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The assessment of agreement in method comparison and observer variability analysis of quantitative

measurements is usually done by the Bland-Altman Limits of Agreement, where the paired differences are implicitly

assumed to follow a normal distribution. Whenever this assumption does not hold, the 2.5% and 97.5% percentiles

are obtained by quantile estimation. In the literature, empirical quantiles have been used for this purpose. In this

simulation study, we applied both sample, subsampling, and kernel quantile estimators as well as other methods

for quantile estimation to sample sizes between 30 and 150 and different distributions of the paired differences.

The performance of 15 estimators in generating prediction intervals was measured by their respective coverage

probability for one newly generated observation. Our results indicated that sample quantile estimators based on

one or two order statistics outperformed all the other estimators and can be used for deriving nonparametric Limits

of Agreement. For sample sizes exceeding 80 observations, more advanced quantile estimators, such as the

Harrell-Davis and estimators of Sfakianakis-Verginis type, which use all the observed differences, performed

likewise well, but may be considered intuitively more appealing than simple sample quantile estimators that are

based on only two observations per quantile.
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1. Background

The classical Bland-Altman Limits of Agreement (BA LoA) define a range within which approximately 95% of

normally distributed differences between paired measurements are expected to lie . In cases of non-normally

distributed differences, the use of empirical quantiles has been proposed as robust alternative ; however,

extensive research endeavors in the past have suggested the application of nonparametric quantile estimation to

the assessment of 2.5% and 97.5% percentiles as nonparametric LoA. We performed a simulation study on 15

nonparametric quantile estimators to derive nonparametric prediction intervals and assessed their performance by

means of the coverage probability for one newly generated observation. The aim of this study was to suggest a

nonparametric and robust alternative to the classical BA LoA when the normality assumption does not hold and/or

the sample sizes are small to moderate. Our findings are illustrated by an application to data from a previously

published clinical study on coronary artery calcification measured by the Agatston score . All methodological

details as well as Supplemental Material can be found in the main paper .

 2. Systematic review 
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Databases such as JSTOR (Journal Storage), ScienceDirect, the online journal platform Taylor & Francis Online,

and those maintained by PubMed/Medline in the NCBI (National Center for Biotechnology Information) were

searched for the following terms: quantile estimator, nonparametric quantile estimator, nonparametric kernel

quantile estimator, subsampling quantile estimator, and new quantile estimator. Fifteen nonparametric quantile

estimators were chosen:

Three sample quantile estimators : SQ , SQ , and SQI ;

Four subsampling quantile estimators : HD , KL , KC , and BP ;

Two kernel quantile estimators : KQ  and KQ ;

Six other quantile estimators : KQ , HD , SV , SV , SV , and NO .

Hence, we chose very different types of nonparametric quantile estimators, which use one, two, or all the

observations in a sample.  

3. Simulation setup

We contrasted nonparametric LoA as constructed with the 15 abovementioned quantile estimators by comparing

their coverage probabilities for the next paired difference under the given distributional assumption. Here, we

employed the standard normal distribution (ND), a standard normal distribution with 1%, 2%, and 5% outliers (ND

1%, ND 2%, and ND 5%, respectively), an exponential distribution (ED) with a rate of 1, and a lognormal

distribution (LND) with meanlog=0 and sdlog=1. For normal distributions comprising outliers, simulated data were

replaced with a probability of 1%, 2%, and 5% by data sampled from a normal distribution with a mean of 0 and a

standard deviation of 3.To examine small to moderate sample sizes, the sample size was set to 30, 50, 80, 100,

and 150. For each combination of distribution, sample size, and nonparametric quantile estimator, 20,000

simulated trials of size (n+1) were generated with R. Here, a seed was set in order to use the same simulated data

for each combination of distribution and sample size across nonparametric quantile estimators. The first n

observations in each simulated trial were used to derive nonparametric LoA, to which the last observation was

compared. The coverage probability was then the proportion of cases out of the 20,000 trials where the

nonparametric LoA included the last observation. All figures were generated with Stata/MP 16.1 (College Station,

Texas 77845 USA). 

4. Results

For n=30, none of the estimators reached the nominal coverage probability of 0.95. The coverage probability of

SQ  was closest to 0.95, ranging from 0.934 to 0.938. Note that for sample sizes of up to n=40 observations, the

smallest and largest difference are used as nonparametric quantile estimates for the 2.5% and 97.5% percentiles,

respectively. For SQI , HD , HD , SV ,  SV ,  and SV ,  the coverage probabilities were at least 0.921, 0.911,

0.910, 0.920, 0.914, and 0.923, respectively. Neither SQ  nor KL  are defined for n<40.
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SQ  was the only estimator with coverage probabilities oscillating closely around 0.95 for all the investigated

sample sizes n≥50; for n=50, SQ  was the only one to do so (Figure 1).

Figure 1. Lineplots of coverage probabilities across scenarios by nonparametric estimator (n=50).

For n=80, the coverage probabilities of HD , SV , SV , and SV  fluctuated closely around the nominal level

except for the simulations with an ED (0.94) (Figure 2). For n≥100, these estimators performed close to the 0.95

nominal level for all the investigated distributions. The coverage probabilities of the recently proposed NO

estimator varied between 0.945 and 0.950 for n=200 and were very close to 0.95 for n=250 (results not shown).
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Figure 2. Lineplots of coverage probabilities across scenarios by nonparametric estimator (n=80).

5. Worked example

Diederichsen et al. [6] compared coronary artery calcification measurements using the Agatston score with the

measurements using Framingham Heart Score in Danes of 50 and 60 years of age. Of 1,825 randomly sampled

citizens, 1,257 consented to participation in the study, and 1,156 of them were eligible. To assess intra- and inter-

rater agreement, Agatston scores were independently reanalyzed for 129 randomly chosen study participants, and

the agreement measures were the proportions of agreement and the kappa statistics for dichotomized calcification

status (absence vs. presence). In the following, the intra-rater differences are used for exemplification purposes.

Approximately half of the 129 participants had an Agatston score of 0. The paired intra-rater differences ranged

from -683 to 130, with a first, second, and third quartile being equal to 0; the 5th, 10th, 90th and 95th percentiles

were -23, -12, 1.1, and 5, respectively. The empirical distribution of the paired differences was, therefore,

characterized by its denseness around 0 and a single, comparatively extreme outlier, clearly indicating the

inappropriateness of the normality assumption in this setting (Figure 3).
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Figure 3. Histogram for the data of the worked example, including an approximating normal distribution.

Using  SQp2, HDp, and SVp1, the nonparametric, asymmetric, and robust LoA are -61.5, 12.8; -96.2, 26.7; and

-122.1, 30.6, respectively, whereas the symmetric BA LoA of -129.8, 116.1 are equidistant from the estimated

mean difference of -6.9 (Figure 4). The upper LoA for HDp and SVp1 are similar, but the respective lower LoA are

differently affected by the single outlier (3942.5, -683). SQp2 appears to be most robust to few outliers due to its

definition.
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Figure 4. SQ  (magenta, long dashes), HD  (red, short dashes) and SV  (black, solid lines) contrasted with

classical BA LoA (shaded area).

The sensitivity of the classical BA LoA to outliers becomes crystal-clear when excluding the single outlier here.

Then, the symmetric BA LoA are -37.4 and 34.3, and the estimated mean difference reduces to -1.6. In practice,

outliers are, though, kept in the analysis dataset if there is no reasonable explanation for an exclusion. This

underlines the importance of robust alternatives to the BA LoA. 

6. Conclusions

The simple sample quantile estimators based on one and two order statistics performed closest to the nominal

level in terms of the coverage probability for the next observation across six distributional scenarios for n=30 and

n=50, 80, 100, 150.  The Harrell-Davis subsampling estimator and estimators of the Sfakianakis-Verginis type

followed closely for sample sizes of at least n=80 and may be considered intuitively more appealing as they use

the entire sample, whereas more simple and outlier-robust sample quantile estimators are based on only a few

observations from the sample. 
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