h after oral
both 0.1 M administration
HCl and Oral: as the blood
phosphate 50 glucose level
buffer pH 6.8 was reduced
media and SC: by almost
complete 1 17% of the
release was initial level
achieved and the effect
almost after was
30 min. prolonged for
up to 8 h.
After 2 hiin
simulated
gastric fluid
(SGF), the
release of
insulin from
the
nanoparticles
was only i i
4.91% +
0.24%, while
in SIF, the
release of
insulin was
86.64% +

2.20%.

82]

85]



Chitosan,

alloxan monohydrate

+
Polyelectrolyte

Alginate complexation 90-110 38.5
method

+

Polyurethane

(PU-ALG/CS NPs)

90

There was a
slight insulin
release
(13.7%) at pH
1.2uptolh,
while
moderately
release (up to
50%) till 10th
hinpH 6.8
buffer
solution,
whereas
sustained
release of
insulin was
noticed at pH
7.4 from 11th
h, and
reached the
maximum
insulin release
after 20th h
(98.32%)).

Oral:

50 and
100

SC:

Blood
glucose level
was reduced
up to 98
mg/dL for the
insulin doses
of 100 1U/kg,
and 131
mg/dL for the
50 IU/kg dose
at the 10th h.
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Chitosan

95% DD

Alginate

+

Methoxypolyethylene
glycol (MPEG, MW
5.0 kDa)

+
D, L-Lactide (LA)
+

Glycolide (GA)

+

Poly

(vinyl alcohol)1788
low-viscosity (PVA)

+

poly (ethylene
glycol)-block-poly
(propylene glycol)-
block-poly (ethylene
glycol) (F68, Mw 8.4
kDa)

Chitosan (95%
deacetylated; MW
150 kDa)

+

Dz13Scr

Double-emulsion
(w/o/w) solvent
evaporation
method

Polyelectrolyte
complexation

Complex
coacervation

CS NP

224.4+138
Alg NP

260.1+17.1

534 £ 24

CS NP
+13.7+1.6

Alg NP

-55.7+6.6

145711

CSNP
55.2+7.0
Alg NP

815+74

79.96 + 3.96

The insulin
loaded PEC
enabled a
slight insulin
release (only
13.91%) in
SGF (pH 1.2)
within the first
4h.

In contrast,
rapid rising
rate in the first
4 h (38.03%)
at the pH 6.8
took place,
and the
cumulative
drug release
increased to
51.57% within
10 h, and
reached
80.54% after
60 h.

Only 14.03%
of cumulative
insulin
released at
pH 2, while
approximately
85% of insulin
was released
after 10 h at
pH 6.8
phosphate
buffer
solution.

Oral:

60

SC:

The blood
glucose level
decreased
after the oral
administration
of insulin-
loaded PEC
with the
maximal
blood glucose
reduction of
30% at 8 h,
and 20% after
12 h.

Insulin
concentration
in plasma
was
increased
gradually and
resulted in a
maximum
plasma
concentration
(41.5+4.4
plu mL™Y) at
10 h.

[z8]



