

Genetic Architecture of Psychosis in Parkinson's Disease

Subjects: **Neurosciences**

Contributor: Efthalia Angelopoulou , Anastasia Bougea , Sokratis G. Papageorgiou , Chiara Villa

Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. The pathophysiology of psychosis in PD is complex and still insufficiently clarified.

psychosis

Parkinson's disease

genetics

1. Introduction

Parkinson's disease (PD) is a chronic and progressive neurodegenerative movement disorder associated with progressive disability and characterized by both motor and non-motor symptoms [1]. PD represents the second most common age-associated neurodegenerative disorder after Alzheimer's disease (AD) [2]. Patients experience motor features, including resting tremor, bradykinesia and muscular rigidity with postural instability, often appearing as the disease progresses [3]. Pathologically, these symptoms are mostly attributed to the extensive degeneration of striatal dopaminergic neurons in the *substantia nigra pars compacta* (SNpc) projecting to the dorsal striatum [4], resulting in a loss of dopamine transmission throughout the brain. At the histological level, the progressive SNpc degeneration correlates with the accumulation of large intra-cytoplasmic inclusions, namely Lewy bodies (LBs) containing misfolded α -synuclein (α -syn), neurofilaments and ubiquitin [5], although α -syn deposition occurs years before motor presentations begin. PD patients also suffer from non-motor symptoms, such as autonomic dysfunction, pain, olfactory deficits, sleep disorders, cognitive impairment and psychiatric disturbances [6]. The underlying mechanisms of PD-related non-motor manifestations are far less clear than motor features and still very difficult to treat.

Among the different non-motor symptoms of PD, psychosis in PD (PDP) is one of the most common, complex and disabling non-motor features, with an estimated prevalence of 43–63% in later stages of the disorder [7][8][9]. PDP prevalence increases with disease progression and it is associated with poorer quality of life, disability and caregiver stress, as well as accelerated cognitive decline, hospitalization or institutionalization, morbidity and mortality [10]. Importantly, the clinical features observed in PDP have a different pattern as compared to other psychotic diseases such as schizophrenia or mood disorders associated with psychotic phenomena, so the current

diagnostic criteria applied to other psychiatric illnesses may be unsatisfactory when describing the diversity of PDP [11]. The spectrum of psychotic symptoms experienced by PD patients consist of hallucinations (mainly visual, but also auditory, tactile or gustatory) and delusions, which simplistically define psychosis. Additionally, there are also minor psychotic phenomena, which include passage hallucinations, sense of presence and illusions [12]. Once psychotic features develop, they tend to become progressive and persistent. Although PDP has some common mechanisms to other psychotic disorders, the neurobiology is different, complex and still insufficiently known [11]. Neuroimaging and neuropathological studies have implicated executive function and visual processing deficits in neocortex and limbic structures, with an imbalance between dopamine, acetylcholine and serotonin neurotransmission [13]. Moreover, PDP therapeutic strategies still continue to be a challenge as dopaminergic treatment for PD motor symptoms, such as levodopa or dopaminergic agonists, exacerbates the condition [8] and the administration of antipsychotic drugs *in vivo* have revealed a high rate of mortality and morbidity [14]. Apart from exogenous factors, including dopaminergic treatment, several intrinsic factors have been associated with PDP development, including ageing, a more advanced stage of the disease, depression, cognitive impairment, female sex and REM sleep behavior disorder and daytime sleepiness [13][15]. However, not all PD patients develop psychosis, and dopaminergic drugs only partially contribute to the PDP risk. PDP has also been observed in drug naïve PD patients [16]. Although an increasing number of studies has investigated the relationship between several genetic factors and psychotic symptoms in PD, their role in PDP is still unclear.

2. The Genetic Landscape of Parkinson's Disease

The vast majority of PD cases are idiopathic (also defined as sporadic or sometimes “non-genetic”) with a multifactorial etiology, whereas only approximately 5–10% are the so-called monogenic forms (sometimes called Mendelian, familial or genetic), caused by pathogenic variants in single genes inherited with Mendelian transmission pattern [17][18] (summarized in **Table 1**).

Table 1. Established Parkinson's disease-causing genes and risk factors.

Gene	Function	Main Types of Mutations/Variants
Autosomal dominant		
SNCA	Synaptic vesicle trafficking and neurotransmitter release	Genomic multiplications (duplications, triplications) and missense mutations
LRRK2	Neuronal vesicular trafficking and autophagic protein degradation	Missense mutations
VPS35	Retromer and endosomal trafficking	Missense mutations

Gene	Function	Main Types of Mutations/Variants
Autosomal recessive		
<i>PRKN</i>	Mitochondrial homeostasis	Structural variants (genomic multiplications and deletions in exons or gene promoter), missense, nonsense, splice-site and frameshift mutations
<i>PINK1</i>	Mitochondrial homeostasis	Structural variants, missense, nonsense and frameshift mutations
<i>DJ-1</i>	Mitochondrial homeostasis	Deletions, missense and frameshift mutations
Risk factors		
<i>SNCA</i>	Synaptic vesicle trafficking and neurotransmitter release	Polymorphic variants, often in non-coding regions
<i>LRRK2</i>	Neuronal vesicular trafficking and autophagic protein degradation	Polymorphic variants
<i>MAPT</i>	Microtubules assembly and stabilization	Polymorphic variants
<i>GBA</i>	Lysosomal	Biallelic (homozygous or compound heterozygous) mutations
X-linked		
<i>RAB39B</i>	Vesicular trafficking	Whole gene deletion, missense, splicing and frameshift variants

3. DeMaagd, G.; Philip, A. Parkinson's Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. *Pharm. Ther.* 2015, 40, 504–532.

4. Dickson, D.W. Parkinson's disease and parkinsonism: Neuropathology. *Cold Spring Harb. Perspect. Med.* 2012, 2, a009258.
 DJ-1, protein deglycase; GBA, glucosidase beta; LRRK2, leucine-rich repeat kinase 2; MAPT, microtubule-associated protein tau; PINK1, PTEN-induced putative kinase 1; PRKN, parkin; RAB39B, Ras Analogue in Brain 39b; SNCA, *α*-synuclein; VPS35, vacuolar sorting protein 35.

5. Braak, H.; Del Tredici, K.; Rub, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson's disease. *Neurobiol. Aging* 2003, 24, 197–211.

3. Genetic Architecture of Psychosis in Parkinson's Disease

6. Kumaresan, M.; Khan, S. Spectrum of Non-Motor Symptoms in Parkinson's Disease. *Cureus* 2021, 13, e13275.

3.1. Potential Association between APOE Genotype and PDP

7. Levin, J.; Hasan, A.; Höglinder, G.U. Psychosis in Parkinson's disease: Identification, prevention and treatment. *J. Neural. Transm.* 2016, 123, 45–50.

processes including the metabolism and clearance of β -amyloid [19]. APOE gene has three alleles, named $\epsilon 2$, $\epsilon 3$ and $\epsilon 4$. APOE $\epsilon 3$ is the most frequent allele, whereas the $\epsilon 4$ allele is the most common genetic risk factor for AD, *Prim. Care Companion CNS Disord.* 2019, 21, 1769–1776.

8. Mohanty, D.; Sarai, S.; Naik, S.; Lippmann, S. Pimavanserin for Parkinson Disease Psychosis, leading to an earlier onset of the disease as well [19]. Furthermore, APOE $\epsilon 4$ has been linked to hallucinations and

de Oliveira, A.; Fabre, M.; Gordinha, C.; Moraes, S.; Siqueira, R.; Slevin, T.; Sozzi, G.; Gómez, J.; Mújica-Loaiza, A.; and halász, M. Psychosis in patients with Lewy bodies and Lewy bodies dementia. *Psychiatry Clin. Neurosci.* 2014, 68, 307–314. Parkinson's disease-associated Lewy bodies and Lewy bodies dementia. *Clin. Park. Relat. Disord.* 2021, 5, 100110.

Greater risk of dementia [24], although there is also evidence that does not confirm these relationships [23][25]. Moreover, hallucinations have been shown to be more common in patients with dementia with Lewy bodies carrying *APOE* ε4 [26]. Given the well-established association between psychosis and dementia in PD [27], as well as the relationship between advanced disease and the manifestation of psychotic symptoms, it has been suggested that *APOE* ε4 may increase the risk of PDP.

10. Eichel, H.V.; Heine, J.; Wegner, F.; Rogozinski, S.; Stiel, S.; Groh, A.; Krey, L.; Höglinder, G.U.; Kletz, M. Neuropsychiatric Symptoms in Parkinson's Disease Patients Are Associated with Reduced Health-Related Quality of Life and Increased Caregiver Burden. *Brain Sci.* 2022, 12, 89.

11. Taddei, R.N.; Cankaya, S.; Dhaliwal, S.; Chaudhuri, K.R. Management of Psychosis in

3.2. Dopamine Transporter (DAT) Gene Polymorphisms and PDP Development

Condition. *Parkinsons Dis.* 2017, 2017, 3256542.

Dopamine transporter (DAT) modulates the reuptake of dopamine in the presynaptic dopaminergic neurons, being highly involved in the temporal and spatial regulation of dopamine recycling [28]. VNTR is the most commonly

12. Ravina, B.; Marder, K.; Fernandez, H.H.; Friedman, J.H.; McDonald, W.; Murphy, D.; Aarsland, D.; Babcock, D.; Cummings, J.; Endicott, J.; et al. Diagnostic criteria for psychosis in Parkinson's disease: Report of an NINDS, NIMH work group. *Mov. Disord.* 2007, 22, 1061–1068.

13. Chang, J.B.; Wang, P.N.; Chen, W.T.; Liu, C.Y.; Hong, C.J.; Lin, K.N.; Liu, T.Y.; Chi, C.W.; Liu, H.C. *APOE* epsilon4 allele is associated with a greater frequency of PDP risk factors for non-demented patients with Lewy bodies disease. *Neurology* 2018, 91, 559–568.

14. Sadek, B.; Saad, A.; Schwed, J.S.; Weizel, L.; Walter, M.; Stark, H. Anticonvulsant effects of isomeric nonimidazole histamine H(3) receptor antagonists. *Drug Des. Devel. Ther.* 2016, 10, 3633–3651.

15. Marin, J.; Zelenaia, M.; Marder, K.; Aarsland, D. Risk factors for non-demented patients with Lewy bodies disease. *Neurology* 2018, 91, 559–568.

16. Factor, S.A.; Steenland, N.K.; Higgins, D.S.; Molho, E.S.; Kay, D.M.; Montimurro, J.; Rosen, A.R.; Zabetian, C.P.; Payami, H. Disease-related and genetic correlates of psychotic symptoms in

17. Parkinson's disease. *Mov. Disord. Off. J. Mov. Disord. Soc.* 2011, 26, 2190–2195.

18. Further evidence of the 40-bp VNTR of the *DAT* gene as a genetic risk factor for Lewy bodies disease in levodopa-treated PD patients [36]. *Neurology* 2020, 104, 1047–1052.

19. Angelopoulos, E.; Raoufi, Y.N.; Parageorgiou, S.G.; Riperi, G. *APOE* Genotype and Alzheimer's Disease: The Influence of Lifestyle and Environmental Factors. *ACS Chem. Neurosci.* 2021, 12, 2749–2764.

20. Chang, J.B.; Wang, P.N.; Chen, W.T.; Liu, C.Y.; Hong, C.J.; Lin, K.N.; Liu, T.Y.; Chi, C.W.; Liu, H.C. *APOE* epsilon4 allele is associated with incidental hallucinations and delusions in patients

3.3. Dopamine Receptor (DRD) Gene Polymorphisms and the Risk for PDP

21. Jonas, J.; Clouston, S.; Li, K.; Fochtmann, J.J.; Lenzi, T.; Maniota, A.R.; Cicero, D.; Perlman, E.; Blonk, E.J.; Kotov, R. *APOE* epsilon4 allele predicts escalation of psychotic symptoms

- recipitate adulthood. *Schizophr. Res.* **2019**, *206*, 82–88.
22. Rosas, I.; Moris, G.; Coto, E.; Blazquez-Estrada, M.; Suarez, E.; Garcia-Fernandez, C.; Martinez, C.; Herrera, I.D.; Perez-Oliveira, S.; Alvarez, V.; et al. Smoking is associated with age at disease onset in Parkinson's disease. *Parkinsonism Relat. Disord.* **2022**, *97*, 79–83.
23. Rankratz, N.; Byder, L.; Halter, C.; Rudolph, A.; Shults, C.W.; Conneally, P.M.; Foroud, T.; Nichols, W.C. Presence of an APOE4 allele results in significantly earlier onset of Parkinson's disease and a higher risk with dementia. *Mov. Disord. Off. J. Mov. Disord. Soc.* **2006**, *21*, 45–49.
24. Funold, J.A.; Geut, H.; Rozemuller, J.M.A.; Henniksen, S.P.; Tolt, M.; van de Berg, W.D.J.; Pinistrom, L. APOE and MAPT Are Associated With Dementia in Neuropathologically Confirmed Parkinson's Disease. *Front. Neurol.* **2021**, *12*, 631145.
25. Shi, J.; Luo, J.; Liu, J.; Fu, H.; Tang, L. The genetic association between apolipoprotein E gene polymorphisms and Parkinson disease: A meta-analysis of 47 studies. *Medicine* **2018**, *97*, e12884.
26. Nasri, A.; Sghaier, I.; Gharbi, A.; Mrabet, S.; Ben Djebbara, M.; Gargouri, A.; Kacem, I.; Gouider, R. Role of Apolipoprotein E in the Clinical Profile of Atypical Parkinsonian Syndromes. *Alzheimer Dis. Assoc. Disord.* **2022**, *36*, 38–43.
27. Ojo, O.O.; Fernandez, H.H. Current Understanding of Psychosis in Parkinson's Disease. *Curr. Psychiatry Rep.* **2016**, *18*, 97.
28. Vaughan, R.A.; Foster, J.D. Mechanisms of dopamine transporter regulation in normal and disease states. *Front. Pharmacol.* **2013**, *54*, 489–496.
- ### 3.4. Genetic Polymorphisms of the Cholecystokinin System and PDP
29. Lenka, A.; Aronchik, S.S.; Christopher, R.; Pal, P.K. Genetic substrates of psychosis in patients with Parkinson's disease: A critical review. *J. Neural. Sci.* **2016**, *364*, 33–41.
30. Limosin, F.; Loze, J.Y.; Boni, C.; Fedeli, L.P.; Hamon, M.; Rouillon, F.; Ades, J.; Gorwood, P. The A9 allele of the dopamine transporter gene increases the risk of visual hallucinations during alcohol withdrawal in alcohol-dependent women. *Neurosci. Lett.* **2004**, *362*, 91–94.
31. Kim, J.W.; Kim, D.H.; Kim, S.H.; Cha, J.K. Association of the dopamine transporter gene with SN of PD patients. *CCKAR* is mainly implicated in the CCK-mediated dopamine release in the posterior nucleus accumbens, whereas *CCKBR* is responsible for the CCK-mediated inhibition of dopamine release in the anterior nucleus accumbens. *J. Korean Med. Sci.* **2000**, *15*, 449–451.
32. Le Courtois, D.G.; Leighton, P.W.; Morsman, S.; Pond, S. Association of a polymorphism in the dopamine transporter gene with Parkinson's disease. *Mov. Disord. Off. J. Mov. Disord. Soc.* **1997**, *12*, 760–763.
33. Wang, J.; Liu, Z.; Chen, B. Association between genetic polymorphism of dopamine transporter gene polymorphisms and susceptibility to Parkinson's disease. *Zhonghua Yi Xue Za Zhi* **2000**, *80*, 346–348.
34. Kaiser, R.; Holz, A.; Grapengieser, A.; Gasser, T.; Rupprecht, A.; Roots, J.; Brockmeier, J. L-dopa induced adverse effects in PD and dopamine transporter gene polymorphism. *Neurology* **2009**, *60*, 1750–1755.
- Given the fact that CCK is majorly implicated in dopamine-related behavior, it has been hypothesized that CCK gene polymorphisms could affect the risk for several psychiatric conditions. In this regard, it has been shown that CCK and CCKAR polymorphism may be associated with panic disorder, alcoholism and delirium tremens, bipolar disorder and schizophrenia [51]. Given the molecular differences in PDP and schizophrenia pathogenesis and the mainly auditory hallucinations in schizophrenia, these findings are not directly comparable with PDP. Therefore, it

35. Aszkenasy, G.; Mezey, M.; das, C.K. A polymorphism in the human transporter gene of the dopamine transporter, and several dopamine transporter gene influences after gene expression. *Mol. Psychiatry* 2002, 7, 44–55.

36. Schumacher-Schuh, A.F.; Francisoni, C.; Altmann, V.; Monte, T.L.; Callegari-Jacques, S.M.; Rieder, C.R.; Hutz, M.H. Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson's disease. *Int. J. Neuropsychopharmacol.* 2013, 16, 1251–1258.

Apart from impaired dopaminergic neurotransmission, glutamatergic imbalance has been proposed to play a major role in PD pathophysiology. In this context, metabotropic glutamate receptors (mGluRs) critically regulate synaptic activity and neuronal function, and they have also been related to drug-induced neuroplasticity in the nucleus accumbens [52].

37. Damasceno Dos Santos, E.U.; Duarte, E.B.C.; Miranda, L.M.R.; Asano, A.G.C.; Asano, N.M.Y.; Maia, M.M.D.; de Souza, P.R.E. Pharmacogenetic Profile and the Occurrence of Visual Hallucinations in Patients With Sporadic Parkinson's Disease. *J. Clin. Pharmacol.* 2019, 59, 1006–1013.

Homer1 is highly expressed in the brain, and they are implicated in glutamatergic neurotransmission and synaptic plasticity [54]. Homer1a isoform is implicated in several neurological and psychiatric disorders, such as epilepsy, drug abuse and schizophrenia [55]. Homer1 knockdown can also protect dopaminergic neurons by modulating calcium homeostasis in in vitro models of PD [56].

38. Redensek, S.; Elisar, D.; Kojovic, M.; Gregoric Kramberger, M.; Georgiev, D.; Pirtosek, Z.; Trost, M.; Dolzan, V. Dopaminergic Pathway Genes Influence Adverse Events Related to Dopaminergic Treatment in Parkinson's Disease. *Front. Pharmacol.* 2019, 10, 8.

Brain stimulation of the subthalamic nucleus was associated with downregulation of *HOMER1*, potentially leading to 39. Isenhardt, S.; Sisodia, S. Dopamine Receptors and Parkinson's Disease. *Neurosci. Med. Chem.* 2011, 2011, 40309.

overexpression of *HOMER1* after the use of dopaminergic agonists [58], suggesting its possible role in treatment-related symptoms in PD.

40. Makoff, A.J.; Graham, J.M.; Arranz, M.J.; Forsyth, J.; Li, T.; Aitchison, K.J.; Shaikh, S.; Grunewald, R.A. Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson's disease. *Pharmacogenetics* 2000, 10, 43–48.

Catechol-O-methyltransferase (COMT) plays a critical role in the metabolism of dopamine. It has been indicated that the *COMT* rs4680 genotype is associated with depressive symptoms [59] and the *COMT* Val158Met polymorphism is related to MDMA-induced psychotic symptoms [60].

42. Malhotra, A.K.; Goldman, D.; Buchanan, R.W.; Rooney, W.; Clifton, A.; Kosmidis, M.H.; Breider, A.; Pickar, D. The dopamine D3 receptor (DRD3) Ser9Gly polymorphism and schizophrenia: A haplotype relative risk [38] and association with clozapine response. *Mol. Psychiatry* 1998, 3, 72–75.

43. Sweet, R.A.; Nimgaonkar, V.L.; Kamboh, M.I.; Lopez, O.L.; Zhang, F.; DeKosky, S.T. Dopamine receptor genetic variation, psychosis, and aggression in Alzheimer disease. *Arch. Neurol.* 1998, 55, 1335–1340.

44. Zeng, Y.; Yuan, Y.; Si, Q.; Wang, M.; Shen, Y.; Wang, L.; Zhang, H.; Zhang, K. The Association between DRD3 Ser9Gly Polymorphism and Depression Severity in Parkinson's Disease. *Front. Neurol.* 2019, 2019, 1842087.

45. Crawley, J.N.; Corwin, R.L. Biological actions of cholecystokinin. *Peptides* 1994, 15, 731–755.

ACE levels in the cerebrospinal fluid (CSF) [63], and perindopril, an ACE inhibitor- treatment, may improve motor

46. Reinfield, M. Cholinesterase inhibitors and cholecystokinin. *Peptides* 2001, 22, 1197–1200.

receptor blockers with blood—brain barrier penetrating capacity reduce the risk for PD among patients with ischemic heart

Brain Res. 1982, 243, 176-179.

3.8. ANKK1 Gene Polymorphisms and PDP

48. Crawley, J.N. Cholecystokinin-dopamine interactions. *Trends Pharmacol. Sci.* 1991, 12, 232–236.

49. Fuji, C., Harada, S., Ohkoshi, N., Hayashi, A., Yoshizawa, K., Ishizuka, C., Nakamura, T. Ankyrin repeat and kinase domain containing 1 (ANKK1) gene polymorphisms have been associated with alcoholism and other neuropsychiatric disorders, including PD [68]. The GG rs2734849 ANKK1 gene polymorphism has been associated with the development of RDP in levodopa-treated PD patients in another recent study [69].

rs2734849 polymorphism is in the coding region of *ANKK1* gene and it is able to regulate DRD2 density by 50. Wang, J.; Si, Y.M.; Liu, Z.L.; Yu, L. Cholecystokinin, cholecystokinin-A receptor and changing NF- κ B expression levels.⁷⁰

cholecystokinin-B receptor gene polymorphisms in Parkinson's disease. Pharmacogenetics 2003,

3.9. Serotonergic System Genes and PDP

51. Wilson, J.; Markie, D.; Fitches, A. Cholecystokinin system genes: Associations with panic and Serotonergic dysfunction plays a critical role in PD pathophysiology. A significant serotonergic neuronal loss is other psychiatric disorders. *J. Affect. Disord.* 2012, **136**, 902–908.

observed in the raphe nucleus of the brainstem, accompanied by reduced serotonergic terminals in the putamen, 52 Swanson, Corbin, Baker 77D A: Gersen, Dor, Worley, P, Eir, Kalivas, P, W, Repeated cocaine exposure (5-HTT)

administration attenuates group I mGATP receptor-mediated glutamate release in the frontal and temporal cortex [2]. A repeat poly(IgM) motif, the promoter region of the serotonin transporter (5-HT₁) gene, administration has been less effective in depression [3].

7212011 behavioral activation: A potential role for Homer 1. *J Neurosci Off J Soc Neurosci* 2001; 21: in press.

schizophrenia [75] and psychotic manifestations in AD [76]. Pimavanserin, a 5-HT2AR inverse agonist and

53. Luo, P.; Li, X.; Fei, Z.; Poon, W. Scaffold protein Homer 1: Implications for neurological diseases. *Neurochem Int*. 2012; 61: 731–738.

3.10. Microtubule Associated Protein Tau (MAPT) Gene Polymorphisms and PDP

Jacques, S.M.; Medeiros, M.S.; Rieder, C.R.; Hutz, M.H. Association of common genetic variants of the *HOMER1* gene with levodopa adverse effects in Parkinson's disease patients. *PLoS ONE* 2014, 9, e114289. 29 cases with the H1/H1 genotype had significantly more frequently hallucinations compared to non-carriers, independent of the disease stage [78]. However, no link was revealed between *MAPT* gene polymorphisms and psychotic manifestations in PD patients in another study [16].

3.11. SNCA Gene Polymorphisms and PDP

- Received: 14. April. 2014; Accepted: 14. July. 2014; Published online: 21. August. 2014; Citation: Li, Z., Wang, X., Li, Z., Peng, X., Li, Z., and Li, Z. (2014). A study on the relationship between the degree of polymerization and the mechanical properties of polyacrylate gel.

Knockdown protects dopamine neurons through regulating calcium homeostasis in an *in vitro* model of Parkinson's disease. *Cell. Signal.* 2013, 25, 2863–2870.

particular, the SNCA-REP1 261 allele, which has been shown to increase the risk for PD [79], was not associated with Lewy bodies in Lewy body dementia [16].

Deep brain stimulation in a rat model modulates TH, CAMKIIα and Homer1 gene expression. Eur.

3.12 NLRP6 Gene Polymorphisms and PDP

58. Yamada, H.; Kuroki, T.; Nakahara, T.; Hashimoto, K.; Tsutsumi, T.; Hirano, M.; Maeda, H. The Neuroinflammation is one of the core pathophysiological mechanisms underlying PD pathogenesis. It has been proposed that it may contribute to the development of non-motor symptoms of PD, although its specific role in PDP still remains elusive [80]. Increased plasma interleukin-6 (IL-6) levels were identified as a major contributor to mortality in PD patients [81]. In addition, elevated plasma CRP levels were associated with the occurrence of

59. **Keyakios, E.; Silivris, I.; Leonidas, T.; Liossi, A.M.; Mavrikou, M.** *Major Psychotic Experiences of the Disease* increase the risk for depression [82]. Serotonergic and COMT rs4680 polymorphism are associated with depressive symptoms in

Latinx adults at risk for cardiovascular disease. *Heart Lung J. Crit. Care* 2022, 55, 77–81.

3.13. GPX1 Gene Polymorphisms and PDP

60. Aytac, H.M.; Oyaci, Y.; Aydin, P.C.; Pehlivan, M.; Pehlivan, S. COMTVal158Met polymorphism is associated with ecstasy (MDMA)-induced psychotic symptoms in the Turkish population. *Neurosciences* 2022, 27, 24–30. Oxidative stress plays a critical role in PD pathophysiology, and lower levels of glutathione peroxidase-1 (GPX1), an enzyme with anti-oxidant activity, have been shown in the SNpc of PD patients [83]. GPX-1 polymorphisms rs1050450 and rs1800668 have been associated with schizophrenia in the Chinese population [84], suggesting a potential role of GPX-1 gene in psychosis.

61. Devos, D.; Lejeune, S.; Cormier-Dequaire, F.; Tafin, K.; Charbonnier-Beaupel, F.; Rouaix, N.;

Duhame, A.; Sablonniere, B.; Bonnet, A.M.; Bonnet, C.; et al. Dopa-decarboxylase gene

polymorphisms affect the motor response to L-dopa in Parkinson's disease. *Parkinsonism Relat.*

3.14. MAOB Gene Polymorphisms and PDP

62. *Disord.* 2014, 20, 170–175.

63. **Rekucat, O.; Aydin, M.; Ozkoren, E.; Bilek, E.; Zengin, A.; Cakir, U.; Kara, A.** *Angiotensin II type 1 receptor gene polymorphisms in schizophrenia, bipolar disorders, and their first-degree relatives*. *Psychiatry Genet.* 2010, 20, 14–19. Angiotensin II type 1 receptor gene polymorphisms have been related to the development of schizophrenia, bipolar disorders, and their first-degree relatives [85]. MAOB rs1799836 polymorphism has been shown to be associated with PDP development in a recent study [87]. It has been proposed that this effect may be due to the low level of dopamine in carriers of the G allele [88].

64. Jenkins, T.A.; Allen, A.M.; Chai, S.Y.; MacGregor, D.P.; Paxinos, G.; Mendelsohn, F.A. Interactions of angiotensin II with central dopamine. *Adv. Exp. Med. Biol.* 1996, 396, 93–103.

65. **Reardon, K.A.; Mendelsohn, F.A.; Chai, S.Y.; Horne, M.K.** *The angiotensin converting enzyme inhibitor, perindopril, modifies the clinical features of Parkinson's disease*. *Aust. N. Z. J. Med.* 2000, 30, 48–53. It has been shown that *BIRC5* rs8073069 polymorphism may lower the risk of the development of visual hallucinations in PD patients [87]. One potential explanation might be the subsequent higher expression of survivin, (ACE) inhibitor, perindopril, which inhibits apoptosis, neuroinflammation and oxidative stress [89].

66. **Lin, J.J.; Yueh, K.C.; Chang, D.C.; Lin, S.Z.** *Association between genetic polymorphism of neurotrophic factor (BDNF) Val66Met to remodel psychosis-related pathways in the mesocorticolimbic circuitry* [90]. *angiotensin-converting enzyme gene and Parkinson's disease*. *J. Neurol. Sci.* 2002, 199, 25–29. The same polymorphism has been associated with the onset age of schizophrenia [91]. The Met allele has been

67. **Feindel, A.; Titova, N.; Kekre, A.; Zhitova, N.; Katsunuma, T.; Kainuma, E.** *Genetic Markers of Risk Factors for the Development of Impulsive Compulsive Behaviors in Patients with Parkinson's Disease Receiving Dopaminergic Therapy*. *J. Pers. Med.* 2021, 11, 1321.

68. Perez-Santamarina, E.; Garcia-Ruiz, P.; Martinez-Rubio, D.; Ezquerra, M.; Pla-Navarro, I.; Puente, J.; Marti, M.J.; Palau, F.; Hoenicka, J. Regulatory rare variants of the dopaminergic gene ANKK1 as potential risk factors for Parkinson's disease. *Sci. Rep.* 2021, 11, 9879.

69. Radojevic, B.; Dragasevic-Miskovic, N.T.; Marjanovic, A.; Brankovic, M.; Dobricic, V.; Milovanovic, A.; Tomic, A.; Svetel, M.; Petrovic, I.; Jancic, I.; et al. Clinical and Genetic Analysis of Psychosis in Parkinson's Disease. *J. Parkinson's Dis.* 2021, 11, 1973–1980.

70. Drozdzik, M.; Bialecka, M.; Kurzawski, M. Pharmacogenetics of Parkinson's disease—Through mechanisms of drug actions. *Curr. Genom.* 2013, 14, 568–577.

71. D'Amato, R.J.; Zweig, R.M.; Whitehouse, P.J.; Wenk, G.L.; Singer, H.S.; Mayeux, R.; Price, D.L.; Snyder, S.H. Aminergic systems in Alzheimer's disease and Parkinson's disease. *Ann. Neurol.* 1987, 22, 229–236.
72. Burn, D.J.; Tiangyou, W.; Allcock, L.M.; Davison, J.; Chinnery, P.F. Allelic variation of a functional polymorphism in the serotonin transporter gene and depression in Parkinson's disease. *Parkinsonism Relat. Disord.* 2006, 12, 139–141.
73. Menza, M.A.; Palermo, B.; DiPaola, R.; Sage, J.I.; Ricketts, M.H. Depression and anxiety in Parkinson's disease: Possible effect of genetic variation in the serotonin transporter. *J. Geriatr. Psychiatry Neurol.* 1999, 12, 49–52.
74. Mossner, R.; Henneberg, A.; Schmitt, A.; Syagailo, Y.V.; Grassle, M.; Hennig, T.; Simantov, R.; Gerlach, M.; Riederer, P.; Lesch, K.P. Allelic variation of serotonin transporter expression is associated with depression in Parkinson's disease. *Mol. Psychiatry* 2001, 6, 350–352.
75. Wang, Y.H.; Li, W.Q.; Huang, Z.; Shi, Y.Z.; Wang, X.Y.; Huang, J.S.; Zhou, X.H.; Chen, H.X.; Hao, W. 5-HT2A receptor gene polymorphism and negative symptoms in first episode (drug-naive) Chinese Han nationality individuals with schizophrenia. *Zhong Nan Da Xue Xue Bao Yi Xue Ban = J. Cent. South Univ. Med. Sci.* 2008, 33, 293–298.
76. Rocchi, A.; Micheli, D.; Ceravolo, R.; Manca, M.L.; Tognoni, G.; Siciliano, G.; Murri, L. Serotonergic polymorphisms (5-HTTLPR and 5-HT2A): Association studies with psychosis in Alzheimer disease. *Genet. Test.* 2003, 7, 309–314.
77. Weintraub, D.; Aarsland, D.; Chaudhuri, K.R.; Dobkin, R.D.; Leentjens, A.F.; Rodriguez-Violante, M.; Schrag, A. The neuropsychiatry of Parkinson's disease: Advances and challenges. *Lancet Neurol.* 2022, 21, 89–102.
78. Papapetropoulos, S.; Farrer, M.J.; Stone, J.T.; Milkovic, N.M.; Ross, O.A.; Calvo, L.; McQuorquodale, D.; Mash, D.C. Phenotypic associations of tau and ApoE in Parkinson's disease. *Neurosci. Lett.* 2007, 414, 141–144.
79. Kay, D.M.; Factor, S.A.; Samii, A.; Higgins, D.S.; Griffith, A.; Roberts, J.W.; Leis, B.C.; Nutt, J.G.; Montimurro, J.S.; Keefe, R.G.; et al. Genetic association between α -synuclein and idiopathic Parkinson's disease. *Am. J. Med. Genetics. Part B Neuropsychiatr. Genet.* Off. Publ. Int. Soc. Psychiatr. Genet. 2008, 147B, 1222–1230.
80. Barnum, C.J.; Tansey, M.G. Neuroinflammation and non-motor symptoms: The dark passenger of Parkinson's disease? *Curr. Neurol. Neurosci. Rep.* 2012, 12, 350–358.
81. Dufek, M.; Rektorova, I.; Thon, V.; Lokaj, J.; Rektor, I. Interleukin-6 May Contribute to Mortality in Parkinson's Disease Patients: A 4-Year Prospective Study. *Parkinson's Dis.* 2015, 2015, 898192.
82. Sawada, H.; Oeda, T.; Umemura, A.; Tomita, S.; Hayashi, R.; Kohsaka, M.; Yamamoto, K.; Sudoh, S.; Sugiyama, H. Subclinical elevation of plasma C-reactive protein and illusions/hallucinations in

- subjects with Parkinson's disease: Case-control study. *PLoS ONE* 2014, **9**, e85886.
83. Bai, X.; Wey, M.C.; Martinez, P.A.; Shi, C.; Fernandez, E.; Strong, R. Neurochemical and motor changes in mice with combined mutations linked to Parkinson's disease. *Pathobiol. Aging Age Relat. Dis.* 2017, **7**, 1267855.
84. Shao, X.; Yan, C.; Sun, D.; Fu, C.; Tian, C.; Duan, L.; Zhu, G. Association Between Glutathione Peroxidase-1 (GPx-1) Polymorphisms and Schizophrenia in the Chinese Han Population. *Neuropsychiatr. Dis. Treat.* 2020, **16**, 2297–2305.
85. Wei, Y.L.; Li, C.X.; Li, S.B.; Liu, Y.; Hu, L. Association study of monoamine oxidase A/B genes and schizophrenia in Han Chinese. *Behav. Brain Funct. BBF* 2011, **7**, 42.
86. Nursal, A.F.; Aydin, P.C.; Pehlivan, M.; Sever, U.; Pehlivan, S. UCP2 and CFH Gene Variants with Genetic Susceptibility to Schizophrenia in Turkish Population. *Endocr. Metab. Immune Disord. Drug Targets* 2021, **21**, 2084–2089.
87. Redensek, S.; Jenko Bizjan, B.; Trost, M.; Dolzan, V. Clinical and Clinical-Pharmacogenetic Models for Prediction of the Most Common Psychiatric Complications Due to Dopaminergic Treatment in Parkinson's Disease. *Int. J. Neuropsychopharmacol.* 2020, **23**, 496–504.
88. Lohle, M.; Mangone, G.; Wolz, M.; Beuthien-Baumann, B.; Oehme, L.; van den Hoff, J.; Kotzerke, J.; Reichmann, H.; Corvol, J.C.; Storch, A. Functional monoamine oxidase B gene intron 13 polymorphism predicts putaminal dopamine turnover in de novo Parkinson's disease. *Mov. Disord. Off. J. Mov. Disord. Soc.* 2018, **33**, 1496–1501.
89. Jenko, B.; Praprotnik, S.; Cucnik, S.; Rotar, Z.; Tomsic, M.; Dolzan, V. Survivin polymorphism is associated with disease activity in rheumatoid arthritis patients. *Pharmacogenomics* 2016, **17**, 45–49.
90. Greening, D.W.; Notaras, M.; Chen, M.; Xu, R.; Smith, J.D.; Cheng, L.; Simpson, R.J.; Hill, A.F.; van den Buuse, M. Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. *Mol. Psychiatry* 2021, **26**, 4431–4447.
91. Numata, S.; Ueno, S.; Iga, J.; Yamauchi, K.; Hongwei, S.; Ohta, K.; Kinouchi, S.; Shibuya-Tayoshi, S.; Tayoshi, S.; Aono, M.; et al. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms. *Neurosci. Lett.* 2006, **401**, 1–5.
92. Wang, Q.; Liu, J.; Guo, Y.; Dong, G.; Zou, W.; Chen, Z. Association between BDNF G196A (Val66Met) polymorphism and cognitive impairment in patients with Parkinson's disease: A meta-analysis. *Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Med. Biol.* 2019, **52**, e8443.
93. Hempstead, B.L. Brain-Derived Neurotrophic Factor: Three Ligands, Many Actions. *Trans. Am. Clin. Climatol. Assoc.* 2015, **126**, 9–19.

Retrieved from <https://encyclopedia.pub/entry/history/show/112504>