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Multiferroic magnetoelectric (ME) materials with the capability of coupling magnetization and electric polarization
have been providing diverse routes towards functional devices and thus attracting ever-increasing attention. The
typical device applications include sensors, energy harvesters, magnetoelectric random access memories, tunable
microwave devices and ME antennas etc. Among those application scenarios, ME sensors are specifically focused
in this review article. We begin with an introduction of materials development and then recent advances in ME
sensors are overviewed. Engineering applications of ME sensors are followed and typical scenarios are presented.
Finally, several remaining challenges and future directions from the perspective of sensor designs and real

applications are included.

multiferroic magnetoelectric Sensors object detection magnetic localization
current sensing biological magnetic measurement non-destructive testing

displacement sensing

| 1. Introduction

Multiferroic materials have been recently attracting ever-increasing attention because of the capability of coupling
at least two ferric orders, i.e., ferroelectricity, ferromagnetism, or ferroelasticity, and the vast potential for
multifunctional devices applications WZIBI4IE A control of polarization P by external magnetic field H (direct ME
(DME) effect) or a manipulation of magnetization M by an electric field E (converse ME (CME) effect) can be
realized in multiferroic magnetoelectric (ME) materials 8. Compared with single-phase ME material, ME
heterostructures and ME laminates perform greatly enhanced coupling capability, which is generally characterized

by ME coefficient aME [EIE After a development of nearly half a century, tremendous progress regarding ME
composites and related device applications has been reported LIZIEI6ILLL][12][13][14][15][16][17][18][19]

| 2. Materials for ME Sensors

The ME effect was first experimentally demonstrated in single-phase multiferroic material Cr,O5 in 1961 [20121],
After that, diverse studies all over the globe were conducted to further enhance the coupling capability of
ferroelectric and magnetic orderings in a single-phase material system 2922 byt the low Curie temperature and
the weak ME coupling capability in single-phase ME materials, such as BiFeO;, BiMnO5; and LuFe,O,, greatly
limited their applications L2324 The proposal of a product effect in composite ME materials by combining the
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piezomagnetic and piezoelectric effects of ferromagnetic and ferroelectric materials then provided new routes
towards improved ME coupling performance. Early in 1986, Pantinakis et al. proposed 2-2 type ME composites
based on the aforementioned product effect (22 and giant ME coefficients were gradually realized in laminated ME
composites starting from the beginning of 21st century WBIILY Compared with single-phase or 0-3 typed ME
materials, 2-2 typed ME composites, such as a bulk ME laminates with piezoelectric phase (Pb(Zr,Ti)O3(PZT),
Pb(Mg,Nb)O3-PbTiO3; (PMN-PT)) embedded in piezomagnetic materials (FeCoSiB, FeBSiC Terfenol-D, Ni or Fe-
Ga) Bl and a FeGaB/AIN thin-film ME heterostructure 28, exhibited enhanced ME coupling performance benefitting
from the removal of the leakage current and the improvement of the interfacial strain transfer. At this section, we

will first review materials advances in ME sensors since 2002.

2.1. Bulk ME Laminates

It is highly desirable to design new connectivity structures for circumventing the limitation of leakage current that
occurs in 0-3 typed ME composites. Back in 2002, Ryu et al. developed a laminated Terfenol-D/PZT/Terfenol-D ME
composite (Figure 1a) with 2-2 type connectivity to solve the leakage current problem in 0-3 type ME composites,
and the obtained ME coupling coefficient at non-resonance frequency reached as high as 5 V/cm-Oe &, This was
a significant event in the development of ME laminates and various kinds of laminated structures were proposed
afterwards 2927, For example. Dong et al. reported 2-2 type ME laminates consisting of Terfenol-D ferrite and
PMN-PT piezoelectric crystal. These ME composites work with L-T mode and display relatively low ME coefficients
of 2.2 V/cm-Oe at non-resonance frequency (28, In a bid to further improve the ME voltage coefficient, Dong et al.
in 2005 first proposed a push-pull mode that increased the distance between electrodes and decreased the static
capacitance of ME laminates from nF to pF scale 2239, |n such 2-2 type ME composites, the piezoelectric core
was symmetrically poled along its longitudinal direction and rgw dz; piezoelectric constant of a piezoelectric
material could be utilized. A giant ME voltage coefficient of 1.6 V/Oe at non-resonant frequencies was observed
experimentally B, One year later, Dong et al. further developed a multi-push-pull mode in 2-1 ME composites. The
schematic structure configuration and operation mode of such a 2-1 ME composite is presented in Figure 1c. It
consisted of a piezo-fiber layer laminated between FeBSIiC alloys. For the first time, the non-resonant ME
coefficient at 1 Hz reached 22 V/cm-Oe, making such a structure especially suitable for low-frequency and passive
magnetic sensing [BHB2E3IB4IBS] Kyt it should be noted here that the mechanical quality factor for such a 2-1 type
ME composites is normally less than 100, so ultra-high resonant ME coefficients cannot be realized in this case 22,
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Figure 1. (a) Schematic structure (top) and photograph (bottom) of ME laminate composites using Terfenol-D and
PZT disks [Z. (b) 3D and crosss ectional schematic illustration of the single period of 1-3-type ME structure 281, (c)
lllustration of the FeBSiC/piezofiber laminate configuration working on multi-push-pull mode [22BY. (d) The
schematic view for 1-1 laminated ME composite and a-(ii) the prototype snapshot of the 1-1 typed ME sample (&,

Another way to address the difficulty of fully polarizing the piezoelectric phase in 0-3 type ME composites is
replacing the particle phase with a 1-D piezoelectric fiber (forming 1-3 typed connectivity). For example, in 2005
Nan et al. reported a 1-3 type ME composite with ZT rod arrays embedded in a Terfenol-D medium via a dice-and-
fill technique. The non-resonant ME coupling coefficient reached 6.2 V/cm-Oe 4, which represented great
progress for ME composites. Two years later, Ma et al. simplified this 1-3 type ME structure by just embedding one
single PZT rod in a Terfenol-D/epoxy mixture €. The single period element of the 1-3 ME composites is shown in
Figure 1b. Although the non-resonant ME coupling coefficient decreased by almost one order of amplitude, this
simple structure, low-cost fabrication process and sub-millimeter size made it attractive for micro-ME array

applications [2€l,

In 2017, Chu et al. reported a 1-1 type ME composites, which consisted of a [011]-oriented Pb(Mg,Nb)O3-PbZrO,-
PbTiO3; (PMN-PZT) single crystal fiber and laser-treated amorphous alloy Metglas. The 1-1 type ME composite
featured the one-dimensional configuration as shown in Figure 1d 8. The laser treatment could decrease magnetic
hysteresis loss of Metglas and thereby enhance the Q value of the ME resonator. In addition, the fiber configuration
effectively utilized the magnetic flux concentration effect occurring in Metglas layers. More importantly, this 1-D
configuration favored the longitudinal vibration mode of ME laminates. A ME coupling coefficient of ~7000

V/cm-Oe, that was nearly seven times higher than the best result published previously, was finally realized,
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opening a door to develop new ME devices, e.g., resonant magnetic receivers in particular &, In addition, a high
ME coefficient of 29.3 V/cm-Oe at non-resonant frequency was also achieved for our 1-1 type composites. Note,
only one single crystal was consumed in this case, while previous 2-1 type composites normally took five crystals.
In 2020, the resonant ME coefficient of 1-1 type ME composites was further enhanced to 12,500 V/cm-Oe by using
a hard piezo-crystal Mn-PMN-PZT &, A summary of the field coupling coefficient of different ME laminates, i.e., 0-3,

2-2, 2-2.1-1 ME laminates, is given in Table 1.

Table 1. Some ME laminates and their ME coupling performances.

. o Working
Composition Year  Connectivity afggmresonane (V fem - Oe) afggnance (V /em - Oe)
Mode
Terfenol-D/PZT [28] 2007 3-1 L-L 0.5 18.2
NiFe,0,/PZT 28 2001 2-2 L-T 1.5 /
Terfenol-D/PZT 21 2002 2-2 L-T 5 /
Metglas/PVDF 9 2006 2-2 L-T 7.2 310

Metglas/P(VDF-TrFE)

B 2011 2-2 L-L 17.7 383
Lanthanum gallium
tantalite/
antatie 2012 22 / 2.3 720
permendur 1]
FeCoSiB/(Pt)/AIN in
w2l 2013 2-2 L-T / 20,000
vacuum
FeCoSiB/(Pt)/AIN 43l 2016 2-2 L-T / 5000
Metglas/LiNbO3 [44] 2018 2-2 L-T 1.9 1704
References
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AC/DC dual-mode magnetoelectric sensor with high ma%_netic field resolution and broad operatin%
In order to test the limit of detection b this amplitude modulation method, the time constant decreased to 1

usin
bandwidih. AIP Adv. 2091, 11,°045015. _ memets |
ms and the demodulated signal from’ time domain waveform via a lock-in amplifier was analyzed. Figure 5¢ shows
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res8afigh (LOR) of the ME sensor based on this amplitude modulation method was determined to be as low as
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68.28 Résodant-Prstuieney MagnetivySensaitisov, L.; Fetisov, Y.; Shamonin, M. DC magnetic field
sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures. J. Phys. D
MEAﬂBin@gﬁ?gagémféliﬁ\@e%?géwnators from the perspective of mechanics and resonant phenomenon is also

able to enhance the ME coupling coefficient and thus to improve the detection ability 29, In this regard, ME
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Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures.
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madhatemater20tingld 2121 88 composite, Dong et al. reported an enhanced LoR of 1.2 pT early in 2005 (see
SBIUEHAbIZ. M SOMEMS VG SBGSe SIS YHALE! 7 ARARES2 IO STRer R R g e ©
very Mahay RIS BB R S RSB ARG Hfh SeHSRP YU MS gt i BAsRd Bt "
order_of m%gnitude .?gﬁroachigg 400 fT/HzY2 at the eIecHomec anicatl reso?ance .as st]gwn inCE'gure 6h 1431,

parasitic’capacitance sub-micrometer cross-type Josepnhson tunnel junctions. Phys. C-Stpercond.
Baﬁ?sdap}lhezglfﬂf hegc,fpgc_egylE couplln-g coefficient in 1-1 type M.E laminate, a superlgh r.esohath magnetic-
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potential for 1-1 type M
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(Igzyclopedia_.pub_/eﬁtry?ﬁ!story/showl25008 . ) ) )
composites in the field of eddy current sensing, space magnetic sensing and active

CU DV

magnetic localizing 81, |n 2018 Turutin et al. reported a new ME composite consisting of the y + 140° cut
congruent lithium niobate piezoelectric plates with an antiparallel polarized “head-to-head” bidomain structure and
magnetostrictive material Metglas 4. Based on this 2-2 ME bimorph, the equivalent magnetic noise spectral
density was only 92 fT/Hz'2 and the directly measured resolution was found to be 200 fT at a bending resonance
frequency of 6862 Hz (see Figure 6d), but one should note that the bandwidth of resonant ME sensors is normally
below 1 kHz due to the high mechanical quality factor, which is a major limitation facing practical engineering
applications [Bl44162] |t should however be noted that resonant ME sensors are greatly limited by the narrow

bandwidth and specifically suited applications need to be considered.
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Figure 6. (a) Magnetic field detection limit measurements at frequencies of f = 1 Hz and f = 77.5 kHz (resonance
condition), respectively [22: (b)The measurement of LOD for MEMS ME sensor 43], (c) for 1-1 typed ME sensor 8
and (d) for a 2-2 ME bimorph 441,

3.3. DC Magnetic Sensor
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DC or quasi-static magnetic sensors are promising for magnetic anomaly detection uses, such as geomagnetic
navigation, metal detection and magnetic medical diagnosis, etc. Early in 2011, Gao et al. demonstrated the
excellent detection ability for DC field using 2-1 ME composite B4, As shown in Figure 7a,b, the magnetic
resolution was found to be 4 nT and 1 nT when driving the composite at non-resonant frequency and resonance
frequency, respectively B, In 2013, Nan et al. reported a self-biased 215 MHz magnetoelectric NEMS resonator
consisting of an AIN/(FeGaB/Al,O3) multilayered heterostructure (Figure 7c), for ultra-sensitive DC magnetic field
detection L. An ultra-sensitive detection level starting from 300 picoTesla was obtained experimentally (Eigure 7d)
Bl The RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS
technology, however, the measurement of the resonance frequency and the admittance spectrum is not
technologically convenient. Li et al. then further proposed to monitor the reflected output voltage from the ME
resonator directly 281, The optimized detection sensitivity was determined as 2.8 Hz/nT for AIN/FeGaB resonator.
An ultra-high frequency (UHF) lock-in amplifier and a directional coupler were used to apply and test the RF signal

of this resonator. And the final limit of detection was measured to be around 0.8 nT.
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Figure 7. The measurement of LoD for Metglas’/PMN-PT ME laminate at (a) f = 10 kHz and (b) resonance
frequency of 27.778 kHz [l (¢) Schematic representation and (d) the measurement of LoD for NMES
AIN/(FeGaB/Al,03) multilayered heterostructure Bl (e) Schematic representation of the conventional flux gate

senor and the proposed ME flux gate sensor [63: (f) The measured results for DC magnetic field resolution €3],

Using the nonlinear resonance magnetoelectric effect in ME composites, Burdin et al. fabricated a planar
langatate-Metglas structure and employed the third harmonics of the output signal to measure the DC magnetic
field as low as 10 nT B4l |n addition, a broad dynamic range from ~10 nT to about 0.4 mT was also successfully
obtained using the nonlinear ME effect 63, More recently, Chu et al. proposed a shuttle-shaped, non-biased
magnetoelectric flux gate sensor (MEFGS) for DC magnetic field sensing enlightened by the design of conventional
flux gate sensor 63 Figure 7e shows both the schematic of typical flux gate senor and the proposed
magnetoelectric flux gate sensor. The flux gate sensor based on Faraday's Law of Induction is composed of a
racetrack type magnetic core surrounded by an excitation (first) coil and a detection (second) coil. With respect to

MEFGS, a similar differential structure, which can produce a longitudinal-bending vibration when applying a DC
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field, can reject in-phase vibration noise and enhance the out-of-phase ME voltage signal simultaneously 4. We
note here that in 24! the authors found that a ME flux gate sensor excited under a non-resonant high frequency
field could perform better detection ability. As shown in Figure 7f, the relative change of the ME voltage output
signal in response to a LOD of 1 nT is around 0.2% and the output signal can return to the reference level during

the repeated test cycles when choosing a non-resonant frequency of 48.5 kHz [63],

Performance summary of some typical magnetoelectric sensors was given in Table 2. Table 3 further compares the

LoD of passive ME sensors with some commercially available magnetometers, i.e., magnetoresistive sensors,
giant magneto-impedance sensors, fluxgate sensors, optically pumped magnetometers and SQUID
magnetometers. As it can be seen in Table 3, ME sensor shows comparable and competitive performance with
these products. Specifically, the low power consumption and high detection ability are significant advantages for
ME sensors, while vibration interference still now greatly limits the engineering applications. On the other hand,
piezoelectric materials are normally susceptible to the working temperature and the temperature stability of ME
sensors is also a critical issue. For example, Burdin et al. compared the temperature dependence of the resonant
magnetoelectric effect in several kinds of ME composites and showed that the widely studied PZT-Metglas ME

sensor can only work in a narrow temperature range of 0 °C to +50 °C [68],

Table 2. Performance summary of typical magnetoelectric sensors.

Composition Working Mode Sensing Mode LoD
Metglas/Mn-PMNT Longitudinal vibration ) )
[67] ) Passive sensing  oosvewu:
(Multi-L-T)
Low-frequency magnetic Longitudinal vibration
. E . ymag Metglas/PMN-PT (8] g. Passive sensing  smian
field sensing (Multi-push-pull)
Metglas/PMN-PZT Longitudinal vibration Active
33pTiy/Hz @ 0.1Hz
[55] (L-T) Modulation
Resonant magnetic field ) ) ) ) 92 fT/
) Metglas/ LiNbO3 [44] bending mode Direct Sensing
sensing VHz
_ _ ] _ 400 fT/
FeCoSiB/(Pt)/AIN [43] bending mode Direct Sensing M
z
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g Longitudinal vibration ) ) 123 T/
Metglas/PMN-PZT & Direct Sensing
(L-T) VHz

Nonlinear ME
langatate-Metglas [64] bending mode . 10nT
effec

Longitudinal vibration

Metglas/PMN-PZT ol Linear ME effect 1nT
DC magnetic field sensing LM

FeCoSiB/(Pt)/AIN [26] Lateral vibration Delta-E effect 0.8 nT

FeCoSiB/(Pt)/AIN (51] Lateral vibration Delta-E effect 0.4nT

Table 3. Performance Comparison with commercially available magnetometer for 1 Hz magnetic field sensing.

Power
Working LoD@1Hz
Magnetometer ) Typical Size Limitations
’ Temperature Consumption P (pT /vHz)
(mw)
80 mm x 10 mm vibatl
ration
0°C to +50 °C et
ME sensor 23] <1 5.1
) @ ME _
) interference
composites
6 mm x5 mm x
1.5 mm Low
Magnetoresistive -40 °C to +125
~0.02 100
sensor @ He . o
@ sensing sensitivity
element
Giant magneto- -20 °C to +60 75 35 mm x 11 mm 15-25 Low
impedance sensor @ °C X 4.6 mm
sensitivity
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@ sensing

element

@100 mm x 125

Fluxgate -40°C to +70 mm
9 350 2-6

Power

magnetometer @ H{G .
consumption

@ system size

175 cm x 28 cm
Optically pumped -35°C to +50 x 28 cm Complex
P Y pump >12,000 4 g
magnetometer ® “C setup

@ system size

125 mm x 12.5
mm
SQUID mg]netometer <-196 °C >1000 <0.005 Cooling
@ chip size

® Estimated from the data in ref. [84: @ Based on commercial product TMR9001 in MultiDimension Technology
Co., Ltd. (Zhangjiagang Free Trade Zone, Jiangsu Province, China); ® Based on commercial product MI-CB-1DH
in AICHI STEEL CORPORATION (Tokai city, Aichi Prefecture, Japan); @ Based on commercial product Mag03
from Bartington Instruments Ltd (Witney, Oxon, OX28 4GG United Kingdom).; ® Based on commercial product
G882 marine magnetometer from GEOMETRICS, INC (San Jose, CA, USA).

| 4. Engineering Applications of ME Sensors

As we summarized in Table 2 and Table 3, ME sensors show competitive performance with commercial optically

pumped magnetometers, giant magneto-impedance sensors and fluxgate magnetometers. In this regard, a large
number of works that utilize ME sensors for magnetic field sensing have been published and various applications

have been implemented.
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