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Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and
other cellular components through lysosomal degradation. Deregulation of this process has been associated with
the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In
cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of
autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance
in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy

for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in

patients.
autophagy anticancer therapy autophagy inhibitors autophagic cell death
chemoresistance chemosensitization

| 1. Introduction

Cellular homeostasis is crucial for cell survival and refers to all processes involved in the maintenance of an
internal steady state at the level of the cell. Autophagy is one of the main catabolic mechanisms that contributes to
cellular homeostasis, through the degradation and recycling of cytoplasmic components and organelles in the
lysosomes 2, This process confers the ability to adapt to environmental stresses, preventing cellular damage,
and promoting cell survival, even in starving conditions, thus having a main physiologic cytoprotective role. It is a
process tightly regulated and its dysfunction has been related to several pathologies, such as neurodegeneration,
cancer, or aging . Hence, autophagy modulation is emerging as a promising new therapeutic strategy to treat
these malignancies . Indeed, more than 120 clinical trials related to the process of autophagy were initiated to
date. The majority of those target autophagy for cancer treatment, already showing promising results, for instance,
using chloroquine or hydroxychloroquine as single agents or in combination therapies B8, Nevertheless, the role
of autophagy in cancer is somewhat controversial. Cytotoxic or cytoprotective roles have been reported depending
on the cellular context [, Therefore, the deep understanding of autophagy regulation and the identification of its
role in each cellular context is crucial for the selection of an appropriate therapeutic intervention involving
autophagy modulation in cancer.

| 2. Therapeutic Strategies Targeting Autophagy
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Modulation of autophagy has emerged as a promising therapeutic option for cancer treatment. Due to the dual role
of autophagy in cancer cells, activators as well as inhibitors have been described as feasible chemotherapeutic

agents.

In this section, we compiled different therapeutic interventions targeting autophagy, either for its stimulation or for

its inhibition (Figure 1).
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Figure 1. Mechanism of autophagy. The pWOEMawmucleation, elongation, maturatisfAgWR ATION
degradation), with the main proteins that participate in each one, are depicted.Autophagy activators (green) and inhibitors (red)
are marked where they interfere with the autophagy process. Numbers correspond to those compounds listed in table 1 and 2,

respectively.

2.1. Autophagy Stimulation for Cancer Treatment

Induction of ACD has become an interesting alternative to overcome resistance to apoptosis and to exploit a
caspase independent cell death for cancer treatment. In the following sections, compounds for which the

mechanism of action is based on stimulating autophagy are described (Table 1).

Table 1. Autophagy activators.

Mechanism of Number
Action/Type Name Structure in Figure 1 Refs.
mTOR Inhibitors
[81[9]
Rapacmycin 1 [10][11]
Temsirolimus (CCI779) 2 [12][13]
Everolimus (RAD0OO1) 3 [14](15]
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acute lymphoblastic leukemia cells 24, Moreover, obatoclax induced autophagy in adenoid cystic carcinoma 22
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Some natural compounds have shown promising anticancer activities based on autophagy stimulation. Betulinic
acid is a pentacyclic triterpenoid derived from widespread plants that has shown to induce ACD in multiple
myeloma cells with high levels of Bcl-2 expression. This derivative acts as an attenuator for mitochondrial-mediated
apoptosis, promoting ACD by inducing Beclin-1 phosphorylation 32, Resveratrol, a polyphenol compound widely
found in plants, has been shown to inhibit cell proliferation in breast cancer stem-like cells via suppressing the
Whnt/b-catenin signaling pathway (2. This pathway, which regulates critical genes in tissue development and
homeostasis, is aberrantly activated in many cancers and its inhibition has been reported to be related with
autophagy processes [32l801 5_Tocotrienol is one of the four isomers that comprises vitamin E that has shown

cytotoxic effects against prostate cancer cells in vitro through autophagy activation via ER stress B4, Curcumin is a
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major constituent of Curcuma longa (turmeric) that induces autophagy, which has been shown to elicit a dual role

protecting or leading to cell death depending on the duration of the treatment and concentration used 32!,

2.1.6. Others

Other compounds have been reported to induce ACD in cancer. For example, lapatinib is a small molecule tyrosine

kinase inhibitor, targeting epidermal growth factor receptors that is capable of inducing ACD in hepatocellular

carcinoma B8 and in acute leukemia cell lines B2, APO866 is an inhibitor of nicotinamide adenine dinucleotide

(NAD) biosynthesis that has shown anticancer activity through induction of ACD in cells from hematological

malignancies 28!,

2.2. Autophagy Inhibition for Cancer Treatment

In several tumors, autophagy has a protective role; therefore, its inhibition could be an interesting approach for

tumor treatment. There are several autophagy inhibitors that block the process of autophagy at different steps,

which we detail below (Table 2).

Table 2. Autophagy inhibitors.

Mechanism of Action Name
ULK Inhibitors
Compound 6
MRT68921
MRT67307
SBI-0206965

Structure

Number
in Figure

Refs.

[62][63]

[62][63]

[64][65][66](67]
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2.2.1. ULK Inhibitors
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of PI3Ks [Z8Il74] | 'Y294002 is a synthetic small molecule 2 with poor solubility and short half-life. A conjugate

analog of LY294002, named SF1126, was designed to accumulate in integrin expressing tissues, improving

LY294002 solubility and pharmacokinetic, favoring its accumulation in the tumor site and showing antitumor and

antiangiogenic properties in mouse models 877 Other non-selective Pan PI3K inhibitors are P1103 [Z8]
KU55933, G66976 2, and GSK1059615 [BABLIL36]

2.2.3. VPS34 (PI3KC3) Complex Inhibitors

VPS34 is a PISKC3 that transforms Pl to PI3P. VPS34 forms a complex with several subunits needed for its
activation, such as VPS15 (also known as p150), ATG14, and Beclin-1. Autophagy can be blocked by inhibition of
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Jme of the autophagosomes, which is accompanied by suppression of tumor growth in
eous mouse model 7. Tioconazole is an antifungal drug that binds to the active site of
ATG4 blocking autophagy flux reducing cell viability and sensitizing tumor cells to doxorubicin in a xenograft mouse
model B8], Other ATG4B inhibitors that suppress autophagy in cell lines and in vivo inhibiting cell proliferation are

UAMC-2526, a derivative of benzotropolones stable in plasma B2 and LV-320, a styrylquinoline 29,

It should be noticed that the roles of ATG4B in cancer are not well understood and some of the ATG4 inhibitors
showed only inhibition in LC3-PE delipidation, but not in the autophagosome formation such as S130 24 and FMK-
9a [921931194]  Additionally, some studies are focused on the evaluation of different markers that may predict the
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new and more potent autophagy inhibitors 221, Thus, CQ analogs that exert more potent autophagy inhibitory
activity have been synthetized. Lys05 is a dimeric analog of CQ that accumulates within acidic organelles,
including lysosomes, more potently than HCQ 192, DQ661, a dimeric quinacrine (DQ), not only inhibits lysosomal
catabolism, including autophagy, but also targets palmitoyl-protein thioesterase-1, resulting in the inhibition of
MTORC1 signaling. DQ661 has shown effects on tumor mouse models alone and it also overcame resistance to
gemcitabine 194, Another antimalaria compound found to inhibit autophagy with antitumoral properties is VATG-
027 2031 On the other hand, mefloquine is also accumulated in lysosomes disrupting autophagy, it induces
apoptosis and inhibits multidrug resistance proteinl (MDR1) being effective in multidrug-resistant tumor cells 1971,
Mefloquine sensitizes chronic myeloid leukemia (CML) cells derived from patients in chronic phase to TK inhibitors

showing selectivity for stem/progenitor tumoral cells to normal cells [£08],
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(153][154][155][156][157][158][159)[160] Remarkably, disruption of the lysosomes not only blocks autophagy, but lysosomal
permeabilization releases proteases such as cathepsins that are active at cytosolic pH and participate in apoptosis
and apoptosis-like and necrosis-like cell death 16111621631 Additionally, lysosomes also participate in tumor
invasion, hence, these inhibitors have shown to be effective against metastasis [1031l164][165][166]  targeting cancer

stem cells 187 and inducing tumor vessel normalization 168,
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