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Defect inspection, which detects defects in real-time and classifies defect types, is one of the key technologies

required for smart factory implementation. Defect detection on steel surfaces is an important task to ensure the

quality of industrial production. To build an automated visual inspection (AVI) and achieve smartization of steel

manufacturing, detecting defects in products in real-time and accurately diagnosing the quality of products are

essential elements. 
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1. Introduction

In Industry 4.0, internet of things (IoT) applications are becoming important. IoT connects the physical and digital

worlds, enabling smart factory development through faster communication and better analytics . In general, a

smart factory is one in which all internal elements are organically connected and operated intelligently based on

advanced information and communication technology (ICT). Product quality must be measured in real-time to

manufacture products at minimal cost and time. There is an increasing demand for steel products with better

surface and shape qualities . The end product of the manufacturing process is directly related to economic

factors as it affects productivity. IoT applications in the steel industry can make a variety of industries more efficient

and flexible, thereby increasing their productivity and yield .

Defects are physical and chemical failures caused by problems in the manufacturing process, facility, or

manufacturing environment. Steel is manufactured through various processes such as rolling and forging. During

this process, defects such as crazing, inclusions, pitted surfaces, rolled-in scales, and scratches occur, as shown

in Figure 1 .
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Figure 1. Types of defects in the steel manufacturing process .

Defect inspection, which detects defects in real-time and classifies defect types, is one of the key technologies

required for smart factory implementation . Defect detection on steel surfaces is an important task to ensure the

quality of industrial production. Defect detection on a steel surface involves three preliminary steps, as shown

in Figure 2. The first step is inspection, in which defects on the steel surface are detected by inspection tools .

The second step is review, in which images of the detected defects are captured by a specific tool. The third step is

the detection and classification of defect types based on the captured images. Steel-surface defect detection

processes allow engineers to perform cause analysis and defect control. However, visual inspection relies heavily

on the experience and abilities of individual engineers. Additionally, this process is usually performed manually in

the industry, making it unreliable and time-consuming. Therefore, automated visual inspection (AVI) targeting the

surface quality has emerged as a standard configuration for steel manufacturing mills to improve product quality

and promote production efficiency . AVI, which performs classification through image-based algorithms, is not

only widely applied to the steel manufacturing process but also to glass, fiber, and semiconductor production

processes .
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Figure 2. Steel manufacturing process and defect detection steps .

Although a convolutional neural network (CNN)-based AVI model exhibits excellent classification performance for

numerous defect types, it has two practical problems in the steel manufacturing process. First, the frequency of

defect data occurrence is extremely low, and very little data can be used for the development of a deep learning

model . In general, sufficient training data for both defect and normal classes are required to improve the

classification performance of deep learning models . However, in the actual industry, the quantity of defective

data is minimal compared to that of normal data. When performing AVI with only data collected from the industry,

data imbalance issues can result in lower learning rates for defect types and poor performance. Therefore, it is

necessary to balance the normal and defective classes. Class imbalance refers to a substantial proportional

difference between the classes in the total dataset. When the class distribution is unbalanced, the model is trained

with a bias toward the majority class, classifying the class with a large amount of data; however, the opposite is

true for the minority class. Furthermore, an imbalanced class distribution can lead to serious type II errors.

Therefore, preprocessing for class imbalance is essential for improving the overall classification performance in

defect detection.

Second, the steel defect data consisted of defects of various sizes. Large defects can be easily generated using a

simple generator when a generative model is used to solve the imbalance problem. However, the generation of

small-sized defects is significantly influenced by the type of generative model used . In particular, circumstances

such as the cold rolling process, where the end product is 2 m wide and the size of the defect is approximately 0.2

mm, require a sophisticated classifier .

2. Defect Synthesis for Automated Visual Inspection

In the Introduction, two problems that need to be solved in this research are discussed. This section addresses

related work on the class imbalance problem. In particular, previous studies conducted on steel manufacturing are

explored. Figure 3 shows the data imbalance of the Severstal dataset in a visual context . The defect data

consisted of 53.04% (5680 EA) of the total data, and the proportions of each class were as follows:12.64% (718

EA) for class 1: crazing, 3.48% (198 EA) for class 2: rolled-in scale, 72.59% (4123 EA) for class 3: pitted surface

and scratch, and 11.29% (641 EA) for class 4: inclusion. In this research, the Severstal dataset was sampled and
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used to create a class imbalance problem. Sampling was performed only in the areas where the defect was

present. The sampling method used can be found in original text.

Figure 3. Imbalance ratio of steel defect images in the Severstal dataset.

The numerous solutions proposed to solve class imbalance problems in AVI can be divided into two methods:

correcting the model itself and directly processing data . In the former, the data instances of different classes are

treated differently in a manner similar to active learning or kernel-based methods. In the latter, the direct processing

of data utilizes methods such as sampling or data generation to directly control the number of instances.

Sampling is a method used to correct the bias between classes in data with an overwhelmingly small proportion of

abnormal data compared with normal data. Representative methods for dealing with class imbalance include

oversampling and undersampling. Oversampling is a method for creating new data of the minority class to even the

class ratio, whereas undersampling is a method for removing existing data of the majority class to match the ratio.

Because undersampling reduces the amount of sample data from the majority class, it has the advantage of

reducing the model training time. However, it can also distort data features by removing crucial information.

Regarding oversampling, the risk of data distortion is relatively small because it creates new data while preserving

original data. The oversampling methods mainly used for AVI include random oversampling, synthetic minority

oversampling technique (SMOTE) , and adaptive synthetic sampling approach (ADASYN) . Random

oversampling increases the amount of minority class data by randomly selecting and replicating a sample from a

minority class. SMOTE synthesizes data by selecting random data belonging to a minority class and randomly

selecting the closest top k number of data. ADASYN is a method of adaptively synthesizing k data from marginal

minority data according to the number of majority classes after calculating the ratio of the data of a majority class.

However, this oversampling method for image data generates low-resolution images.

[16]

[17] [18]



Defect Synthesis for Automated Visual Inspection | Encyclopedia.pub

https://encyclopedia.pub/entry/27515 5/7

To simplify this problem, researchers use a technique to handle the raw image. This method is called data

augmentation and has been commonly used as a model regularization technique in recent studies . Some

common augmentation methods include flipping an image vertically or horizontally, shifting the image vertically or

horizontally, and slightly rotating or zooming it. This method helps the training model be robust to small changes in

the image. However, simple geometric transformations do not significantly change the image characteristics,

making it impossible to identify additional features.

Among data generation methods, GAN is an algorithm of great interest . The GAN generates data based on the

distribution and exhibits excellent performance in image generation. Various GANs have been studied previously. A

deep convolutional GAN (DCGAN) was used for ball-bearing failure detection . In addition, a wafer defect image

was adaptively generated using conditional GAN (CGAN) . The progressive growing GAN (PGGAN) increased

the model training speed by gradually increasing the generator and discriminator and producing a high-quality

image . In addition, to address shortcomings such as the vanishing gradient or mode collapse of a GAN,

Wasserstein GAN (WGAN) was proposed .

Liu et al.  proposed a GAN-based one-class classification method for detecting strip steel surface defects. Their

model achieved 94% good test results on images provided by the Handan Iron and Steel Plant. Lai et al. 

proposed a new detection method using a GAN and statistical-based representation learning mechanism. This

method achieved an accuracy of 93.75% on the solar panel dataset. Akhyar et al.  proposed a method for

generating more detailed contours in the original steel image. The method achieves better performance and

effectiveness in terms of processing time compared to the original method.

The AVI is critical for effective and efficient maintenance, repair, and operation in advanced manufacturing.

However, AVI is often constrained by the lack of defect samples .
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