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The power of immunotherapy in the battle of Multiple Myeloma (MM) started with allogeneic stem cell transplantation, and

was rediscovered with immunomodulatory drugs and extended with the outstanding results achieved with targeted

antibodies. Today, next to powerful antibodies Elotuzumab and Daratumumab, several T-cell-based immunotherapeutic

approaches, such as bispecific antibodies and chimeric antigen receptor-transduced T-cells (CAR T-cells) are making their

successful entry in the immunotherapy arena with highly promising results in clinical trials. Nonetheless, similar to what is

observed in chemotherapy, MM appears capable to escape from immunotherapy, especially through tight interactions with

the cells of the bone marrow microenvironment (BM-ME). This review will outline our current understanding on how BM-

ME protects MM-cells from immunotherapy through immunosuppression and through induction of intrinsic resistance

against cytotoxic effector mechanisms of T- and NK-cells.
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1. Introduction

Multiple Myeloma (MM), the malignant disease of monoclonal, antibody-producing plasma cells in the bone marrow (BM),

is the second most common hematological malignancy, accounting for 20% of deaths from hematological malignancies.

For decades, the standard therapy of MM was based on high-dose chemotherapy with alkylating agents, mainly

melphalan, combined with autologous transplantation. Currently, new chemotherapeutic agents are available for the

treatment of MM including second- and third-generation proteasome inhibitors carfilzomib and ixazomib, and histone

deacetylase inhibitors panabinostat and vorinostat. However, even “low-risk” patients do not remain in long-lasting

remissions after traditional or novel MM treatments . Due to their high genetic instability and the support from the

BM microenvironment (BM-ME), MM-cells rapidly develop resistance to virtually all chemotherapies developed so far 

. To date, the only MM therapy with curative potential in a fraction of patients is allogeneic stem cell transplantation.

The allo transplantation can eradicate MM-cells due to the well-known graft versus Myeloma effect, which is

predominantly mediated by donor T-cells present in the graft. However, this unspecific form of allogeneic immunotherapy

is no longer the first choice of treatment, especially for “low and standard” risk patients, due to high rates of transplant-

related mortality and morbidity. Nonetheless, the “allogeneic transplantation practice” clearly illustrated immunotherapy

could be a curative option for MM patients, if it can be made selective for MM-cells. In fact, starting from the late nineties,

immunotherapy strategies have been successfully implemented in MM treatment. The sequential introduction of

immunomodulatory drugs (IMiDs) including thalidomide, lenalidomide and pomalidomide in MM treatment had a

significant positive impact on the life expectancy of patients who relapsed from standard chemotherapies. While patients

appeared to develop resistance against direct anti-MM effects of IMiDs, several analyses revealed that their T- and NK-

cell activating properties remained largely intact, making IMiDs ideal partners for combination immunotherapies .

IMiDs were rapidly followed by highly successful antibodies such as the SlamF7-specific Elotuzumab and the CD38-

specific Daratumumab. These antibodies achieve unprecedented response rates in heavily pretreated patients, especially

in combination with IMiDs and proteasome inhibitors .

Currently, much effort is being devoted to additionally exploit the full cytotoxic power of T-cells against MM by the

development of T-cell-engaging bispecific antibodies , MM-specific-alpha/beta or gamma-delta T-cells , chimeric

antigen receptor (CAR)-transduced T-cells  and vaccines to prime and activate MM-specific autologous T-cells

immunotherapy . Nonetheless, similar to the observations in several other cancers, the responses of MM patients to

immunotherapy are not long lasting, indicating that MM is also able to escape from these potentially very powerful

immunotherapy strategies.

The ultimate success of immunotherapy in MM and other cancers will largely depend on unraveling and effective

modulation of important immune escape mechanisms. Extensive research in the past decade already revealed the highly

immunosuppressive nature of the MM BM-ME. Furthermore, we and other investigators have discovered that the anti-

[1][2][3][4]

[1][2]

[3][4]

[5][6][7]

[8]

[9] [10]

[11][12]

[13]



apoptotic mechanisms, which are significantly upregulated by tight cellular interactions in the BM-ME, can induce an

intrinsic resistance in MM-cells towards cytotoxic mechanisms of immune cells. This review will mainly focus on the recent

findings on the BM-ME-induced immune resistance, after an overview of the immunosuppressive mechanisms in the MM

BM-ME.

2. Immunosuppression and Immune Exhaustion in Bone Marrow
Microenvironment

The gradual transformation of the asymptomatic monoclonal gammopathy of undetermined significance (MGUS) into to

symptomatic MM is associated with increased genetic mutations but also with significant changes in the cellular

composition of the BM-ME and the subsequent loss of functional immune surveillance . These cellular changes involve

the development and/or recruitment of various immunosuppressive cells, including myeloid derived suppressor cells

(MDSCs), regulatory T-cells (Tregs), regulatory B-cells (Bregs) and tumor-associated macrophages (TAMs) in the BM-ME

(Figure 1).

Among these cell subsets, MDSCs are a heterogeneous population of immature myeloid cells, phenotyped as

CD33 CD11b  but HLA-DR  cells within CD14  monocytic or CD15  granulocytic lineages. MDSC frequencies

gradually increased in the BM-ME during MM development, reaching highest levels in relapsed and/or refractory MM

patients . Especially driven by the activation of the STAT3 pathway that is stimulated through cytokines like interleukin 6

(IL-6) and vascular endothelial growth factor (VEGF), MDSCs possess the ability to suppress immune responses via a

number of mechanisms involving the secretion of nitric oxide (NO), arginase, reactive oxygen species (ROS),

prostaglandin E2 (PGE2), or Indoleamine 2,3-Dioxygenase (IDO). These immune suppressive cytokines can inhibit the

proliferation and expansion of Th1-cells, cytotoxic T-lymphocytes (CTLs) and NK-cells, and facilitate the differentiation and

the recruitment of TH17-cells, Tregs as well as TAMs in the microenvironment .

Tregs, characterized as CD4 CD25 Foxp3 CD127  T-cells, are undoubtedly the most extensively studied

immunosuppressive cell subset in cancer immunology and in the context of MM. Tregs are well known to inhibit Th1,

Th17, CTL, macrophage, and DC function by cellular interactions and via secretion of suppressive cytokines, such as

transforming growth factor beta (TGF-β) and IL-10 . The frequencies of Tregs gradually increase in the BM-ME from

progression of MGUS to overt MM disease . Conversely, it was shown that the frequencies of Tregs decrease

in MM patients after successful treatment with lenalidomide plus dexamethasone . Moreover, we found inverse

correlations between frequencies of recipient Tregs and their response to donor lymphocyte infusions . For Tregs, the

STAT3 pathway plays an important role in cellular development, proliferation and function, which is achieved through

upregulating the transcriptional expression of the hallmark of Tregs, FOXP3 . Interestingly, a common feature of all

immunosuppressive cells, including Bregs and TAMs, is that they all express high levels of CD38, which can be targeted

by CD38-directed antibodies including Daratumumab and Isotixumab . We have recently shown that Daratumumab

therapy rapidly depletes CD38  Tregs, MDSCs and Bregs in the peripheral blood and in the BM, and is associated with

clonal expansion of CD4  and CD8  T-cells in MM patients . Thus, it seems possible to use CD38-directed antibodies

to target not only MM-cells but also immunosuppressive cells, to restore the pre-existing anti-MM T-cell responses in the

BM-ME even after immune checkpoint blockade .

Figure 1. Bone marrow (BM) microenvironment-mediated mechanisms of immune evasion. The cells of the BM

microenvironment can mediate the escape of MM cells from immune system via three major mechanisms: immune

suppression, immune exhaustion and immune resistance. Regulatory T- and B-cells (Tregs and Bregs), myeloid derived
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suppressor cells (MDSCs), Tumor associate Macrophages (TAMs), dysfunctional dendritic cells (pDCs) as well as

mesenchymal stromal cells (MSCs) and osteoclasts generate a highly immune suppressive environment to suppress T-

and NK-cells. Immune exhaustion is the result of the upregulation of immune checkpoints such as PD1, TIGIT on immune

cells and their ligands on MM cells. The third mechanism of immune escape is the development of resistance against

cytotoxic killer mechanisms of immune effector cells mediated by soluble factors and especially by cell–cell contacts

between MSCs and MM-cells.

Next to these suppressive immune cells, mesenchymal stromal cells (MSCs) and osteoclasts also significantly contribute

to an immunosuppressive environment (Figure 1). It has been shown that the crosstalk between MM-cells and MSCs

mediated by toll-like receptor 4 (TRL4) signaling transforms MSCs into a “malignant” phenotype, which promotes tumor

growth and immune escape [27]. The MM-conditioned MSCs have been shown to suppress T-cell activation and

proliferation, impair DC maturation and induce Tregs via the secretion of several factors, including IL-6, TGF-β, IL-10,

PGE2, and upregulated expression of several surface molecules such as VCAM-1, intracellular adhesion molecule-1

(ICAM-1) and CD40 . Additionally, MSCs can exert their immunomodulatory activities by the secretion of

extracellular vesicles . Osteoclasts and other myeloid cells contribute to an immunosuppressive environment

especially by the production of A proliferation inducing ligand (APRIL), which is the ligand for BCMA that is expressed on

MM-cells and for TACI that is expressed on MM-cells and Tregs. APRIL not only facilitates MM-cell growth and survival

but also stimulates the upregulation of TGF-β and IL-10 in the BM-ME  and promotes the survival of Tregs via TACI

signaling .

Finally, the immune suppressive BM-ME involves strong upregulation of important immune checkpoint molecules during

the transition of MGUS to malignant MM (Figure 1). Expression of immune checkpoint molecule programmed cell death 1

(PD-1) on effector T- and NK-cells, and its ligands PD-L1/2 on MM-cells , is well-known to be induced and

enhanced through an immune-mediated IFN-γ response . The PD-L1/2 expression on MM-cells can also be promoted

through the stimulation of TLR ligands , interactions with MSCs  or signaling via APRIL [35]. While not much is

known about the involvement of immune checkpoints Lag3 and TIM3 in MM progression, the T-cell immunoglobulin and

ITIM domain (TIGIT), which is expressed on both T- and NK-cells , is perhaps another important immune checkpoint in

MM. It has recently been shown that progression of MM was associated with high levels of TIGIT expression on CD8  T-

cells, which displayed impaired proliferative and cytokine responses upon non-specific and MM-antigen stimulation .

Current clinical trials are evaluating the effects of antibody-mediated blockade of immune checkpoints alone or in

combination with IMiD therapies. Although immune checkpoint blockade only is not effective in heavily pretreated relapsed

and/or refractory MM patients , combination with lenalidomide plus dexamethasone was more successful in a phase

I trial . Nonetheless, in randomized phase three trials, the benefit–risk profile of PD-1 blockade plus lenalidomide and

dexamethasone was unfavorable, both in newly diagnosed and relapsed and/or refractory MM patients , raising

questions about future targeting of PD-1 and PD-L1 in MM . Possibly, additional modulation of the immune suppressive

tumor microenvironment is required. For example, a recent study introduced dual targeting of PD-1 and receptor activator

of nuclear factor kappa-B ligand (RANKL), that allows simultaneously blocking of immune checkpoint-mediated immune

suppression and reduction of osteoclast formation, which may increase immunotherapeutic anti-MM activity .

3. Immune Escape Mechanisms beyond Immune Suppression and
Immune Exhaustion

Over the past decade, considerable studies focused on immune suppression and immune exhaustion within the tumor

ME. Consequently, many researchers consider these two modes of immune modulation as the major, if not the only,

mechanisms of tumor immune escape. Obviously, there are also many other, “tumor intrinsic” mechanisms of immune

escape such as downregulation of MHC and/or costimulatory molecules, blockade of antigen processing machinery by

viral tumors, loss or mutation of the target antigen and upregulation of decoy receptors or complement inhibitory

receptors. All of these alterations in tumor cells will result in diminished effector T/NK-cell or complement function without

active immune suppression or exhaustion. While the role of the tumor ME in these mechanisms of immune escape is not

well studied, others and we have recently discovered and pointed out the potential importance of another mechanism of

immune escape in MM, which is strictly induced by the BM-ME (Figures 1 and 2). This type of “BM-ME-mediated immune

resistance” is also “tumor intrinsic” and is established by the intensive cross-talk of MM-cells with the cells of the BM-ME

via soluble factors such as IL-6, APRIL and growth factors, but most importantly via the integrin-mediated cell adhesion

and Notch signaling (Figures 1 and 2). At the molecular level, the BM-ME-mediated immune resistance is highly

associated with the inhibition of apoptosis  (Figure 2). Therefore, the next section will outline the main pathways of

apoptosis and how they are involved in the targeted cell lysis that is induced by immune killer cells including CD4  and

CD8  CTLs and NK-cells.
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Figure 2. Caspase-dependent and -independent apoptosis pathways utilized by cytotoxic T-cells (CTLs) and NK-cells and

mechanisms of bone marrow microenvironment-mediated immune resistance. Apoptosis, the programmed cell death that

is a consequence of DNA damage in the nucleus, occurs through caspase-dependent and -independent mechanisms.

Cytotoxic immune cells such as CTLs and NK-cells (not depicted) utilize both mechanisms to kill cancer cells. The most

important elements of both caspase-dependent and -independent pathways are depicted with green backgrounds. The

molecules depicted with red backgrounds are the negative regulators of these pathways. Green arrows depict the

activation, red arrows depict the inhibition/inactivation of the indicated molecules/processes. In caspase-dependent

apoptosis, the DNA-fragmentation is executed by caspase-3 and -7, which are activated  through two main pathways: i)

the Extrinsic Pathway that is initiated by triggering of death-cell receptors and is mediated by caspase-8, and ii) the

Intrinsic pathway that involves mitochondrial destabilization and is initiated by activation of BIM/BID by caspase-8 and

granzyme-B. CTLs and NK-cells mediate the caspase-independent apoptosis mainly by granzyme-A, which causes the

release of ROS through activation of the mitochondrial Complex I Protein Ndufs3. In this pathway, the enzyme NM23-H1

ultimately causes single stranded DNA damage by making DNA nicks. The indicated soluble factors produced by MSCs

and osteoclasts, but mainly the stroma-MM cell interactions via integrins and NOTCH can significantly upregulate the

negative regulators of apoptosis via the activation of the indicated survival/proliferation pathways. The final result of these

interactions between MM- and accessory-cells is the development of resistance against the cytotoxic machinery of

immune killer cells, in a similar fashion how drug resistance is induced.

4. Apoptosis, the Main Mechanism of Immune Cell-Mediated Tumor Cell
Lysis

Apoptosis, the programmed cell death, is a normal cellular event that occurs in countless amounts of cells every day. It is

the result of an irreversible cascade of molecular events, finally leading to DNA fragmentation and nuclear blebbing

(Figure 2). The major mechanisms of apoptosis induction are mediated by caspases. There are two major pathways to

initiate caspase-dependent apoptosis: i) through the stimulation of death receptors on the cell surface (extrinsic pathway)

and ii) through internal stress signals resulting in mitochondrial destabilization (intrinsic pathway). The extrinsic apoptotic

signaling starts with the ligand-induced clustering of one of the death receptors TNFR1, FAS, DR4 [TRAILR1], DR5

[TRAILR2], or DR6. Once clustered, the death receptors undergo allosteric conformational changes and bind the adaptor

protein FADD, which subsequently activates pro caspase-8. With the increased enzymatic activity, caspase-8 cleaves and

activates pro caspases-3 and -7, which are known as executioner caspases that can initiate DNA fragmentation in the

nucleus. The extrinsic pathway also intersects with the intrinsic pathway since caspase-8 is also capable of activating the

BID protein, an important initiator of the intrinsic pathway  . The intrinsic pathway involves the disruption of the

mitochondrial membrane. This is established by BID- or BIM-mediated activation of pro-apoptotic proteins BAK and BAX.

The activated BAK and BAX are recruited to the mitochondrial membrane where they form complexes to destabilize the

membrane. This results in the release of mitochondrial cytochrome C into the cytosol where it binds together with dATP to

Adapter Protein Apoptotic Protease-activating Factor-1 (Apaf-1) to form the so called “apoptosome”, which subsequently

recruits and activates pro caspase-9. Similar to caspase-8, activated caspase-9 is able to activate the executioner

caspases-3 and -7.

In our current understanding, induction of apoptosis is the main mechanism of CTLs and NK-cells to kill tumor-cells with

some reported exceptions . CTLs and NK-cells are known to utilize both the extrinsic and intrinsic pathways to induce

apoptosis. Upon tumor-cell encounter, they can activate death-receptor mediated extrinsic pathway via FAS-ligand and/or

TRAIL molecules expressed on their surface upon activation. Additional to CTLs and NK-cells, therapeutic death receptor

antibodies can directly mediate death receptor signaling .

The other major cytotoxic machinery of CTLs and NK-cells is the degranulation of perforin and granzyme-containing

cytotoxic granules within the immune synapse. Perforin generates holes in the target cell membrane and in the

membranes of endosomes to aid the entry of granzymes in the cytoplasm. Once entered in the cytoplasm, granzymes

initiate apoptosis by their serine protease activity. Among the five known human granzymes to date (granzymes -A, -B, -H,

-K, and -M), granzyme-A and -B are most abundant in the cytotoxic granules of CD4  and CD8  CTLs and NK-cells.

Additionally, NK-cells’ granules can also contain granzyme-M . While granzyme-B can directly activate effector

caspases-3 and -7, it preferentially mediates target cell killing by activating the intrinsic pathway of apoptosis through the

cleavage of BIM and/or BID .

Besides these well-known, caspase-dependent pathways of apoptosis, there are also caspase-independent apoptosis

pathways involving serine proteases, cathepsins and calpains . One of the caspase-independent mechanisms can be

activated by granzyme-A, which begins in the mitochondrion but does not involve BAK and BAX or cytochrome C release.

Instead, granzyme-A can cleave the mitochondrial Complex I Protein Ndufs3, which disrupts mitochondrial metabolism
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and generates reactive oxygen species (ROS) . ROS, in turn, initiates the translocation of endoplasmic reticulum-

associated SET/DNase NM23-H1 complexes into the nucleus, where SET is degraded, allowing NM23-H1 to nick

chromosomal DNA to induce single stranded DNA damage .

5. Inhibition of Apoptosis by the BM-ME

Over the past decades, intensive research addressing the role to the BM-ME in hematological malignancies clearly

demonstrated that the accessory cells of the BM can support the survival and proliferation of leukemia and MM-cells not

only by promoting growth but also by inhibiting apoptosis . The anti-apoptotic effects of the BM-ME are primarily

established by upregulation of anti-apoptotic regulatory proteins via the stimulation of RAS/MEK/ERK, JAK/STAT3,

PI3K/Akt as well as the NF-kB signaling pathways . For instance, multiple members of the BCL2 family of

proteins BCL-2, BCL-X  and MCL-1, which are known to negatively regulate BAK- and BAX-mediated mitochondrial

membrane destabilization , are significantly upregulated by activation of the above mentioned signaling pathways via

several soluble factors produced by BM MSCs such as IL-6, IGF-1 or VEGF . Additionally, the abundantly present

Insulin-like growth factor 1 (IGF-1) can downregulate the pro-apoptotic molecule BIM via activation of the AKT pathway

. Similar effects are also established by integrin-mediated adhesion of MSCs to MM-cells and other hematopoietic

tumor-cells .

The cross-talk between tumor-cells with the microenvironment via soluble factors or cell–cell contacts are also known to

significantly upregulate the Inhibitors of Apoptosis (IAP) family of anti-apoptotic proteins. The best-characterized members

of this family are XIAP and Survivin (BIRC5), which are frequently overexpressed in human tumors. Both IAP proteins

inhibit the executioner caspases-3 and -7, and XIAP additionally inhibits caspase-9. In the MM BM-ME, MSCs can

upregulate both XIAP and Survivin in MM and other tumors  through the stimulation of NF-κB signaling

, downregulation of the Survivin-targeting microRNA miRNA-101-3p [74] or through NOTCH signaling .

The BM-ME also influences the extrinsic apoptotic pathway as stroma-MM-cell interactions can significantly affect the

expression of death receptors. Soluble factors secreted from BM MSCs are known to upregulate the FLICE-like inhibitory

protein (c-FLIP) , which is an effective inhibitor of the caspase-8 activation by binding and reducing the availability of

FADD. In addition, integrin-mediated cell adhesion increases cytosolic solubility of c-FLIP and facilitates its binding to

FADD . Finally, MSCs also significantly inhibits the caspase-independent apoptosis, that can be induced by granzyme-

A, by reducing ROS levels and mitochondrial membrane potential via an upregulation of antioxidant production .

6. BM-ME-mediated Immune Resistance: the Proof of Concept

Concerning the aforementioned complex anti-apoptotic mechanisms, the BM-ME is known to induce perhaps the best

documented form of epigenetic, environment-mediated resistance to several anti-cancer drugs . Since the induction of

apoptosis is the main mechanism of tumor-cell elimination by immunotherapeutic T- and NK-cells, it is plausible that the

BM-ME also protects MM-cells from the cytotoxic machinery of CTLs and NK-cells. Over the past years, others and we

have addressed this interesting possibility in in vitro  as well as in a unique in vivo xenograft model where human

MM-cell lines were grown on human MSC-coated scaffolds . In these model systems, we demonstrated that the

cytotoxic activity of HLA-restricted, Myeloma-reactive CD4  and CD8  CTLs  and antibody-dependent cellular

cytotoxicity (ADCC) mediated by Daratumumab  against MM-cells are significantly diminished in the presence of MSCs

or human umbilical vein endothelial cells (HUVECs) without any signs of immune suppression or target antigen

downregulation . We designated this type of immune resistance as “cell adhesion-mediated immune resistance”

(CAM-IR) because the protection from CTLs by MSCs was predominantly mediated by direct MSC–MM-cell adhesion,

while soluble factors played only a minor role . Further analyses revealed that MM-cells upregulated anti-apoptotic

proteins Survivin and MCL-1 upon co-culture with stromal cells. Furthermore, the sh-RNA-mediated downregulation of

Survivin or inhibition of Survivin and MCL-1 expression with a small inhibitory molecule, YM155, largely abrogated the

protective effects of MSCs and synergistically upregulated the lysis of MM-cells by CTLs as well by Daratumumab in

ADCC assays . Hence, these experiments revealed, similar to BM-ME-mediated drug resistance, the proof of

concept that MSCs are able to induce an intrinsic immune resistance in MM-cells through upregulation of anti-apoptotic

proteins.

In these studies, we demonstrated that, like cell adhesion-mediated drug resistance (CAM-DR), CAM-IR can be inhibited

by blocking integrin binding on intact cells, but, unlike CAM-DR, CAM-IR cannot be induced by sole binding of MM-cells to

fibronectin, vitronectin, or laminin on its own . Immune resistance is therefore most likely triggered by a collective action

of integrins and other receptor-ligand systems. Possibly, NOTCH signaling plays a role in CAM-IR as it does in CAM-DR

. Addressing this intriguing possibility, we indeed observed that inhibition of NOTCH signaling by gamma secretase
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inhibitors (GSI) can also abrogate CAM-IR and increase the cytotoxic activity in a synergistic manner (manuscript in

preparation). Beyond these mechanisms, there might be other ways how BM-ME shields MM-cells from immune attack.

For instance, IL-6 can promote an NF-κB-dependent increase in c-FLIP expression in MM-cells, which was shown to

protect against recombinant TRAIL . Furthermore, NF-κB signaling as well as hypoxia can induce expression of the

serine protease inhibitor-9 (PI-9) in MM-cells , which inactivates granzyme-B and, thereby, can induce resistance

against cytotoxic immune cell-mediated lysis .

7. BM-ME-Mediated Immune Resistance against CAR T-cells, Bispecific
Antibodies and Death Cell Receptor Antibodies

Since the BM-ME-mediated immune resistance may have a great impact on novel immunotherapies, we recently

extended these studies to investigate whether BM MSCs can also protect MM-cells from novel immunotherapeutic

approaches such as CAR T-cells, bispecific antibodies and death receptor-mediated antibodies. In these studies, we

observed that MSCs could protect MM-cells from highly lytic BCMA-CAR T-cells only at very low effector to target cell

ratios, while they readily inhibited the MM-cell lysis by moderately lytic CD38-specific and CD138-specific CAR T-cells,

which were generated using intermediate to low affinity antibodies. Overall, we demonstrated a strong inverse correlation

between the avidity of CAR T-cells and the extent of MSC-mediated protection . For T-cell engaging bispecific

antibodies, we found similar results. While MSCs did not influence the lysis of MM-cells by highly lytic BCMA/CD3

bispecific antibodies , the somewhat lower cytotoxic activities of GPRC5/CD3 bispecific antibody was readily inhibited

by MSCs . Finally, when we tested a number of clinically applied DR5-antibodies, which exclusively activates the

extrinsic apoptotic pathway with no involvement of effector killer cells, we observed that MSCs could readily inhibit MM-

cell lysis induced by these antibodies . These recent results strongly suggested that BM-ME-mediated immune

resistance could be an important factor for the clinical outcome of novel immune therapies including CAR T-cells, T- or

NK-cell engaging (bispecific) antibodies or even death cell-receptor antibodies which do not involve effector killer cells.

8. Conclusions and Future Directions

Our recent studies illustrate that, besides immunosuppression and immune exhaustion, apoptosis resistance induced by

cellular interactions is another important mechanism of immune evasion in the BM-ME. It is highly likely, and may even be

imperative, that these three major mechanisms of BM-ME-mediated immune evasion should all be targeted in order to

achieve successful and long-lasting outcomes from T- and NK-cell-based therapies. The modulation of BM-ME-mediated

immune resistance is also highly important for antibody therapies, including antibody-drug conjugates, which are designed

to directly induce apoptosis in MM-cells. In this context, a plausible option is to maximize the killing capacity of bispecific

antibodies, death receptor antibodies and CAR T-cells by increasing their affinity to MM-cells. Another option could be to

improve the overall avidity of T-cells toward MM-cells by endowing them with dual or multiple CARs, whereby more than

one single MM-associated antigen can be targeted . Improving the interaction between T-cells and MM-cells this way

can also result in more efficient lysis levels, which is required to overcome the BM-ME-mediated resistance. In addition,

CAR T-cells may benefit from the incorporation of the CD28 costimulatory domain in the CAR constructs, since this co-

stimulatory domain improves the cytotoxic activity also of low affinity CAR T-cells . However, when the target antigen is

not entirely MM-cell specific, such is the case with CD38 or SlamF7, increasing the affinity of (bispecific) antibodies or

CAR T-cells may increase the risk of off-tumor toxicity. Therefore, it may be preferred to modulate the BM-ME-mediated

immune resistance by including pro-apoptotic agents such as inhibitors of MCL-1, BCL-2 or Survivin. As mentioned, we

successfully modulated the MSC-mediated immune resistance using YM155, a small molecule inhibitor of Survivin and

MCL-1. In more recent studies we used another novel small molecule, FL118, which inhibits multiple anti-apoptotic

proteins including Survivin, MCL-1, and XIAP . This small molecule, which is effective against multiple drug-resistant

solid tumors, also demonstrates potent single agent anti-MM activity and was able to abrogate MSC-mediated drug

resistance in our recent preclinical studies . In our preliminary studies, FL118 is also able to largely abrogate the

MSC-mediated immune resistance against HLA-restricted T-cells, CAR T-cells, Daratumumab and DR5 antibodies,

without showing toxicity for immune cells  (manuscript in preparation). These results illustrate once again that there

are converging mechanisms of BM-ME-induced drug and immune resistance and provide opportunities to effectively

modulate immune resistance with agents that are already known to modulate drug resistance, such as FL118.

Nonetheless, the converging mechanisms between BM-ME-induced drug resistance and immune resistance also suggest

that heavily pretreated multidrug-resistant patients are not the ideal candidates for immunotherapy. Thus, towards cure of

MM, the ideal design of a future clinical trial would not only be based on combination therapies that can tackle immune

suppression, immune exhaustion as well as BM-ME-mediated resistance to apoptosis, but would also be applied in an

earlier stage, long before the BM-ME can induce resistance in MM-cells against conventional and less effective drugs.
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