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1. Overview

To ensure environmental sustainability, according to the European Green Deal and to boost the One Health concept, it is

essential to improve animals’ health and adopt sustainable and natural feed ingredients. Over the past decade, prebiotics

have been used as an alternative approach in order to reduce the use of antimicrobials, by positively affecting the gut

microbiota and decreasing the onset of several enteric diseases in pig. However, dietary supplementation with seaweed

polysaccharides as prebiotics has gained attention in recent years. Seaweeds or marine macroalgae contain several

polysaccharides: laminarin, fucoidan, and alginates are found in brown seaweeds, carrageenan in red seaweeds, and

ulvan in green seaweeds. The present review focuses on studies evaluating dietary seaweed polysaccharide

supplementation in pig used as prebiotics to positively modulate gut health and microbiota composition. 

2. Background

Gut health, which is described as a generalized condition of homeostasis in the gastrointestinal tract , has been

recognized as playing a key role in maintaining pig health. In fact, the gut plays an important role in efficient feed digestion

and absorption, for the protection of the gut barrier, the microbiota composition, and the improvement in the immune

status . In fact, commensal bacteria such as Lactobacilli and Bifidobacteria are necessary to sustain the host immune

system, protecting against the colonization of opportunistic pathogens .

Since the ban on in-feed antibiotics, reliable dietary interventions are needed that are capable of sustaining pig

performance and improving gut health, by minimizing the use of antimicrobials. A large amount of evidence has reported

the beneficial effects of some feed ingredients or additives in modulating gut health and microbiota in pig.

The review by Xiong et al.  focused on the effects of several feed ingredients or additives such as functional amino

acids, natural extracts, and short-chain fatty acids and prebiotics on gut health in weaned pigs.

Over the past few decades, prebiotics have been used as an alternative approach aimed at reducing the use of

antimicrobials, by positively affecting the gut microbiota and decreasing the onset of several enteric diseases in pig .

However, dietary supplementation with seaweed polysaccharides as prebiotics, has also gained attention in recent years.

In fact, natural bioactive compounds have been considered as attractive dietary interventions in pig in order to ensure

environmental sustainability, in line with the European Green Deal plan and to improve animal health according to the One

Health approach.

Marine macroalgae, or seaweeds, are classified as brown algae (Phaeophyceae), red algae (Rhodophyta), and green

algae (Chlorophyta) and include thousands of species. The chemical composition and the bioactive metabolite content of

several species have been extensively studied, along with the variations related to species and genera, harvesting

season, environmental conditions, and geographical location . Seaweeds also contain large amounts of carboxylated

and sulfated polysaccharides, with important functions for the macroalgal cells including structural and energy storage .

Seaweed polysaccharides are safe, environmental-friendly, and economical natural polymers. Seaweed polysaccharides,

such as fucoidan, laminarin, ulvan, carrageenan, and alginates, show several biological activities in vitro and in vivo

studies . In fact, polysaccharides and oligosaccharides originating from seaweeds have been shown to regulate

intestinal metabolism and fermentation and reduce the adhesion of pathogenic bacteria . Several seaweed

polysaccharides have also shown anti-inflammatory, antiviral, and antioxidant activities . Considering the above

mentioned properties, the present paper reviews the prebiotic effects of seaweed polysaccharides in pig nutrition.
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3. Seaweed Polysaccharides

The polysaccharides contained in brown, red, and green seaweeds present different bioactive molecules such as

fucoidan, laminarin, alginate, ulvan, and carrageenan, which are reported in Table 1.

Table 1. Polysaccharides and monosaccharides constituent of brown, green, and red seaweeds.

Chemical
Constituent Brown Seaweed Green Seaweed Red Seaweed

Polysaccharides
alginate, laminarin, fucoidan

(sulphated), cellulose,
mannitol

ulvan (sulphated), mannan,
galactans (sulphated),

xylans, starch, cellulose,
lignin

carrageenans (sulphated), agar
(sulphated), glucans (floridean

starch), cellulose, lignin, funoran

Monosaccharides

glucose, galactose, fucose,
xylose, uronic acid, mannuronic
acid, guluronic acid, glucuronic

acid

glucose, mannose,
rhamnose, xylose, uronic

acid, glucuronic acid
glucose, galactose, agarose

References

The yield of seaweed polysaccharides varies in relation to the species-growing conditions, extraction method, such as

solvent concentration and extraction time . The polysaccharide content of brown, red, and green seaweeds is reported

in Table 2. The total polysaccharide content in seaweeds is highly variable, fluctuating from 4 to 80% of dry matter (DM),

according to the data of Lafarga et al. .

In green seaweeds, the content ranges from 15 to 65% of DM with the highest value for Ulva spp., in red seaweeds from

53 to 66% of DM with the highest value in Chondrus crispus, and in brown seaweeds from 10 to 66% DM with the highest

amount in Ascophyllum nodosum and Saccharina spp. .

Carrageenans and agars are the two main polysaccharides in red seaweeds, but porphyran and xylan have also been

observed . Carrageenans are sulfated polysaccharides, composed of d-galactose units, with a structural role, similar to

cellulose in plants, and are present in some red algae, such as Chondrus, Gigartina, and Hypnea , with the highest

amount in Chondrus and Kappaphycus spp. . Agar is largely observed in the Gelidium and Gracilaria spp. and is

composed of agarose and agaropectin . Fucoidans, alginates, and laminarin are the main polysaccharides in brown

seaweeds.

Alginates are the main cell wall polysaccharides in brown algae, such as Laminaria spp., Fucus spp., Ascophyllum

nodosum, and Macrocystis pyrifera . Besides alginates, fucoidans are cell wall water-soluble polysaccharides in brown

seaweeds, containing L-fucose and sulfate groups, in addition to monosaccharides such as mannose, glucose, xylose,

and glucuronic acid .

Table 2. Polysaccharides composition of brown, red, and green seaweed (g kg  DM) .

Seaweed Polysaccharides,
% Alginates Carragenan Fucoidan Laminarin Ulvan References

Brown        

Ascophillum
nodosus

62
(42–70)

285
(240–
330)

- 75
(11–120)

118
(12–120) -

Laminaria
hyperborea

39.9
(14.4–65.5)

215
(22–408) - 30

(20–40)
125

(0–320) -

Laminaria digitata 57.3
(44–70.7)

435
(350–
520)

- 49.5
(22–112)

120
(0–350) -

Laminaria sp. * 45
(13–77)

309
(225–
343)

- 147.5
(22–550)

153
(62.4–
340)

-

Fucus sp. 57
(34.5–66) 162 - 105

(11–200)
2.3

(0.4–3.8) -
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Seaweed Polysaccharides,
% Alginates Carragenan Fucoidan Laminarin Ulvan References

Sargassum sp. 36 (4–68) 296
(93–499) - 38

(31–45)
3

(0–6) -

Saccharina sp. ** 69
(58–80)

242.5
(200–
285)

- 33
(13–80)

97.5
(0–330) -

Undaria pinnafitica 40
(35–45)

425
(340–
510)

- 219
(30–690) 30 -

Red  - - - - -  

Chondrus crispus 60.5
(55–66) - 439.5

(338–510) - - -

Kappaphycus
alvarezii

58
(53.5–64) - 448.5

(187–756) - - -

Green      -  

Ulva sp. 42
(15–65) - - - -

176
(11–
400)

 Data are reported as mean values and range (minimum-maximum). * Values from Laminaria claustonii and japonica. 

values from Fucus vesciculosus, serratus, spiralys.  Values from Sargassum patens, hemifhyllum, henslowianum. **

Values from Saccharina longicruris, latissima, cichorioides, japonica, longissimi.  Values from Ulva armoricana, lactuca,

intestinalis, meridionalis, pertusa. - Polysaccharides not present in the considered seaweed.

Laminarin, also called laminaran, is a storage polysaccharide in brown seaweeds which is composed of (1–3)-β-d-glucan.

The laminarin structure differs in the degree of branching and polymerization. The highest laminarin content is found in

Laminaria spp. and Saccharina spp. (32% DM), however it is also present in small amounts in Ascophyllum, Fucus, and

Undaria spp. . Ulvan is the constituent of the cell wall of green seaweeds and is constituted by β-(1–4)-xyloglucan,

glucuronan, and cellulose in a linear arrangement . The ulvan content varies from 2.7% DM in Ulva flexuosa to 40%

DM in Ulva Armoricana .

4. Seaweed Polysaccharides as Prebiotic

Carbohydrates, which are indigestible to hydrolytic enzymes and are fermentable, are considered as prebiotics. They

must not be digested or adsorbed in the first tract of the gut, however they should be fermented in the colon by

Lactobacillus and Bifidobacterium, enhancing their growth and decreasing the concentration of other invading pathogens

in the large intestine . Digestion can affect the seaweed polysaccharide activity as prebiotics. The first step is to verify

the resistance to hydrolysis by acids and enzymes in in vitro conditions.

Laminarins from different seaweeds vary in terms of the structural characteristics such as the degree of polymerization

and the presence of inter-chain hydrogen bonds. These complex structures are resistant to hydrolysis in the first tract of

the gut and are studied as dietary fibers . In brown seaweed, polysaccharide laminarins were indigestible in an in vitro

model with hydrochloric acid and enzymes . In addition, laminarin from Laminaria saccharina and digitata were

fermented, producing short-chain fatty acids (SCFA) . Another study reported that SCFA that are produced from the

fermentation of Laminaria digitata and Undaria pinnatifida are not metabolized well compared to the sugar beet fibers .

5. Seaweed Polysaccharides as Prebiotics in Sows

The effects of algae polysaccharides as prebiotics in sows have been evaluated by several authors.

The effects of polysaccharides in the gut are usually assessed by evaluating the SCFA content and the intestinal

microbiota composition and/or the presence of beneficial bacteria . The effects of dietary supplementation with

seaweeds in sows can modulate the productive performances and health of lactating piglets, making them more resistant

to pathogens.
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6. Seaweed Polysaccharides as Prebiotics in Post Weaning Piglets

Weaning is a critical phase in pig production, often characterized by high antibiotic and microelement use. In fact, at

weaning the gastrointestinal tract and immune system of piglets are not yet fully developed and the social, environmental,

and physiological challenges, predispose the piglets to dysbiosis . These challenges lead to a lower feed intake and

growth rate and a high incidence of post-weaning diarrhea (PWD) due to the presence of enteric pathogenic bacteria .

In fact, at weaning, a lower Lactobacilli count has been observed, with a high growth of facultative anaerobes bacteria

such as Enterobacteriaceae, Proteobacteriaceae, Clostridiaceae, and Prevotellaceae . After weaning, structural and

functional alterations of the small intestine have also been observed with negative effects on the absorptive capacity .

Feeding strategies in the post-weaning phase can reestablish the gut eubiosis that was lost at weaning, aimed at restoring

the Lactobacillus count, promoting the growth of beneficial bacteria that boost the mucosal immune system and lowering

the pathogenic bacteria proliferation .

The role of diet in the post weaning health status is widely recognized, in fact feed ingredients and additives can exert

selective pressure on the gut microbiota. It has also been reported that dietary fermentable carbohydrates play a key role

in positively affecting the intestinal microbiota of post-weaning piglets .

Several studies have evaluated the effects of seaweed polysaccharides as prebiotics in post weaning piglets.

The dietary inclusion of Ascophillum nodosum in the piglets’ diet can reduce the Escherichia Coli content in the small

intestine of weaned piglets . The Lactobacillus/Escherichia coli ratio in the small intestine was shown to increase in the

piglets receiving dietary seaweeds suggesting a helpful microbial modification. A reduction in the Enterobacteriaceae

count was also observed. Similar data on gut health improvement have been observed with dietary supplementation with

Laminaria spp.

Laminarin and fucoidan, as sources of seaweed polysaccharides with prebiotic effects, are able to decrease fecal

Escherichia coli counts in the feces, thus improving post-weaning piglet health with a positive effect on growth

performance and gain to feed ratio . An improvement in Lactobacillus count has also been detected .

It has been also reported that laminarin, modifying the resident microbiota, may indirectly enhance mucin synthesis and

secretion, as adherence of beneficial bacteria to mucosal epithelia up-regulates the mucin production. An enhancement of

cytokine gene expression was also observed after a lipopolysaccharide (LPS) challenge .

Fucoidan also supports Lactobacillus growth with a positive effect on feed digestibility .

The increase in butyric acid reported in several studies, is usually related to carbohydrate fermentation which has a

positive effect.
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