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Human cytomegalovirus (HCMV) expresses a variety of viral regulatory proteins that undergo close interaction with

host factors including viral-cellular multiprotein complexes. The HCMV protein kinase pUL97 represents a viral

CDK ortholog (vCDK) that determines the efficiency of HCMV replication via phosphorylation of viral and cellular

substrates. A hierarchy of functional importance of individual pUL97-mediated phosphorylation events has been

discussed, however, the most pronounced pUL97-dependent phenotype could be assigned to viral nuclear egress,

as illustrated by genetic ORF-UL97 deletion or pharmacological pUL97 inhibition. Despite earlier data pointing to a

cyclin-independent functionality, experimental evidence increasingly emphasized the role of pUL97-cyclin

complexes. Consequently, the knowledge about pUL97 involvement in host interaction, viral nuclear egress and

additional replicative steps led to the postulation of pUL97 as an antiviral target. Indeed, validation experiments in

vitro and in vivo confirmed the sustainability of this approach. Consequently, current investigations of pUL97 in

antiviral treatment go beyond the known pUL97-mediated ganciclovir prodrug activation and henceforward include

pUL97-specific kinase inhibitors. Among a number of interesting small molecules analyzed on experimental and

preclinical stages, maribavir is presently investigated in clinical studies and, in the near future, might represent a

first kinase inhibitor applied in the field of antiviral therapy.
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1. The Present Status of Controlling HCMV as a Major Human
Pathogen

1.1. Molecular Biology of HCMV and Its Lytic Replication in Permissive Cells

HCMV, the prototypic β-herpesvirus, represents a major human pathogen and is characterized by a multifaceted

mode of virus-host interaction. HCMV seroprevalence in the adult population ranges between approximately 40%

to 90% and reaches even higher levels, of more than 95%, in countries with a low socio-economic standard .

HCMV exerts a strict species specificity and a comparably slow replication cycle spanning approximately three

days in vitro . Viral genomic DNA replication takes place in the nucleus and the double-stranded viral genome

is packaged into capsids, which then undergo nuclear egress and budding through the nuclear membranes . In

the cytoplasmic virion assembly complex (cVAC), capsids are assembled with tegument proteins, before fully

enveloped virus particles of approximately 150–200 nm are formed in the trans-Golgi network and released from

the cell by final transition through the cytoplasmic membrane . In addition to highly productive lytic infection of
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major target cells, such as fibroblasts, smooth muscle cells, endothelial and epithelial cells , HCMV

causes life-long persistence by latent infection of minor target cells, such as monocytes/macrophages and CD34

hematopoietic stem cells, in which latent HCMV may undergo reactivation resulting from immune insult, allogenic

stimulation or differential signals (reviewed in ).

1.2. Pathogenesis of HCMV Infection

Due to the fact that primary and nonprimary infections (i.e., reactivation or reinfection) are mostly asymptomatic in

healthy, immunocompetent individuals, HCMV infection usually remains clinically unrecognized. In contrast,

patients with a compromised immune system, such as transplant recipients or AIDS patients, severely suffer from

HCMV-related diseases, such as interstitial pneumonia, retinitis, gastroenteritis, esophagitis and organ failure,

resulting in an increased mortality and morbidity . Importantly, the immature immune system is a high

risk factor for congenital cytomegalovirus infection (cCMV) of embryos and infants; thus, HCMV represents the

most frequent cause for pathogen-derived developmental defects triggering mental retardation, loss of hearing or

vision and microcephaly . HCMV is one of few viruses that are able to cross the placenta

efficiently, i.e., at least 33% of all primary infections during pregnancy of seronegative mothers, and an additional

lower percentage of nonprimary infections undergo virus transmission resulting in cCMV infection of the unborn 

. Thus, in Germany, approximately 3500 out of 700,000 newborns acquire cCMV per year . Because of the

lack of comprehensive HCMV screening, it is understood that approximately 10% of these are symptomatic at birth,

including cases of stillbirth, and another 10%–15% may acquire symptoms at a later onset. HCMV can be

transmitted by various body fluids, such as saliva, breast milk, vaginal secretions, semen and leukocytes

containing blood and urine .

1.3. Current Options of Prevention and Control

Until today, no vaccine has been approved to control HCMV infections. Despite 60 years of intensive HCMV

research, only a few antiviral drugs have been approved, which mostly interfere with the viral DNA polymerase

pUL54, i.e., nucleoside/nucleotide analogs, such as the gold standard ganciclovir (GCV), its prodrug valganciclovir

(VGCV), cidofovir (CDV) and the pyrophosphate analog foscarnet (FOS). Unfortunately, these drugs frequently

cause severe side-effects, such as myelotoxicity, anemia and nephrotoxicity, or show poor bioavailability, which

drives the selection of drug resistant virus variants . In 2017, letermovir (LMV), the first anti-HCMV

drug that targets the viral terminase complex consisting of pUL56, pUL89 and pUL51 core-subunits, was

successfully assessed in clinical trials. Currently, LMV is approved for HCMV prophylaxis in hematopoietic stem

cell transplantation recipients. LMV also represents a promising candidate for future combination therapies or even

options of cCMV control . However, based on the occurrence of LMV-resistant viral mutants  and the

present lack of an approved treatment option for infants, the requirement of new antiviral drugs is still emphasized.

This situation underlines the necessity of basic research to refine the understanding of the manifold and complex

HCMV-host interplay and antiviral targeting strategies.
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2. HCMV-Encoded Protein Kinase pUL97, a Multifunctional
CDK Ortholog (vCDK)

2.1. Characteristics of the HCMV-Encoded Protein Kinase

pUL97 is a tegument protein, which is packaged into virions and is expressed with early-late kinetics . The 707-

amino acid protein exists in three isoforms due to alternative initiation of translation at residues M1, M74 or M157,

resulting in protein varieties of approximately 100 kDa, 80 kDa and 70 kDa, respectively (Table 1, Figure 1) . The

full-length kinase possesses two NLS sequences in the poorly structured N-terminus, which mediate the

predominantly nuclear localization of pUL97 . The kinase domain was assigned to the globular C-terminal

part, amino acids 337–651, based on sequence homologies or extended to 337–706, based on biochemical

validation . An invariant lysine residue at position 355 is essential for kinase activity, thus leading to the

catalytically inactive K355M mutant . Dimers and oligomers are formed via the self-interaction domain

(amino acids 231–280) of pUL97 . Interestingly, the direct association of pUL97 with human cyclins has been

demonstrated and, hereby, the core region responsible for cyclin T1 binding proved to be identical with the pUL97

self-interaction domain , thus illustrating a functional role of cyclins in pUL97 dimerization/oligomerization 

. Concerning the properties of protein interaction and substrate phosphorylation of pUL97, a number of viral

as well as cellular proteins have been identified thus far [see references in legend of Figure 1]. The functionality of

these substrates spans various regulatory aspects of viral replication, such as nuclear egress, intrinsic immunity,

genome replication and gene expression (Table 1, Figure 1). Notably, several of the pUL97-specific substrate

proteins also represent substrates of cellular CDK-cyclin complexes and may thus underlie a process of dual

phosphorylation through these two different kinds of protein kinases in HCMV-infected cells. While sequence

conservation between the open reading frame ORF-UL97 and other kinases is generally low, functional and

structural similarities have been identified between pUL97 and CDKs, so that pUL97 was termed as a

multifunctional viral CDK ortholog (vCDK). Importantly, both deletion of ORF-UL97 or pharmacological inhibition of

pUL97 activity resulted in a strong delay of HCMV replication , likewise explained by the fact that the

kinase exerts many regulatory functions during viral replication (Table 1). On this basis, pUL97 could be validated

as an interesting target for novel antiviral strategies and a panel of small molecule-type inhibitors of pUL97 activity

belonging to different chemical classes has been described during the last years (see below, Section 3, Section 4,

Section 5 and Section 6).
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Figure 1. Schematic illustration of the modular structure and the so far identified binding regions within pUL97 .

The kinase domain is located between amino acids 337 and 706, as based on biochemical validation (or 337 and

651, as based on sequence homologies). K355 is an invariant lysine residue required for kinase activity.

Expression of three pUL97 isoforms is determined by alternative translational initiation sites at M1, M74 and M157.

Two nuclear localization signals (NLS1 and NLS2) are contained in the N-terminal unstructured portion of pUL97.

Self-interaction/oligomerization of pUL97 is determined by amino acid region 231–280. This region overlaps with a

minimal binding region for cyclin T1. Recent modeling approaches based on the in silico prediction of binding

interfaces suggested extended binding interfaces for cyclins T1, B1 and H. Moreover, pUL97 is involved in the

multiple regulatory steps during HCMV replication through the phosphorylation of viral and cellular substrates (see

horizontal bars), as reported by several independent groups 

. Substrates include the viral DNA polymerase cofactor pUL44, viral RNA transport factor

pUL69, major tegument protein pp65, nuclear egress core protein heterodimer pUL50–pUL53, cellular multi-ligand

binding protein p32/gC1qR, tumor suppressor/checkpoint protein Rb, nuclear lamins A/C, RNA polymerase II,

translation factor EF-1δ, interferon-inducible proteins IFI16 and SAMHD1, as well as the therapeutically applied

nucleoside analog ganciclovir (GCV;  and references therein). Interaction regions for GCV and the ATP-

competitive pUL97 inhibitor maribavir (MBV) were defined by the location of resistance mutations detected so far

(GCV: 405, 460, 466, 520, 590, 591, 592, 594, 595, 596, 597, 598, 599, 600, 601, 603, 607; MBV: 337, 353, 397,

409, 411). Note that this Figure represents a refined update, as adapted from an earlier version published

elsewhere ; here, this also includes the hitherto mapped regions of resistance mutations against GCV and MBV,

which possess high relevance for the discussion of an advanced antiviral drug targeting.

Table 1. Characterization of the molecular features and functional properties of the HCMV protein kinase pUL97.
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Property General Description Specific Feature
Own

Findings (MM
lab.)

Various
References

Type of kinase Ser/Thr
target site P + 5,
target site LxSP

Molecular mass,
basic features 100/80/70 kDa

isoforms due to alternative
translational start sites

Expression pattern

three isoforms M1,
M74, M15 (referring
to other herpesviral

protein isoforms)

differences in substrate
binding, nuclear

translocation and drug
susceptibility

Similarity and
sequence

conservation with
other kinases

low

<35% identity with
herpesviral kinases, <15%

identity with cellular
kinases

Sequence
conservation ORF-

UL97 of HCMVs
high

no variation of translational
start sites, NLS sequences

or kinase domains

Related to cell
kinases

cyclin-dependent
kinases (CDKs), viral

CDK ortholog

functional overlap with
CDKs, specific crosstalk
with CDK9, CDK7 and

CDK1, direct interaction
with cyclins

Coregulation of
viral replication by
pUL97 and cellular

kinases

several novel cellular
kinases, including
CDKs, identified to

be involved in HCMV
replication

virus-supporting functions
in signaling pathways and

nuclear capsid egress

Substrate proteins viral, cellular

pUL44, pUL69, pp65, Rb,
p32/gC1qR, nuclear

lamins, EF-1δ, RNAP II,
IFI16, SAMHD1

(references
therein)

 (see also
refs. in Figure

1)

Involvement in
intrinsic immunity

evasion

stimulation of viral
counterdefense of

immunity

interaction with cellular
restriction factors IFI16 and

SAMHD1

Auto-
phosphorylation

pronounced auto-
phosphorylation

activity, several N-
terminal Ser and Thr

residues

autophosphorylation most
probably required for

kinase
activity/autoactivation
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Property General Description Specific Feature
Own

Findings (MM
lab.)

Various
References

Nucleoside
phosphorylation

ganciclovir,
valganciclovir,

penciclovir, acyclovir,
etc.

prodrug-activating
monophosphorylation as

an essential step in
antiviral therapy

Incorporation into
virions

component of virion
tegument

virion-derived pUL97
possesses highly

detectable kinase activity

Intracellular
localization mainly nuclear

two nuclear localization
signals, NLS-1 (6–35),

NLS-2 (164–213), classical
importin-α pathway

Inhibitors of pUL97
small molecules

(<500 Da, various
chemical classes)

indolocarbazoles,
benzimidazoles,

quinazolines, others

(references
therein) 

Phenotype of
pUL97 inhibition or

UL97 deletion

strongly reduced
viral replication
efficiency (100–

1000-fold)

delayed replication kinetics;
impaired genomic

replication; impaired viral
nuclear egress

The interaction between HCMV pUL97 and human cyclins of the types B1, T1 and H has been described in our

earlier reports . The three cyclins obviously possess different affinities in terms of strength of pUL97

binding detected by coimmunoprecipitation (CoIP)- and mass spectrometry (MS)-based analyses. In case of cyclin

B1, a requirement of catalytic activity of pUL97 for cyclin binding was identified, whereas in case of cyclin H, pUL97

interaction was found dependent on the environment of HCMV replication . Recently published data indicate a

substrate-bridging function of cyclin(s) for the binding of pUL97 to its substrate pp65, as determined with a pp65

mutant lacking a putative cyclin-docking motif .

Previous investigations led to the postulate of a substantial relevance of pUL97-cyclin interactions, as

characterized by the following findings: (i) The HCMV kinase pUL97 acts as a structural CDK ortholog originally

based on our bioinformatic modeling and biochemical analyses. (ii) Our initial report on pUL97-cyclin T1 interaction

could be extended to additional types such as cyclins B1 and H . (iii) The interaction pUL97-cyclins

B1/T1/H was confirmed by several methods including highly sensitive mass spectrometry-based proteomics. (iv)

Specifically, the interaction pUL97-cyclin B1 was found to be phosphorylation-dependent for both proteins. In

addition, cyclin B1 (but not H) was phosphorylated by pUL97 in vitro . (v) Using a protein assembly-based CoIP

assay, the formation of binary and ternary complexes involving pUL97, cyclin H and CDK7 was identified, thus

suggesting a cyclin bridging concept . A central finding was that regions responsible for cyclin T1 interaction of

pUL97 and pUL97-pUL97 self-interaction showed an overlap in N-terminal amino acids 231-280 (Figure 1; ).
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These data strongly suggest that cyclin binding is involved in pUL97-pUL97 self-interaction and very recent

findings specified this activity for cyclin types T1 and H (but not B1), thus confirming the bridging function of cyclins

T1/H in pUL97 dimerization or hetero-oligomerization. This self-interaction property is known to be a factor required

for developing full catalytic activity of the pUL97 kinase [see references in Table 1]. The amino acid region 231–280

of pUL97 is considered as a minimal binding region for cyclin T1, which may be complemented by the additional

binding of globular domain interfaces of pUL97 in the further C-terminal region, contributing to cyclin binding in a

type-specific manner (cyclin T1, amino acids 361–532; cyclin B1, 363–647; cyclin H, 328–532; Figure 1; ).

In order to address the question of which spectrum of different types of human cyclins may associate with the viral

pUL97 kinase, two specific experimental approaches have recently been performed. Firstly, a recombinant HCMV

expressing a Flag-tagged version of pUL97 (namely the largest, fully functional isoform M1 of pUL97 encoded by

HCMV AD169-UL97(Mx4)-Flag; ) was used for Flag-specific coimmunoprecipitation settings. The CoIP samples

were then applied in a mass spectrometry-based (MS) proteomic assessment of pUL97-associated viral (Table S1)

and cellular proteins (Table S2). HCMV AD169, expressing untagged pUL97, was used as a CoIP/MS specificity

control. The identified viral proteins included several known interactors and/or substrates of pUL97 and showed a

substantial overlap with those detected in our similar approach performed earlier, as based on the CoIP of pUL97-

cyclin complexes using cyclin-specific antibodies . Cellular proteins identified by this approach contained cyclins,

CDKs and additional host proteins confirming earlier findings of pUL97-specific protein complexes. Notably, cyclins

T1 and B1 were again safely detected, as those types of cyclins had been found by a variety of methodological

approaches before (summarized in Table 2). Secondly, a panel of cyclin-specific antibodies were employed in a

broader setting of CoIP analysis to learn more about the overall spectrum of pUL97-cyclin interaction.

Representative members of the functional groups of cyclin types have been chosen, i.e., B-like, C-like and Y-like

cyclins (Table 2, Supplementary Materials Figure 1). To this end, the cyclin-specific CoIP of pUL97 was then

performed, again on the basis of total lysates prepared from HCMV-infected primary fibroblasts, followed by a

quantitative assessment based on densitometric measurements (in duplicates, using two series of stained

CoIP/Wb filters). The results, on the one hand, confirmed our earlier postulate that pUL97 strongly interacts with

cyclin types B1, T1 and H (the latter primarily with pUL97 expressed in HCMV-infected cells, but very poorly with

pUL97 transiently expressed in transfection-based settings; ). On the other hand, even more types of human

cyclins could be additionally detected, either with moderate/weak (cyclins E, F and Y) or strong (cyclins B2 and K)

properties of pUL97 interaction (Figure S1, Table S3 and Table 2). This topic of cyclin specificity of pUL97 and its

functional relevance for HCMV replication will be further investigated by the use of recombinant HCMVs expressing

mutant versions of pUL97 carrying cyclin-binding defects.

Table 2. Summarized findings of pUL97-cyclin interaction derived from complementary experimental settings *.

A HCMV-Infected Cells B Recombinant Expression

 Cyclin
Types

Cyclin IP
MS|Wb

pUL97 IP
MS|Wb

Colocalization
in IF Transfection

Yeast Two-
Hybrid
System

Phosphorylation by
pUL97 in IVKA

B-
like

Cyclin + ± - - . . . .

[55][56]

[44]

[55]

[55][56]
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A HCMV-Infected Cells B Recombinant Expression

 Cyclin
Types

Cyclin IP
MS|Wb

pUL97 IP
MS|Wb

Colocalization
in IF Transfection

Yeast Two-
Hybrid
System

Phosphorylation by
pUL97 in IVKA

A

Cyclin
B1 + + + - + + . +

Cyclin
B2

- + - - - . . .

Cyclin
D1

- - - - - - . .

Cyclin
E

± ± - - . . . .

Cyclin
F

. ± - - . . . .

C-
like

Cyclin
H + + - - + - - -

Cyclin
K

. + - - . . . .

Cyclin
L2a

. - - - . . . .

Cyclin
T1 + + + + + + + -

Y-
like

Cyclin
Y

. ± - - . . . .

*Data on pUL97-cyclin interaction were derived from the experimental settings of either mass 188 spectrometry-

based proteomics (MS) or Western blot detection (Wb), both performed by the use of 189 coimmunoprecipitates

derived from cyclin-specific immunoprecipitation (cyclin IP) or pUL97 190 immunoprecipitation (pUL97 IP).

Colocalization patterns between pUL97 and individual cyclins, in 191 particular nuclear punctate patterns of

accumulation in viral replication centers, were determined by 192 indirect immunofluorescence (IF) double-

stainings and confocal imaging. Recombinant expression of 193 pUL97 and/or cyclins was performed by transient

transfected of 293T cells (transfection), yeast cells 194 (yeast two-hybrid assay) or bacterial expression systems,

the latter for analyzing the phosphorylation 195 of recombinant cyclins by transfection-derived pUL97 in the in vitro

kinase assay (IVKA). In panel A, 196 the criteria of categorization were set as follows: +, strong pUL97-cyclin

interaction (MS: WSC ≥4; Wb: 197 % IP values > 20% IP control and ≥15-fold above Flag neg. control); ±, weak

interaction (MS: WSC = 3; 198 Wb: % IP values >20% IP control or ≥15-fold above Flag neg. control); -, no

detectable interaction; ., 199 not determined.
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2.2. Phosphorylation of a Panel of Regulatory Viral Proteins and Host Factors
through pUL97

Notably, pUL97 phosphorylates several viral and cellular proteins (see horizontal bars in Figure 1 for those binding

regions within pUL97 that have been mapped thus far), including the viral DNA polymerase cofactor pUL44 ,

viral RNA transport factor pUL69 , major tegument protein pp65 , nuclear egress core proteins pUL50-pUL53

, cellular multiligand binding protein p32/gC1qR , tumor suppressor protein Rb , nuclear lamins A/C

, RNAP II , translation factor EF-1δ , interferon-inducible, intrinsic immune restriction

factors IFI16  and SAMHD1  (Figure 2; Table 3; compare with Table S1S3).

Figure 2. The cytomegalovirus-encoded CDK-like protein kinase pUL97 interacts with cyclins and phosphorylates

a number of viral (encircled in orange) and cellular (encircled in green) substrate proteins.

Table 3. Characteristics of viral and cellular substrate proteins of the HCMV vCDK pUL97 as well as pUL97-

associated cyclins.

[76]

[63] [69]
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It should be emphasized that the pUL97 substrate proteins belong to several functionally different groups (Table 3),

thus underlining the multifunctional nature of this singly expressed viral protein kinase. Viral proteins interacting

with and being phosphorylated by pUL97 span the regulatory areas of viral nuclear egress (pUL50-pUL53 core

NEC), genome replication (pUL44), tegumentation and immune-regulatory functions (pp65), viral RNA transport

(pUL69) and the pUL97-pUL97 autophosphorylation/autoregulation associated with the formation of dimers and

Protein
Origin Designation Function Remarks References

Viral pUL50
core nuclear egress

protein (NEC)

forms the NEC groove, multiple
PPIs, phosphorylated by viral and

cellular kinases

Viral pUL53
core nuclear egress

protein (NEC)

forms NEC hook, possibly docking
to capsids, phosphorylated by viral

kinase

Viral pUL44
DNA polymerase pUL54

processivity factor
phosphorylation might regulate

activity

Viral pp65 major tegument protein
massively phosphorylated and
virion-associated with pUL97

Viral pUL69 RNA transport regulator phosphorylation regulates activity

Viral pUL97
CDK-like serine/threonine

protein kinase,
multifunctional

dimers/oligomers,
autophosphorylation

Cellular p32/gC1qR
multiligand binding protein,

multifunctional
NEC bridging factor

Cellular lamins A/C
structural and regulatory

components of the nuclear
envelope

lamin phosphorylation is a rate-
limiting step of viral nuclear egress

Cellular Rb
retinoblastoma protein, cell
cycle check-point regulator

multiply phosphorylated by CDKs
and pUL97

Cellular IFI16 and
SAMHD1

intrinsic immune restriction
factors of virus infections

interferon-induced,
phosphorylation-controlled

Cellular RNAP II
main cellular mRNA

transcriptase
activity-regulated by C-terminal

phosphorylation (CTD)

Cellular EF-1
translation elongation

factor 1 delta
activity-regulated by

phosphorylation

Cellular cyclins
regulatory subunits of

CDKs

types B1, H, T1 were found
pUL97-associated (possibly also

B2, K, others)

[62][77][78][110]

[136][137]

[73][138][139]

[76][114]

[44][60][69]

[63][100][140]

[141]

[50][53][54][83]

[87][120][124]

[68][72][142]

[57][67][68][71]

[80][143]

[48][57][101][113]

[116]

[70][115][117]

[118][144]

[59][61][74][106]

[53][75]

[55][56][58][67]

[108]
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oligomers. As far as cellular substrates are concerned, the following regulatory areas are addressed: nuclear

egress (lamins A/C, p32/gC1qR), cell cycle control (Rb, cyclins), intrinsic immune regulation (IFI16, SAMHD1) and

transcription/translation (RNAP II, EF-1δ). The entity of this spectrum of pUL97-driven processes in virus-infected

cells illustrates the functional importance of pUL97 for a high efficiency of viral replication, as demonstrated by the

defects of recombinant viruses carrying UL97 deletions/mutations (up to factor 100–1000). Interestingly, the

dimension of a replication defect resulting from drug-inhibited pUL97 was demonstrated to be more drastic in non-

cycling compared to cycling cells , probably referring to the crosstalk and functional complementation between

active cellular CDK-cyclin complexes and the vCDK. Moreover, the complex patterns of protein-protein interactions

(PPI) undergone by pUL97 have recently been revealed by the use of highly sensitive mass spectrometry-based

proteomic and phosphoproteomic approaches . These findings make the occurrence of higher-order,

pUL97-associated PPI complexes seem highly likely.

2.3. HCMV pUL97 and Related Herpesviral vCDKs

Most pUL97-related herpesviral kinases function as viral CDK orthologs (vCDKs). They were also termed

conserved herpesviral protein kinases (CHPKs), as encoded by a gene conserved throughout the family

Herpesviridae (e.g., prototype pUL97 and homologous kinases). Despite conservation of the UL97 gene locus,

substantial variation of the primary coding sequence has been identified between herpesviruses. In addition to

CHPKs, a second protein kinase is encoded by an additional non-conserved gene restricted to the subfamily α-

Herpesvirinae (e.g., prototype pUS3 kinase of herpes simplex virus). CDK activity has been shown to be involved

in multiple steps during HCMV infection . vCDKs phosphorylate typical CDK substrates such as Rb and lamins

A/C and show CDK activity in a yeast complementation assay . The Saccharomyces cerevisiae mutant

lacking activity of its sole CDK, cdc28, shows growth arrest in the early S/late G1 phase, which is overcome by

CDK1 (human), pUL97 (HCMV), pU69 (HHV-6 and -7) and BGLF4 (EBV) expression . In addition, pUL97 and

CDK share substrate proteins, such as pUL69, RNAP II and EF-1δ . Of note, pUL97 and CDKs

phosphorylate Rb at the same residues (S780, S807, T821), leading to the inactivation of the cell cycle-inhibitory

and tumor suppressor functions of Rb  (Table 4). In addition, the suppression of CDKs 1, 2, 5 and 9 by

indirubin-derivatives increases the HCMV-inhibitory effect of maribavir (MBV), a potent pUL97 inhibitor . Thus,

pUL97 and CDKs possess at least partially overlapping functions.

Table 4. Comparison of distinct molecular characteristics shared between vCDK pUL97 and human CDKs.

[145]

[55][56][72][88]

[146]

[57][62][67][80]

[57]

[63][75][81][100]

[62][147][148]

[58]

Kinase
Characteristics pUL97 CDK1 CDK7 CDK9

Amino acids (aa) 707 297 345 372

Aa sequence identity
to pUL97 100% 4.5% 4.2% 8.6%

Cyclin binding
partner 

cyclin B1
cyclin H
cyclin T1

cyclin A1/A2
cyclin

B1/B2/B3

cyclin H
cyclin A2

cyclin B1/B2

cyclin T1/T2
cyclin H[56][149][150]
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3. Validation of vCDK pUL97 as an Antiviral Target and
Various pUL97 Inhibitors Explored as Experimental Antiviral
Drugs

3.1. Role of the pUL97 Kinase in Anti-HCMV Standard Therapy

The HCMV-encoded CDK ortholog pUL97 has significance in the therapy of HCMV infections, as it is responsible

for the phosphorylation-mediated activation of GCV/VGCV, still representing the therapy gold standard and,

similarly, additional nucleosides such as acyclovir (ACV), penciclovir (PCV) and others . Hereby, the

specific role of pUL97 is that nucleoside analogs have to be initially monophosphorylated in a step catalyzed by

Kinase
Characteristics pUL97 CDK1 CDK7 CDK9

cyclin D1/D3
cyclin F
cyclin K

(activating)

cyclin E
(activating)

cyclin K
(activating)

Region in the kinase
required for cyclin
binding 

cyclin T1:
ESQDSAVASGPGRIPQPLSGSSGEESATAVEADSTSHDDVHCTCSNDQII

and in silico-predicted binding interfaces for cyclins B1, H and T1 spanning aa
328–647

cyclin B1: a
positively
charged

region in the
N-lobe

(containing
K6, K9, K34,

R36, R75,
excluding

the PSTAIRE
helix)

cyclin A2:
PSTAIRE

cyclin H:
NRTALRE

cyclin T1/T2,
K:

PITALRE

Cyclin
phosphorylation cyclin B1

cyclin B1
S126 by

CDK1 S128
by CDK1

cyclin H by
CDK7/CDK8-

cyclin C
(inhibitory)

n.d.*

T-loop
phosphorylation 

no, (possibly S483)
T161 by

CAK
(activating)

S164 and
T170 by

CDK1/CDK2
(activating)

T186 by
CaMK1D or
CDK9 (S175
by CAK, not
essential for

activity)

Autophosphorylation
yes no

(yes) outside
the T-loop

yes within
the T-loop

Rb phosphorylation
S780, S807, S811, T821, T823, T826

S249, T252,
T373, S807,

S811
no

C-terminus
(793–834)

p53 phosphorylation n.d. S315
S33 (MAT1-
dependent)

S33, S315,
S392

Lamin A/C
phosphorylation S22 (inhibitory)

S22, S392
(inhibitory)

no no

CTD RNAP II
phosphorylation S2, S5 (activating) no

S2, S5, S7
(activating)

S2, S5, S7
(activating)

[55][151][152]

231 280

45 51

56 62
60 66

[56]

[55][149][153][154][155][156]

[56]

[157][158][159][160][161]

[162][163][164]

[120][158][159]

[55][62][88][148][165][166]

[167][168][169]

[67]

[143][170][171]

[74]

[172][173]

[91][123][177]
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pUL97 kinase . Thereafter, the active triphosphate metabolites have to be generated in a series of steps of

further phosphorylation catalyzed by human guanylate kinase, dGMP kinase, phosphoglycerate kinase and

potentially other host kinases . In the triphosphate form, these analogs represent the active antiviral

determinants, then acting as a substrate of the HCMV DNA polymerase, ultimately inhibiting the elongation of viral

genome synthesis.

3.2. Target Validation and pUL97 Inhibitors

Genetic mutation studies showed that pUL97 plays a rate-limiting regulatory role for the replication efficiency of

HCMV and virus titers were reduced by orders of magnitude when the coding sequence was disrupted .

Moreover, pharmacological inhibition of pUL97 activity by small molecules derived from various chemical classes

blocked viral replication in a manner corresponding to the pUL97 null phenotype and thus proved to be a potent

antiviral targeting strategy . Since then, the pharmacologic inhibition of pUL97 activity together with genetic

techniques have helped to characterize the mechanisms of pUL97 supporting the viral replication and virus–host

kinase interactions . A number of inhibitors of pUL97 kinase activity have been identified that exert

potent antiviral activity against HCMV . These include indolocarbazoles , quinazolines 

 and benzimidazole analogs  (Figure 3). A number of detailed investigations, both on cell culture-based

in vitro and preclinical in vivo animal models, underlined the high value of this antiviral approach (reviewed in 

). Thus far, however, with the exception of maribavir, none of these compounds has progressed to clinical

studies.

Kinase
Characteristics pUL97 CDK1 CDK7 CDK9

SAMHD1
phosphorylation yes T592 n.d. n.d.

HCMV pUL69
phosphorylation yes yes yes yes

HCMV pUL50
phosphorylation yes yes n.d. n.d.

[174]

[175][176]

[63]

[100]

[78]

[90]

[25]

[59][61]

[178]

[52][53][56][179]

[86][129][178][180] [51][119][130] [86]

[132][181] [178]

[25][53]

[83][182]
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Figure 3. Small molecules derived from different chemical classes possessing strong anti-HCMV efficacy based on

their pUL97-inhibitory potential .

4. Clinical Investigation of the First Prototype of a Kinase
Inhibitor in Antiviral Treatment: Maribavir

MBV is a benzimidazole riboside, structurally related to the terminase inhibitors BDCRB and GW275175X . This

molecule exerts outstanding inhibitory activity against the pUL97 kinase and shows very low levels of side/off-

target effects . MBV exhibits favorable pharmacokinetic properties, is well tolerated and holds promise as a

new drug for the treatment of HCMV infections . Thus, MBV represents a novel developmental drug that

might become the first prototype of a kinase inhibitor in antiviral treatment. In the first phase III clinical study,

maribavir-treated patients failed to meet the clinical endpoint objectives . Currently further phase III trials are

enrolling patients to compare the efficacy of MBV with GCV, and this clinical development is currently continuing

(NCT02931539, NCT02927067). One limitation might be based on the fact that the inhibition of pUL97 kinase

activity by MBV interferes with the activation of GCV, thus resulting in drug antagonism, which most probably

[44][86][119][132][178][181]

[25]

[183]

[184][185][186]

[187]
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reduces their antiviral efficacies in a combination therapy . Mutations conferring MBV resistance are

distinct from those conferring GCV resistance, with sites of mutations partly located outside the conserved kinase

domains . In rare cases, kinase domain mutations arise in the laboratory that are essentially kinase null

mutations and can confer resistance to MBV or GCV . Notably, however, MBV exerts activity against typical

GCV-resistant strains and might therefore create new options in the treatment of drug-resistant HCMV infections

. Interestingly, the three different isoforms of the kinase also show altered susceptibility of the virus to

MBV . An additional type of an intermediate-level MBV-resistance has been identified for viral variants carrying

mutations, not in the UL97 but rather in the UL27 gene . To date, it is not clear whether resistance

mutations in UL27 would arise in clinical settings, since in animals the deletion of ORF-UL27 resulted in a modest

half-log reduction in viral in vitro replication capacity, with no apparent effect on replication in vivo .

5. The Relevance of Targeting a Herpesviral Kinase Activity
in Antiviral Strategies

The HCMV-encoded kinase pUL97 combines two different aspects of medical importance, namely serving as

promoter of prodrug activation through the activating monophosphorylation of GCV, VGCV and related nucleoside

analogs and as a validated target of antiviral kinase inhibitors. The currently ongoing clinical investigations of MBV

are approaching an exciting interim phase and it will be highly relevant to see whether this drug candidate achieves

primary endpoints. MBV might not only represent a novel drug for the treatment and prevention of HCMV disease

but it would likewise be a very promising novel prototype of a kinase inhibitor that might—compared to the

numerous currently approved kinase inhibitors in antitumoral treatments—for the first time enter the field of antiviral

therapy. Notably, the applicability of a further mode of action of antiviral drugs would directly broaden the options of

overcoming previous problems with antiviral drug resistance. The pharmacological interference with viral kinase

activity/protein phosphorylation by MBV, in addition to the targeting of viral genome replication/polymerase activity

(GCV) and viral terminase activity/genome processing (LMV), would open a third mechanistic option of HCMV

treatment. Thus, resistant mutants arising from GCV and LMV treatment would very probably remain susceptible to

MBV treatment, so that variable regimens might become available, possibly including combination therapies. It

should be mentioned, however, that GCV and MBV combination would underlie an antagonistic principle, due to

the two counteractive roles of pUL97 in such a case (prodrug converting GCV phosphorylation through active

pUL97 versus an inhibition of pUL97 activity by MBV). Nevertheless, other combinations between MBV and LMV,

GCV and LMV or the involvement of additional approved anti-herpesviral drugs, such as CDV, ACV etc., might lead

to a substantial improvement of medication regimens. In this sense, anti-HCMV therapy might also greatly benefit

from the experiences made in the field of human immunodeficiency virus/AIDS during the past decades, as mostly

gathered by the steady development of novel antiretroviral combination therapies.

6. Future Perspectives of Novel Mechanistic Options of
pUL97-Specific Drug Targeting

[133][188][189]

[83][124][190]

[182]

[178][191][192]

[44]

[193][194]

[195]
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It should also be stressed that the drug targeting of a viral kinase such as pUL97 may not exclusively be limited to

classical ATP-competitive types of kinase inhibitors including MBV. This strategy entails also untypical, thus far

therapeutically untapped possibilities of kinase targeting, i.e., non-ATP-competitive modes of targeting .

It is quite conceivable that additional research work may reveal prototypes of non-ATP-competitive substrate

inhibitors of pUL97 that could be directed to blocking the phosphorylation of individual pUL97 substrates, without

inactivating the functionality of the pUL97 kinase domain. Such types of kinase inhibitory small molecules can

either function through a shielding mechanism directed at one or several defined phosphorylation sites of a pUL97

substrate (phosphosite inhibitors) or it might cause a steric hindrance of pUL97 substrate recognition (allosteric

assembly blockers of kinase-specific protein complexes, including an interference with pUL97-cyclin association

). Even the involvement of covalent binders appears within the realms of possibility. Recently,

remarkable progress has been reported in the field of generating small molecules acting as covalent kinase binders

with selectivity to the tumor-relevant mutant G12C of the human KRAS tyrosine kinase . The kinase inhibitor

AMG510 has recently been successfully investigated in clinical stage I/II . Combined, the increase in

understanding of the individual molecular features and the overall functionality of pUL97, together with the

development of a number of highly interesting and innovative small molecule-type kinase inhibitors, nourishes the

long-held optimism about translational success with pUL97 inhibitors in the near future. Thus, one of the

experimentally and pharmacologically approved inhibitors, such as maribavir or, alternatively, cancer-approved

CDK inhibitors, represent the first candidates of kinase inhibitor to be clinically applied in antiviral therapy.
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