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Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the

central and peripheral nervous system as well as in many other peripheral organs. It plays cytoprotective effects mediated

mainly through the activation of specific receptors. PACAP is known to play pleiotropic effects on the eye, including the

cornea, protecting it against different types of insult. 
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1. Introduction

The cornea, the outermost part of the eye, is a transparent tissue with refractive and barrier functions . Due to the direct

connection of the cornea with the external environment, different types of insults, such as chemical, mechanical, and

thermal damage, can cause its injury . For this reason, corneal damage represents one of the major causes of blindness

worldwide . To date, corneal transplantation represents the most common and successful surgery by restoring good

eyesight. However, the high cost, the high graft failure rate, the legal issues, and the lack of donors urge new options for

treating, at least, some corneal lesions .

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated for the first time in 1989 from

sheep hypothalamic extracts . It exists in two active forms, PACAP27 and PACAP38, including 27 and 38 amino acid

residues, respectively, and with mostly comparable functions. PACAP belongs to the vasoactive intestinal polypeptide

(VIP)/secretin/glucagon family peptides and shows a high degree of homology (~70%) to VIP. PACAP and VIP share three

different receptors: the PAC1 receptor (PAC1R), which has a high affinity to PACAP as compared to VIP, and the VPAC1

and VPAC2 receptors, showing a comparable affinity for both peptides . Alternative splicing occurring in the

PAC1R gene generates different variants (Null, Hip, Hop1, Hop2, Hiphop1, Hiphop2, short and very short isoforms) that

can activate the adenylate cyclase (AC) pathway forming cAMP as well as phospholipase C (PLC) pathway promoting the

formation of protein kinase C (PKC) . VPAC receptors are coupled to Gs proteins resulting in the activation of AC as

well as other signaling cascades . Some of the protective effects of PACAP are also mediated by the stimulation of

an intracellular factor known as activity-dependent neuroprotective protein (ADNP) . In accord, peptide activity

scanning identified NAP (NAPVSIPQ), the smallest active element of ADNP, acts in synergy with PACAP by showing

neuroprotective effect . PACAP is widely distributed in the nervous system and is consequently implicated in

different neurodegenerative diseases . In addition, it plays a controversial function in various types

of tumors by promoting or inhibiting its progression . 

2. Overview on the Cornea Anatomy

The human cornea, together with the surrounding sclera, constitutes the protective outer barrier of the eye. In particular, it

represents the outer covering of the anterior portion of the eyeball by exerting two essential functions: it protects from

external physical trauma and provides about 70% refractive power of the eye. To perform these functions, the corneal

tissue is both mechanically strong and transparent.

The anterior surface of the cornea is convex and aspheric . The cornea comprises five main layers: the epithelium, the

Bowman’s membrane, the stroma, the Descemet’s membrane, and the endothelium  (Figure 1).
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Figure 1. Structural anatomy of the human cornea. From left to right: (1) A diagram of human cornea structure; (2) The

XYZ hypothesis. The asymmetric division of LESCs generates a stem-like daughter cell, remaining within the limbus, and

a TAC, migrating in a centripetal direction (Y). TACs undergo multiple replications. In this process, they lose stemness,

migrate anteriorly and differentiate to post-mitotic suprabasal wing cells (X), and progress in superficial squamous cells,

which are lost during normal corneal surface exfoliation (Z) of the epithelial corneal maintenance.

The corneal epithelium is continuously subjected to a wide range of insults; therefore, its long-term maintenance is

regulated by limbal epithelial stem cells (LESCs). The LESCs reside in an annular transition zone known as the limbus,

laying at the junction area between the cornea and the sclera. They show typical characteristics of immature and

undifferentiated cells . In particular, they do not express the cytokeratin 3 and 12, commonly detected in mature,

differentiated corneal epithelial cells, whereas they express cytokeratin 14 or TP63, which are stem markers of the

immature or progenitor cells in various stratified epithelia. The LESCs give rise to transit-amplifying cells (TACs), which

migrate and divide into basal corneal epithelial cells in normal homeostasis conditions or to replace those cells

desquamated or lost by lesions (Figure 1) .

3. Role of PACAP and Its Receptors in the Eye

The presence of PACAP and its receptors has been largely shown in the eye . PACAP positive expression was

found in mammalian, teleost, turtle, and chicken retina . In particular, in situ hybridization and immunohistochemical

analysis have revealed the presence of PACAP in specific cell populations of retinal tissue samples. PACAP was

positively expressed in the nerve fiber layer (NFL), the ganglion cell layer (GCL), the inner plexiform layer (IPL), and the

pigment epithelium (PE). The immunoreactivity of PACAP appeared in the early phase of retinal development , as

demonstrated by its presence in the chick inner nuclear layer (INL) from embryonic day 8 . PACAP mRNA expression

was detectable in the rat GCL at embryonic day 20 , whereas, in the zebrafish, PACAP immune-positive signal was

found in the retina at 24 h post-fertilization . PAC1R was strongly expressed in the GCL, in neuronal cell bodies of

amacrine and horizontal cells localized in the INL and in the PE. On the contrary, PAC1R was weakly expressed in the

IPL, outer plexiform layer (OPL), outer nuclear layer (ONL), and photoreceptor layer . The expression profile of

PAC1R splice variants (Null, Hip, Hop1, Hop2, Hiphop1, and Hiphop2) was described during retina development . The

expression of PAC1Rs at the subcellular level was identified at the plasma membrane, in the rough endoplasmic

reticulum, in the cytoplasmic matrix of retinal ganglion cells (RGCs) and amacrine cells in the INL . PAC1R

immunoreactivity was also detected in retinal tissue and in rat primary cultures of Müller cells . In the rat retina, the

expression of VPAC1R and VPAC2R was demonstrated . Moreover, Lakk et al.  showed the potential involvement of

VPACRs at all stages of retinal development in the rat.

The protective effects of PACAP in the visual system have been widely studied in the neural and non-neuronal parts of the

eye, including the cornea (Figure 2).
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Figure 2. Schematic diagram showing the main pro-survival/antiapoptotic/protective intracellular pathways activated by

PACAP in different ocular structures.

Several studies showed that PACAP has protective effects in the retina against toxic or ischemic insults, inflammation,

hypoxia, oxygen-induced retinopathy, traumatic injuries, glaucoma, and diabetic retinopathy 

. The protective role of PACAP was observed in different cell types, including bipolar neurons, amacrine, and

pigment epithelial cells . In particular, in the retinal pigment epithelial cells, PACAP counteracted oxidative stress and

hypoxic insult by exerting protective and pro-survival effects .

4. The Role of PACAP in the Cornea

The expression of PACAP and its receptors has been shown in the cornea. Here, PACAP positive cells were found in

rabbit and human corneal epithelium, particularly in the basal cells. Moreover, the expression of PACAP was detected in

the corneal endothelial layer and weakly in the stroma . High expression levels of PAC1R were identified in the

stromal and basal cells of the epithelium. Furthermore, the VPACRs were strongly expressed in all layers of the epithelium

and in stromal cells of the rabbit cornea . Previously, Wang  et al. detected PACAP immunoreactivity in nerve

terminals running in the stroma and sending off some branches into the epithelium. Corneal injury is frequently associated

with damage of the epithelium and its innervating fibers. In an in vivo experimental model of laser-assisted in situ

keratomileuses (LASIK) surgery, PACAP showed to accelerate recovery of corneal sensitivity after the creation of a

corneal flap. In more detail, the administration of 10 μM PACAP27 increased up to 75% the corneal sensitivity eight weeks

after the operation . In accord, it has been demonstrated that PACAP induced the growth of neuronal processes in

cultured trigeminal ganglion cells. These neurons secrete various biologically active molecules enhancing the proliferation

and differentiation of corneal epithelial cells as well as collagen VII production, important to maintaining and repairing the

corneal epithelium . The protective effect of PACAP was confirmed by Wu et al., 2015 , by showing that the peptide

alone or in combination with the receptor protein of laminin, known as N-terminal agrin domain (NtA), significantly

accelerated the process of repairing the mechanically injured corneal epithelial cells. It is well known that tear fluid

contains different antibacterial proteins, growth factors, and secretory mucin important for corneal maintenance and its

repairing . For this reason, tear fluid reduction, occurring in dry eye syndrome, is an inducing factor in corneal

keratinization. PACAP played an important role in protecting the corneal surface by stimulating tear secretion . As

described above, in the lacrimal gland, PACAP is an endogenous modulator of AQP5, involved in tear production . In

accord, PACAP null mice showed a reduction in the AQP5 expression, whereas the eye treatment with PACAP drops

stimulated its transcription. Furthermore, PACAP null mice exhibited the dry eye syndrome phenotype with a corneal

disorder associated with the reduction in tear volume .

5. Conclusions

The direct contact of the cornea with the external environment makes it frequently exposed to various types of injuries.

The surgical replacement of lesioned cornea with healthy donor tissue is the frequently used therapeutic approach. To

date, the actual challenge is linked to recruiting a sufficient number of donors, requiring alternatives to decrease this

persistent demand. PACAP has shown important corneal protective and regenerative effects. Therefore, the development

of innovative nanoformulation platforms for topical PACAP or PAC1R agonists delivery, as well as the synthesis of

molecules able to increase PACAP endogenous expression, might represent a valid strategy for the treatment of some

corneal diseases.
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