
Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 1/8

Active File Mode Transition Mechanism in File
Synchronization
Subjects: Computer Science, Information Systems

Contributor: Mingyu Lim

A cloud file synchronization service keeps the contents of files on a local device and in remote cloud storage the

same. With a file synchronization service, users can always keep their files on multiple devices up to date through

cloud storage, and they can also use a backup function. As file synchronization services become more common,

the capacity of local storage and remote cloud storage increases, and the capacity of the two storages become

different.

active file mode change directory activation ratio file synchronization

1. Introduction

A cloud file synchronization service keeps the contents of files on a local device and in remote cloud storage the

same. With a file synchronization service, users can always keep their files on multiple devices up to date through

cloud storage, and they can also use a backup function. As file synchronization services become more common,

the capacity of local storage and remote cloud storage increases, and the capacity of the two storages become

different. When the local storage of a new client device has a smaller capacity than the existing cloud storage, the

new device cannot accommodate all the files in the cloud storage. When local storage runs out, users must free up

space on local storage by deleting or moving files that are no longer needed.

To solve the problem of lack of local storage, commercial cloud file synchronization services such as Dropbox and

OneDrive provide the functionality to change files from local mode to online mode. The local mode of a file is a

normal mode in which file contents exist in both the local and cloud storage. On the other hand, an online mode file

keeps the original content only in cloud storage. In the local storage, the online mode file deletes file contents and

keeps only file attributes. Therefore, an advantage of the online mode file is that local storage can be saved by

deleting only the file contents while maintaining the file attributes on the local device. However, when a client

accesses an online mode file, it has a disadvantage in that the access delay time may be long because it must first

download the entire file content from the cloud storage and change it to the local mode. The larger the file size, the

longer the latency to access these online mode files. When there are many local mode files, local storage is used

as much as the file size allows, and when there are many online mode files, file access latency occurs at the cost

of saving local storage. In other words, there is a tradeoff between local storage usage and file access time.

Existing research on file synchronization focuses on methods to improve synchronization

performance to efficiently process large files for many users, but do not support online and local mode change

[1][2][3][4][5][6][7]

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 2/8

functions for synchronized files. Some commercial cloud file synchronization services provide the

functionality to change the online and local modes of files, but this function only allows users to manually change

the mode of selected files on an on-demand basis. There are also cloud storage and distributed file systems

 and other multi-tiered storage systems that use similar

approaches to the proposed file mode transition mechanism by prefetching or caching files among storages.

However, as they focus more on the performance of file access in costly high-layered storages, cache hit ratio or

prediction accuracy are the most important performance metric.

2. Active File Mode Transition Mechanism in File
Synchronization

2.1. File Synchronization Systems

Rsync is an algorithm and tool that synchronizes the client’s file with the remote server’s file. The rsync algorithm

has the advantage of reducing the data transfer cost for synchronization by using delta encoding to transmit only

the differences between the two files. Rsync is also a standard Linux utility, and many other synchronization tools

have been developed based on it. The file synchronization framework of this research was also developed based

on the rsync algorithm. However, the rsync algorithm does not contain information about the file mode, such as

whether the file is in online or local mode.

Research has been performed aiming to improve file synchronization performance in cloud storage .

Andriani et al. proposed a cloud storage synchronization architecture called Cloud4NetOrg. It is designed mainly

for users collaborating with corporate mass storage rather than personal storage. Cloud4NetOrg configured a two-

level cache and private network to improve the synchronization performance. Drago et al. presented the results

of analyzing the synchronization design method of commercial cloud storage services through measurement

experiments and network packet analysis. Li et al. proposed an update-batched delayed synchronization (UDS)

mechanism to solve the problem that synchronization performance is significantly degraded when a file is

frequently modified with a small amount of modification. When a file modification event occurs, UDS does not

immediately synchronize with cloud storage several times, but rather waits until the total amount of modified data

reaches a threshold and then synchronizes that data all at once. Han et al. proposed a safe and reliable

synchronization method called MetaSync by integrating existing cloud storage services. MataSync proposes the

pPaxos algorithm, which is a client-based modification of the existing Paxos algorithm, and proposes a data

replication algorithm that reduces the cost of maintaining the consistency of replicated data in order to synchronize

file modifications consistently among multiple cloud services. Lopez et al. proposed a StackSync architecture

that provides elastic file synchronization based on a lightweight message queue framework called ObjectMQ. The

elastic file synchronization is an efficient method of providing resources such as servers or message queue objects

according to synchronization overhead, by increasing or decreasing resources. Li et al. defined the Network

Traffic Usage Efficiency (TUE) in the synchronization process. They measured and analyzed this TUE value

through experiments targeting commercial cloud storage services and presented an efficient method to use the

synchronization traffic. As described above, various methods for improving file synchronization performance have

[8][9][10][11]

[12][13]

[14][15][16][17][18][19][20] [21][22][23][24][25][26][27][28][29][30]

[1]

[2][3][4][5][6][7]

[2]

[3]

[4]

[5]

[31]

[6]

[7]

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 3/8

been proposed, but they did not consider the costs of different file modes in terms of the local storage and file

access delay.

For commercial cloud storage services such as Dropbox, OneDrive, and Google Drive, specific file synchronization

methods are not disclosed. Instead, there has been research that indirectly analyzed them through service

usage experiments and traffic analysis. In addition, technical documents provide the characteristics of each

cloud storage service. Dropbox and OneDrive store the original files only on the server under the names of Smart

Sync and Files on Demand, respectively, and the client maintains only the meta information of the files to save

client storage space. However, these methods have a limitation in that the user manually selects the files and

changes them to either online or local mode.

2.2. Cloud Storage and Distributed File Systems

Research related to cloud storage and distributed file systems has also been conducted .

Among legacy distributed file systems are the Andrew File System (AFS) and Coda File System . AFS used

file transfer and cache to improve the performance of accessing remote file at servers. Coda also uses the same

cache approach, and further provides disconnected operation when a client–server connection has failed. Bessani

et al. proposed a Shared Cloud-backed File System (SCFS) that provides strong consistency to solve the

problems of reliability, durability, and file sharing inefficiency of existing cloud storage systems. Ghemawat et al.

introduced the Google File System (GFS), which is a scalable distributed file system suitable for large-scale data

processing applications. Additionally, GFS works on low-cost hardware while providing fault-tolerance technology

and providing superior performance to large clients. Muniswamy-Reddy et al. proposed a method of providing

not only data but also historical information (Provenance) related to data creation and modification to cloud

storage. This includes information such as when the data was created and from which preceding data it was

modified. Duan et al. proposed CSTORE, a cloud storage for the data management of many individual users

rather than the management of large-scale data. CSTORE strengthened data security by providing an independent

namespace for each user and avoided data conflicts in the process of multiple logins and file modification of the

same user based on log records. In addition, CSTORE used a method to avoid data duplication by managing data

at the block level. Shvachko et al. deals with the Hadoop Distributed File System (HDFS), which focuses on the

distributed processing method of large-scale data. In HDFS, thousands of servers in a large cluster are designed to

reliably distribute and store large-scale data, and to continuously transmit large-scale data sets to user applications

at high speed. Chen et al. proposes a prefetching mechanism by converting file path information into word

vector and applying it to RNN to detect file access pattern in GlusterFS . These research projects focused on

improving the performance of the file access and operation but did not deal with the local storage and the file

access delay issues through the online and local mode changes of files.

2.3. Multi-Tiered Storage Systems

Soundararajan et al. proposes prefetching data blocks by analyzing the block access pattern per application

context in a storage area network. It analyzes the frequency of access order of data blocks and detects correlation

[3][8]

[9][10][11]

[12][13][14][15][16][17][18][19][20]

[12] [13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 4/8

of access history. AMP prefetches metadata based on affinity of metadata access patterns in distributed

storage, where metadata servers and file servers are separated.

In the active archive system , it is possible to repeatedly schedule the archiving start point to be performed at

a specific time. The archive target file can be set by the elapsed time since the last access or can be based on file

attribute values such as file size, file owner, and file type. Because the active archive system restores files to main

storage when accessing a link (or an online mode file), there is a recovery delay for all archived file accesses.

Amazon S3 Intelligent-Tiering organizes storage with three or four layers and moves old files from higher layer

to lower layer storage. When a file in the lower layer storage is accessed, it moves to the top layer (Frequent

Access Tier) storage. As with the previous active archive systems, Amazon S3 also has the same problem of

restoring files when they are accessed. Cherubini et al. proposed a file prefetching method for multi-tiered

archive storage systems. They select target files by applying machine learning to the metadata of accessed files to

predict future access patterns.

File prefetching also has been researched in the multi-tiered storage of high performance computing (HPC)

systems . Alturkestani et al. proposed multilayered buffer storage (MLBS), which is a data management

method in three layered storages of super computers for HPC. MLBS prefetches data if higher layered storage has

an empty buffer slot. Selection of prefetched files is based on whether the application processes in LIFO or FIFO.

In the research of Qian et al. , a HPC client of hierarchical storage management (HSM) architecture uses its

SSD as cache. Files to be cached are selected using file access information such as open/close events, client NID,

and job ID.

Some research approaches prefetching data in a more fine-grained manner . In the research of Khot et al.

, they consider the typical access patterns of different file types when file pages are prefetched to the cache in

the OS level. Prefetch window size is adjusted according to the file type. Devarajan et al. proposed a method to

prefetch file segments in multi-tier storages, which is called HFetch. HFetch specifically focuses on a write-once-

read-many (WORM) data access model of scientific data workflow. After HFetch detects file access, it prefetches

the next file segment by analyzing the global view of the file access pattern with updated file offset, length, and

timestamp.

Multi-tiered storage systems that support file cache or prefetch are similar to the transition to the local mode of the

proposed mechanism, although their target domains are different. While caching takes place in an on-demand

manner, prefetching occurs in advance before the file is accessed. Table 1 summarizes their comparison in various

aspects. In the existing multi-tiered storage systems, cache hit ratio and prefetching accuracy are the main

important performance factors because the cache and prefetch target is costly high-layer storage (main purpose

and storage hierarchy columns in Table 1). In the proposed file synchronization system, on the other hand, as

client and server storages are not hierarchical and they are main storages used by a user, the selection accuracy

of local mode candidate files is not relatively important. Therefore, the proposed file mode change mechanism uses

a directory activation ratio as the criterion for changing a file to the local mode, which does not require as much

computing resources and historical information as prefetching methods for multi-tiered storage systems. Instead,

[22]

[23][24]

[25]

[26]

[27][28] [27]

[28]

[29][30]

[29]

[30]

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 5/8

researchers focus more on the balance of importance between client storage usage and file access delay, which

can be different according to user requirements (transition direction priority column in Table 1). For example, a file

can move between local or online mode, even in the same states of directory activation and local storage usage,

according to user’s preference.

Table 1. Comparison of proposed mechanism vs. multi-tiered storage systems.

 Storage
Category Consistency Main

Purpose
Storage

Hierarchy
Transition

Target
Transition

Type
Transition

Criteria

Transition
Direction
Priority

Proposed
method

Cloud
storage

Strong
File

synchronization
No File

Local/online
mode

Directory
activation

ratio,
download

time,
storage
usage

Yes

Storage
Area

Network
Weak Fast access No

Data
block

Prefetch
Block

access
pattern

No

Distributed
storage

Weak Fast access No Metadata Prefetch
Metadata
access
pattern

No

Archive Weak Backup Yes File Restore
On

demand
No

Cloud
storage

Weak Backup Yes File Restore
On

demand
No

Archive Weak Backup Yes File Prefetch
File

access
pattern

No

HPC
storage

Weak Fast access Yes Data Prefetch
Data

access
order

No

HPC
storage

Weak Fast access Yes File Cache
File

access
information

No

Local
storage

Weak Fast access Yes File page Prefetch
File

access
pattern

No

Local
storage

Weak Fast access Yes File
segment

Prefetch File
access

No

[21]

[22]

[23][24]

[25]

[26]

[27]

[28]

[29]

[30]

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 6/8

Because the existing multi-tiered storage architecture is complementary to the file synchronization system, it is

expected that it can be applied to the client or server storage of the file synchronization system to improve file

access performance.

References

1. Tridgell, A. Efficient Algorithm for Sorting and Synchronization. Ph.D. Thesis, Australian National
University, Canberra, ACT, Australia, 1999.

2. Andriani, G.; Godoy, E.; Koslovski, G.; Obelheiro, R.; Pillon, M. An Architecture for Synchronising
Cloud File Storage and Organisation Repositories. Int. J. Parallel Emergent Distrib. Syst. 2019,
34, 538–555.

3. Drago, I.; Bocchi, E.; Mellia, M.; Slatman, H.; Pras, A. Benchmarking Personal Cloud Storage. In
Proceedings of the 2013 Conference on Internet Measurement Conference, Barcelona, Spain,
23–25 October 2013.

4. Li, Z.; Wilson, C.; Jiang, Z.; Liu, Y.; Zhao, B.Y.; Jin, C.; Zhang, Z.; Dai, Y. Efficient Batched
Synchronization in Dropbox-like Cloud Storage Services. In Proceedings of the
ACM/IFIP/USENIX 14th International Middleware Conference, Beijing, China, 9–13 December
2013.

5. Han, S.; Shen, H.; Kim, T.; Krishnamurthy, A.; Anderson, T.; Wetherall, D. MetaSync: File
Synchronization Across Multiple Untrusted Storage Services. In Proceedings of the USENIX
Annual Technical Conference, Santa Clara, CA, USA, 8–10 July 2015.

6. Lopez, P.G.; Sanchez-Artigas, M.; Toda, S.; Cotes, C.; Lenton, J. StackSync: Bringing Elasticity to
Dropbox-like File Synchronization. In Proceedings of the ACM/IFIP/USENIX 15th International
Middleware Conference, Bordeux, France, 9–13 December 2014.

7. Li, Z.; Zhang, Y.; Liu, Y.; Xu, T.; Zhai, E.; Liu, Y.; Ma, X.; Li, Z. A Quantitative and Comparative
Study of Network-level Efficiency for Cloud Storage Services. ACM Trans. Model. Perform. Eval.
Comput. Syst. 2019, 4, 1–32.

8. Drago, I.; Mellia, M.; Munafo, M.M.; Sperotto, A.; Sadre, R.; Pras, A. Inside Dropbox:
Understanding Personal Cloud Storage Services. In Proceedings of the 2012 Internet
Measurement Conference, Boston, MA, USA, 14–16 November 2012.

9. Dropbox Smart Sync. Available online: https://www.dropbox.com/business/smartsync (accessed
on 29 September 2022).

10. OneDrive. Available online: https://onedrive.live.com/ (accessed on 29 September 2022).

11. Google Drive. Available online: https://www.google.com/drive/ (accessed on 29 September 2022).

 Storage
Category Consistency Main

Purpose
Storage

Hierarchy
Transition

Target
Transition

Type
Transition

Criteria

Transition
Direction
Priority

pattern

Distributed
File

System
Weak Fast access No File Prefetch

File
access
pattern

No[19]

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 7/8

12. Howard, J.; Kazar, M.; Menees, S.; Nichols, D.; Satyanarayanan, M.; Sidebotham, R.N.; West, M.
Scale and Performance in a Distributed File System. In Proceedings of the eleventh ACM
Symposium on Operating Systems Principles, Austin, TX, USA, 8–11 November 1987.

13. Kistler, J.J.; Satyanarayanan, M. Disconnected Operation in the Code File System. ACM Trans.
Comput. Syst. 1992, 10, 3–25.

14. Bessani, A.; Mendes, R.; Oliveira, T.; Neves, N.; Correia, M.; Pasin, M.; Verissimo, P. SCFS: A
Shared Cloud-backed File System. In Proceedings of the USENIX Annual Technical Conference,
Philadelphia, PA, USA, 19–20 June 2014.

15. Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google File System. Oper. Syst. Rev. ACM 2003, 37,
29–43.

16. Muniswamy-Reddy, K.K.; Macko, P.; Seltzer, M. Provenance for the Cloud. In Proceedings of the
8th USENIX Conference on File and Storage Technologies, San Jose, CA, USA, 23–26 February
2010.

17. Duan, H.; Yu, S.; Mei, M.; Zhan, W.; Li, L. CSTORE: A Desktop-oriented Distributed Public Cloud
Storage System. Comput. Electr. Eng. 2015, 42, 60–73.

18. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In
Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies, Incline
Village, NV, USA, 3–7 May 2010.

19. Chen, H.; Zhou, E.; Liu, J.; Zhang, Z. An RNN Based Mechanism for File Prefetching. In
Proceedings of the 18th International Symposium on Distributed Computing and Applications for
Business Engineering and Science, Wuhan, China, 8–10 November 2019.

20. GlusterFS: A Scalable Network Filesystem. Available online: http://www.gluster.org/ (accessed on
21 April 2023).

21. Soundararajan, G.; Mihailescu, M.; Amza, C. Context-Aware Prefetching at The Storage Server.
In Proceedings of the USENIX 2008 Annual Technical Conference, Boston, MA, USA, 22–27 June
2008.

22. Lin, L.; Li, X.; Jiang, H.; Zhu, Y.; Tian, L. AMP: Affinity-Based Metadata Prefetching Scheme in
Large-Scale Distributed Storage Systems. In Proceedings of the Eighth IEEE International
Symposium on Cluster Computing and the Grid, Lyon, France, 19–22 May 2008.

23. ArchiverFS. Available online: https://www.mlteksoftware.com/Products/ArchiverFS/Index.aspx
(accessed on 28 March 2023).

24. DataCore. Available online: https://www.datacore.com/blog/active-archive-object-storage/
(accessed on 28 March 2023).

Active File Mode Transition Mechanism in File Synchronization | Encyclopedia.pub

https://encyclopedia.pub/entry/44539 8/8

25. Amazon S3 Intelligent-Tiering. Available online:
https://aws.amazon.com/de/blogs/storage/automatically-archive-and-restore-data-with-amazon-
s3-intelligent-tiering/ (accessed on 4 April 2023).

26. Cherubini, G.; Kim, Y.; Lantz, M.; Venkatesan, V. Data Prefetching for Large Tiered Storage
Systems. In Proceedings of the IEEE International Conference on Data Mining, New Orleans, LA,
USA, 18–21 November 2017.

27. Alturkestani, T.; Tonellot, T.; Ltaief, H.; Abdelkhalak, R.; Etienne, V.; Keyes, D. MLBS: Transparent
Data Caching in Hierarchical Storage for Out-of-Core HPC Applications. In Proceedings of the
IEEE 26th International Conference on High Performance Computing, Data, and Analytics,
Hyderabad, India, 17–20 December 2019.

28. Qian, Y.; Li, X.; Ihara, S.; Dilger, A.; Thomaz, C.; Wang, S.; Cheng, W.; Li, C.; Zeng, L.; Wang, F.;
et al. LPCC: Hierarchical Persistent Client Caching for Lustre. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, Denver, CO,
USA, 17–19 November 2019.

29. Khot, T.; Mathew, V.; Shenoy, P. Adaptive Filetype Aware Prefetching; Department of Computer
Sciences, University of Wisconsin: Madison, WI, USA, 2010.

30. Devarajan, H.; Kougkas, A.; Sun, X. HFetch: Hierarchical Data Prefetching for Scientific
Workflows in Multi-Tiered Storage Environments. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, New Orleans, LA, USA, 18–22 May 2020.

31. Lamport, L. The Part-time Parliament. ACM Trans. Comput. Syst. 1998, 16, 133–169.

Retrieved from https://encyclopedia.pub/entry/history/show/100644

