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Diffuse lung disorders (DLDs) and interstitial lung diseases (ILDs) are pathological conditions affecting the lung

parenchyma and interstitial network. There are approximately 200 different entities within this category.

Radiologists play an increasingly important role in diagnosing and monitoring ILDs, as they can provide non-

invasive, rapid, and repeatable assessments using high-resolution computed tomography (HRCT). HRCT offers a

detailed view of the lung parenchyma, resembling a low-magnification anatomical preparation from a histological

perspective. The intrinsic contrast provided by air in HRCT enables the identification of even the subtlest

morphological changes in the lung tissue. By interpreting the findings observed on HRCT, radiologists can make a

differential diagnosis and provide a pattern diagnosis in collaboration with the clinical and functional data. The use

of quantitative software and artificial intelligence (AI) further enhances the analysis of ILDs, providing an objective

and comprehensive evaluation.

HRCT (high-resolution computed tomography)  ILDs (interstitial lung diseases)

AI (artificial intelligence)

1. Introduction

Diffuse lung disorders (DLDs) and interstitial lung diseases (ILDs) represent a category of pathological conditions

that manifest with widespread involvement of the lung parenchyma and interstitial network. From a purely

classificatory point of view, they encompass a heterogeneous group of conditions that amount to approximately

200 distinct entities in the literature . Radiology is increasingly integrated into the multidisciplinary

diagnosis (MDD) and follow-up process of ILDs management thanks to high-resolution computed tomography

(HRCT) of the chest, a rapid, repeatable, and essentially safe technique capable of providing highly accurate

diagnostic information. It enables a refined detection of pulmonary abnormalities, allows for the evaluation of

longitudinal changes during follow-up and resembles a low-magnification anatomical preparation from a histological

point of view .

HRCT of the chest is a crucial tool for identifying distinctive patterns in DLDs and ILDs, playing a pivotal role in

achieving an accurate diagnosis. Additionally, it provides valuable insights into alternative diagnostic possibilities

and aids in characterizing mixed phenotypes, including the presence of small airway disease, comorbidities, and

other factors contributing to progressive fibrotic patterns. The accurate interpretation of basic semiotic alterations
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observed during HRCT examination facilitates a comprehensive differential diagnosis in which the radiologist is

called to express their judgment until a pattern diagnosis. This process requires high “skills” and, in agreement with

the clinical and functional data, allows the multidisciplinary team (MDT) to often arrive at a confident diagnosis of

pattern and finally of disease. In cases where the pattern-based diagnosis is not confident enough to reach a

definitive diagnosis, such as an “indeterminate pattern” for usual interstitial pneumonia (UIP) according to idiopathic

pulmonary fibrosis (IPF) guidelines or an “unclassifiable pattern” at the time of the initial diagnostic evaluation, the

use of MDT is recommended. This is crucial for discussing atypical or extremely complex cases in order to achieve,

at least in the early diagnostic phase, a “working diagnosis”, a procedure that, according to recent literature

studies, can attain high levels of diagnostic confidence. MDT plays a pivotal role in the management of ILDs,

serving as the gold standard for diagnosing various ILDs beyond IPF. This encompasses a broad spectrum of

conditions, ranging from ILDs with autoimmune features (IPAFs: interstitial pneumonia autoimmune features) to

fibrotic hypersensitivity pneumonia (f-HP) and non-specific interstitial pneumonia (NSIP). Nevertheless, the

absence of definitive classification and standardized diagnostic criteria for certain entities poses a diagnostic

challenge, particularly since a substantial number of inflammation-mediated ILD disorders may progress to fibrosis

.

2. Unlocking the Potential: Artificial Intelligence
Revolutionizes Interstitial Lung Disease Diagnosis with
Quantitative Imaging and Advanced Data Analysis

AI is a novel term used to describe computer systems able to solve specific tasks that commonly require human

intelligence. AI is revolutionizing the field of ILD diagnosis through the integration of quantitative imaging and

advanced data analysis techniques. By leveraging AI algorithms, researchers and clinicians can unlock the full

potential of medical imaging data, enabling a more precise and accurate detection, classification, and prognosis of

ILDs. This cutting-edge approach combines machine learning, deep learning, neural networks, and radiomics,

empowering healthcare professionals with powerful tools to enhance diagnostic accuracy and optimize treatment

strategies for ILD patients. Machine learning, an integral part of AI, revolves around the concept of computer

systems adapting and learning from data samples to execute specific tasks. Unlike traditional programming

methods with explicit rules and instructions, machine learning algorithms are designed to be trained or fitted using

specific datasets. Among the AI techniques, supervised and unsupervised learning stand as powerful tools, each

offering a unique perspective in unraveling the mysteries of ILDs. “Supervised Learning”: by utilizing labeled

training data, this approach enables AI models to learn patterns and associations, ultimately aiding in disease

classification and prediction. Through a process of meticulous training and validation, supervised learning

algorithms acquire the ability to accurately identify specific ILD subtypes, such as IPF or HP, based on defined

features and characteristics. This enables clinicians to make informed decisions regarding treatment strategies and

prognostic evaluations, elevating patient care to unprecedented levels of precision. “Unsupervised Learning”: on

the other hand, this approach serves as a beacon in unveiling the hidden patterns within ILDs. Without the need for

predefined labels, unsupervised AI models excel at discovering intrinsic structures and relationships within complex

ILD datasets. By applying advanced clustering and dimensionality reduction techniques, these models can unravel
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novel disease subtypes and identify intricate patterns that may elude human observation. Unsupervised learning

empowers researchers to explore the vast landscape of ILDs, potentially uncovering new insights, biomarkers, and

novel avenues for targeted therapies. While supervised and unsupervised learning differ in their methodologies,

they are not mutually exclusive. In fact, their synergy holds the key to unlocking a deeper understanding of ILDs.

By combining the strengths of both approaches, AI models can leverage the meticulous classification capabilities of

supervised learning while simultaneously exploring the uncharted territories of unsupervised learning; this holistic

approach not only enhances diagnostic accuracy but also opens doors to personalized treatment strategies, early

detection, and improved patient outcomes. Achieving precise and clinically valuable algorithms in machine learning

necessitates the utilization of suitable AI computational analysis and the incorporation of pertinent outcomes or

ground truth. Powerful computing processors and machine learning methods were introduced by researchers, able

to analyze volumetric data and to extract by CT scans image features and other informatics information on the

densitometric variations on tiny pulmonary areas in order to evaluate diffuse lung disorders with the possibility of

obtaining, also with colorimetric regional lung variations, a subtle difference between the HRCT areas (for example,

normal lung, emphysema, GGO, consolidations, reticulations, honeycombing). These computational analyses, also

called adaptative multiple-feature methods in a lung texture analysis, can provide “intelligent” maps of pulmonary

morphological and densitometric variations, associated with an almost perfect computerized analysis of lung

damage, to obtain distinct features for classifying different regional areas in a CT image. Machine learning models

can also assist in ILD prognosis by analyzing a multitude of clinical and imaging variables to predict disease

progression, survival outcomes, and treatment response. These models can integrate diverse datasets, including

longitudinal imaging data, pulmonary function tests, genetic markers, and clinical features, to generate

personalized prognostic assessments for ILD patients. Such prognostic tools can aid in treatment decision making

and facilitate the development of tailored management plans. In the context of ILD management, machine learning

algorithms can also contribute to the development of computer-aided systems for the automated detection and

segmentation of ILD-related abnormalities on radiographic images. By automating the identification of specific lung

patterns and lesions, these algorithms can improve efficiency, reduce inter-observer variability, and provide

quantitative measurements of disease extent and progression. Therefore, the subsequent evolution of advanced

pulmonary analysis techniques after “the lung tissue density analysis” has involved the introduction of “texture

analysis”, which refers to a set of methods and algorithms for the extraction of information regarding the structural

characteristics of an image and is also capable of extrapolating and evaluating different groups of radiomics

parameters. This analysis can involve various approaches, including traditional feature engineering methods such

as Gabor filters or texture co-occurrence matrices, as well as more advanced techniques such as machine learning

or deep learning. One of the most well-known, effective, and widely used software applications for texture analysis

is Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) .

3. Unleashing the Potential of AI: Unraveling ILDs Mysteries
through Deep Learning, CNN, Radiomics, and Lung
Shrinkage

3.1. Deep Learning
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Deep learning, a subfield of machine learning, has gained significant attention in recent years due to its remarkable

ability to learn hierarchical representations from complex data. In the context of ILDs, deep learning techniques

have shown great potential in several applications, revolutionizing the field of ILD research and management 

. One of the primary applications of deep learning in ILDs is in the automated analysis and interpretation of

medical images, particularly HRCT scans. Deep learning models, such as convolutional neural networks (CNNs),

can be trained on large datasets of annotated HRCT images to automatically detect and classify various ILD

patterns and abnormalities. Numerous studies have investigated the utilization of advanced imaging techniques

and AI for the prediction and diagnosis of histopathologic conditions such as UIP. For example, a study introduced

a CNN that utilized virtual wedges of the peripheral lung on HRCT to predict UIP . CNN demonstrated moderate

agreement with expert radiologists. In a more recent study, a DL model trained on a dataset of pathologically

proven ILD was employed. The findings showed that the DL model outperformed visual CT analysis in predicting

the histopathologic diagnosis of UIP and exhibited a higher reproducibility compared to expert radiologists.

Specifically, when classifying cases as probable UIP based on a guideline, the DL model achieved a higher

specificity compared to expert radiologists . These models can learn to identify subtle radiological features

indicative of specific ILD subtypes, including honeycombing, ground-glass opacities, reticulation, and traction

bronchiectasis . DL-based automated lung CT volumetry and fibrosis scoring have been shown to

correlate with functional data and provide insights into the prognosis of IPF. DL algorithms have demonstrated a

superior performance compared to thoracic radiologists in ILD classification and predicting survival outcomes. DL

models have also outperformed experts in predicting histopathologic diagnoses and shown a better reproducibility.

Additionally, the DL quantification of ILD patterns and extent has improved disease characterization and correlated

well with functional data . The deep texture analysis (DTA) provided by deep learning algorithms can aid

radiologists in accurate and efficient ILD diagnosis and classification and in the prediction of disease progression

and treatment response with HRCT; it is trained to distinguish fibrosis by utilizing image regions identified by

radiologists as exhibiting normal lung parenchyma and typical patterns of fibrotic features. Representative regions

labeled as reticulation, honeycombing, or traction bronchiectasis are employed to define the fibrosis category. In a

sliding window manner, the algorithm classifies local regions within axial sections as either normal lung or fibrosis,

which are identified through a separate segmentation process applied to the lung fields. The DTA fibrosis score is

computed as the percentage of the total number of window regions classified as fibrosis.

Deep learning models can integrate longitudinal imaging data, clinical variables, and other relevant biomarkers to

generate predictive models; by capturing complex relationships and temporal dynamics within the data, these

models can provide valuable prognostic information for ILD patients . Additionally, deep learning models

can help to identify patients who are likely to respond positively to specific treatments, facilitating personalized

therapeutic strategies and being valuable for ILD risk stratification and early detection. By utilizing extensive

datasets including health records, genetics, and environmental factors, deep learning models can identify

individuals at a higher risk of ILD development. Early detection is crucial for timely intervention and improved

outcomes. These models could also help in identifying high-risk individuals and facilitating targeted screening.

However, challenges exist in applying deep learning to ILDs: large and diverse datasets are needed for training,

which may be limited for rare or specific subtypes. It is important to note that AI in general and deep learning

[10]

[11]

[12]

[12][13][14]

[15][16][17]

[15]

[18][19][20]



Artificial Intelligence in Interstitial Lung Disease Diagnosis | Encyclopedia.pub

https://encyclopedia.pub/entry/46799 5/9

specifically in this context are designed to assist radiologists rather than replace them. The primary objective of the

software is to streamline the interpretation process, alleviate the workload, and enhance the accuracy and

consistency of ILD diagnoses. Radiologists, in collaboration with clinicians, can leverage the insights and

recommendations provided by the AI tool to make well-informed clinical decisions. As with any AI tool, the

performance of deep learning algorithms relies on the quality and diversity of the training data that they have been

exposed to and, for these reasons, the continuous validation and refinement of these algorithms are critical to

ensure their effectiveness and generalizability across different patient populations. In conclusion, AI software

utilizing deep learning techniques serves as a valuable aid to radiologists in the study of ILDs. By functioning as a

pattern classifier, it assists in the analysis and interpretation of HRCT scans, providing automated annotations,

disease quantification, and diagnostic suggestions. However, it is essential to recognize that human expertise and

judgment remain integral to the diagnosis and management of ILDs .

3.2. Convolutional Neural Network, Radiomics, and Lung Shrinkage

The introduction of CNNs has ushered in a new era of diagnostic precision in ILDs. Leveraging their ability to

extract complex features from medical images, CNNs have redefined the landscape of ILD diagnostics.

Concurrently, radiomics has empowered clinicians to delve deeper into the quantitative analysis of ILD

radiographs, enabling a comprehensive characterization and classification of these complex diseases. Integrated

algorithms incorporating clinical assessment, functional tests, and CT imaging, along with radiomics-based

features, have shown promise in evaluating and predicting prognosis in patients with fibrotic ILDs. By extracting 26

radiomic features from routine chest CT scans, these algorithms provide valuable information for predicting

progression-free survival in individuals with SSc-ILD. The integration of radiomics enhances prognostic evaluation

and enables more informed treatment decisions for improved patient care .

CNNs in the field of thoracic imaging have proven to be a powerful tool for automated image analysis in ILDs. By

leveraging their capacity to capture subtle patterns and textures within high-resolution radiographic data, CNNs

surpass human visual perception, enabling a superior detection and classification of ILD subtypes . From

distinguishing IPF from other ILDs to predicting disease progression, CNNs offer a multifaceted approach that aids

in both diagnosis and prognosis. Furthermore, the integration of transfer learning improves the CNN performance,

underscoring their versatility in ILD research. Radiomics, an emerging field within medical imaging, complements

CNNs by extracting an extensive array of quantitative imaging features from radiological images. These features

encompass a wide range of morphological, textural, and statistical descriptors, providing a holistic representation of

disease characteristics . Leveraging advanced machine learning algorithms, radiomics models can stratify ILDs,

differentiate between disease stages, and even predict treatment response . By unraveling hidden imaging

biomarkers, radiomics demonstrates its potential as a non-invasive and objective tool for ILD assessment. The

integration of CNNs and radiomics represents a paradigm shift in the management of ILDs for both primary and

secondary forms, such as connective tissue diseases . Together, they offer a comprehensive and detailed

understanding of ILDs, facilitating accurate diagnosis and personalized treatment plans. CNNs excel at extracting

complex visual features from radiological or medical nuclear data, while radiomics enables a quantitative

assessment of disease characteristics. The synergy between these two approaches empowers radiologists and
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clinicians to uncover previously unrecognized patterns and correlations, leading to an improved diagnostic

accuracy and prognostic capabilities. As CNNs and radiomics continue to evolve, their impact on ILD diagnosis and

management is expected to grow exponentially. The development of large-scale, curated datasets will further

enhance the performance and generalizability of CNN models. Moreover, the integration of multi-modal imaging

data, such as computed tomography (CT) and positron emission tomography (PET), holds great promise in

unraveling the complexities of ILDs .

Lastly, new additional methods of lung evaluation using advanced AI techniques have emerged as additional tools

for integrating clinical and pulmonary functional data. One of these methods is the assessment of the so-called

“lung shrinkage”, a key component of worsening lung fibrosis in ILD, which could be effectively assessed using

advanced imaging techniques such as CT. The regional distribution of lung shrinkage in ILD typically starts in the

lower peripheral regions of the lungs, gradually ascending to the upper apical regions. This pattern may be

attributed to mechanical stress on the alveolar epithelium and the fibroproliferative response. For this reason, the

measurement of lung shrinkage using elastic registration and deep learning classifiers provides spatial information

about the deformation process, enhancing the understanding of disease progression. It may also assist in the early

detection and monitoring of ILD. However, it is important to consider lung shrinkage in conjunction with other

markers, such as changes in lung function parameters such as forced vital capacity (FVC) and the diffusing

capacity of carbon monoxide (DLCO), to obtain a comprehensive assessment of disease severity and treatment

response. By combining these approaches, including advanced imaging techniques, quantitative analysis, and the

evaluation of lung function, a more holistic understanding of lung shrinkage in ILD can be achieved, enabling an

improved monitoring and management of this complex condition .
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