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In the search for new therapeutic strategies to contrast SARS-CoV-2, we here studied the interaction of polydatin
(PD) and resveratrol (RESV)—two natural stilbene polyphenols with manifold, well known biological activities—with
Spike, the viral protein essential for virus entry into host cells, and ACE2, the angiotensin-converting enzyme
present on the surface of multiple cell types (including respiratory epithelial cells) which is the main host receptor
for Spike binding. Molecular Docking simulations evidenced that both compounds can bind Spike, ACE2 and the
ACE2:Spike complex with good affinity, although the interaction of PD appears stronger than that of RESV on all
the investigated targets. Preliminary biochemical assays revealed a significant inhibitory activity of the ACE2:Spike

recognition with a dose-response effect only in the case of PD.

SARS-CoV-2 polydatin resveratrol molecular docking protein-binding

ACE2:Spike binding-inhibition

| 1. Introduction

Coronaviruses (CoV) are a large family of viruses that may cause disease in animals or humans L&l They can
provoke respiratory infections ranging from the common cold to more severe ilinesses . The novel coronavirus,
called SARS-CoV-2, which emerged in December 2019 causing coronavirus disease 2019 (COVID-19), can lead to
serious, even fatal, disease 4BIE and was declared a global pandemic by the World Health Organization on 11
March 2020.

All coronaviruses possess an enveloped, positive-sense, single-stranded RNA genome encoding for 4 structural
membrane proteins, i.e., Spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins . The Spike
proteins S are essential for viral entry into host cells, which occurs essentially through binding to the angiotensin-
converting enzyme ACE2 BIBILOIL ACE2 is present on the surface of multiple cell types, including respiratory and
intestinal epithelial cells, endothelial cells, kidney cells (renal tubules), cerebral neurons, and immune cells, such as

alveolar monocytes/macrophages 121131,

Therefore, bioactive compounds able to inhibit the interaction between the COVID-19 S protein and the ACE2
receptor may be precious drugs for effective antiviral therapeutic strategies 14, Indeed, human neutralizing

antibodies targeting S protein and blocking SARS-CoV-2 cellular entry are promising therapeutic tools [22I161[17][18]
[19],
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After attachment of the virus, a proteolytic enzyme of the host cell, mainly type Il transmembrane serine protease
TMPRSS?2, cleaves and activates the receptor-attached Spike macromolecule 29, This protease, anchored in the
cell membrane near ACE2 receptors, and expressed in the epithelial cell lining of the nose, trachea and distal
airways, cleaves SARS-CoV-2 S protein into two subunits, S1 and S2, respectively. The N-terminus of S1 subunit
represents the receptor-binding domain (RBD) which binds to ACE2, whereas S2 subunit serves to promote fusion

activity via its C-terminus 29,

Drugs able to bind key regions of the selected targets with high affinity and specificity could in principle sterically
block the binding sites of the viral/host proteins or induce conformational switches in the biomolecules avoiding
their correct recognition. Various works have already investigated, experimentally or in silico, the effects of natural
compounds or synthetic drugs on COVID-19-related targets [2111221[231[24](25] Seyeral natural products endowed with
significant biological activities, especially extracted from plants, have been thus identified as potentially able to
contrast the dissemination of Coronavirus and, at the same time, enhance immunity, stimulating further screenings

to discover new candidate drugs.

Natural polyphenols are an abundant and widely distributed family of bioactive molecules, whose structure is
generally constituted by one or more aromatic rings carrying one or more hydroxyl groups 8. Two natural stilbene
polyphenols that have attracted much attention, especially for their manifold biological properties, are trans-
resveratrol (here named RESV, 3,5,4'-trihydroxystilbene) 27 and trans-polydatin (here named PD, 3,5,4'-
trihydroxystilbene-3-B-D-glucoside, Figure 1) 28 These polyphenols were originally isolated from the root and
rhizome of Polygonum cuspidatum, a plant used in traditional Chinese medicine for its analgesic, antipyretic and
diuretic properties. Resveratrol is a phytoalexin produced by more than 70 plants in response to various stresses
and is found in a variety of foods, including red grapes, peanuts, pistachios, red wine, blueberries, cranberries, and
even cocoa and dark chocolate 22, Polydatin is a glycosylated form of RESV and the most abundant derivative of

resveratrol in nature 39,
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Figure 1. Chemical structures of (a) trans-resveratrol (RESV) and (b) trans-polydatin (PD).

Many studies have been carried out on the beneficial effects of these polyphenols on the human body (e.g., anti-
oxidant, anti-inflammatory, antitumor, antiviral, neuroprotective, hepatoprotective and ischemia preventing
activities), and on their mechanisms of action [2Z1[28][31]32][33]
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Analogously to other polyphenols, RESV has limited bioavailability and poor water solubility 4. On the other hand,
PD displays higher water solubility and metabolic stability, as well as better oral absorption than RESV and is used
in clinics with no side effects [221[36],

These compounds were recently proposed as potential drugs against COVID-19-related targets as indicated by
preliminary in silico studies and cellular assays E7B8I39 Fyrthermore, polydatin and resveratrol treatments could

be beneficial for COVID-19 infection also due to their anti-inflammatory activities particularly in the respiratory tract
[40][41][42][43][44][45][46][47][48][49]

On these bases, we here investigated—by means of detailed in silico studies and preliminary biochemical assays
—the potential of RESV and PD to bind ACE2 and/or Spike proteins interfering with their interaction, essential for
virus host-cell entry. To the best of our knowledge, this is the first report exploring, with preliminary experimental
assays, the interference of PD/RESYV on the binding of a COVID-19 key protein to a host target.

In particular, we here studied the interactions of PD and RESV with both Spike and ACE2 as separated proteins as
well as with their complex through a molecular docking-based computational approach, using the available
molecular structures as deposited in the PDB database. Furthermore, preliminary biochemical assays, i.e., ELISA-
like assays employing the target recombinant proteins (Spike S1 subunit and ACE2) and the tested small-
molecules, were performed to evaluate the ability of PD/RESYV to inhibit/block the ACE2 recognition by Spike.

| 2. Molecular docking simulation.

Spike-protein pre-fusion conformation [50,76] is a trimer constituted of two subunits, S1 and S2, which are cleaved
following receptor binding [77]. S1 Receptor Binding Domains (RBDs) host the binding motifs (RBMs) able to
recognize ACE2. The high RBD flexibility allows the Spike to sample open or closed conformations, in which RBMs

are respectively exposed or hidden inside the protomers interface [77-81].

Therefore, the binding to SARS-CoV-2 Spike structure with one RBD in an open conformation (PDB ID: 6VSB [50])
has been investigated by molecular docking simulations. The pockets on the RBD surface appear able to
accommodate both PD and RESV ligands (Figure 2). A slightly lower affinity for the RBD domain was found for
RESV (-6.5 kcal/mol for the best docking pose, Table 1) with respect to PD (top-ranked pose —6.9 kcal/mol).

3¢ Torestablish iFRESVand PDrean experimeritaty interfefe
"With theé Hindirng oftlie’Spike protein with ACE2 receptor, as
suggested by the molecular docking simulations, binding
inhibition assays were performed.

The assay we carried out was based on the following steps: (1) immobilization of the purified ACE2 protein,
Ia§8|'|ié% Wia‘tR a His-tag (ACEZ—T-ﬁS?, on a Ni-coated 96—WeII_SIgte; (2) attachment of biotinylated SARS-CoV-2 Spike
S1 protein (from here on named just Spike) on the ACE2-functionalized plate, exploiting the high affinity of Spike
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foAQ@ICE2: (3) binding of stredtdvidin-horseradish peroxida8e (HRP) to the bound Spike, thanks to the high
recognition affinity between biotin and streptavidin; (4) treatment of the so-prepared plate with an HRP-substrate to
produce chemiluminescence, measured at the end of the assay using a luminescence reader. Chemiluminescence
S:ACE2 region | -8.1 -7.6
intensity is correlated with the amount of Spike attached to the plate. If an inhibitor of the ACE2:Spike interaction is
added to the plate, a reduction in chemiluminescence can be observed, proportional to the efficacy of the inhibition.
Ceadmirezgoarice reading in6veells treated in the sameowmy as the samples but without Spike and inhibitors
(RESV/PD) were called “Blanks”, whereas those without inhibitors were named “Positive controls”. The

chemiluminescence reduction observed in the wells treated with PD and RESV was converted in % inhibition of the
AEE3.8RRAYRAG BP R bk dri) d5iC analinted vaas N s traH PR aRE ARMAIRe e d N8 SR LAR
W BAREr G YHE SRkPREMEMS 20 & iCalarmy bRtk o paite frtge RIRgVBS SHE pdGNESGNe

helix. Molecular docking simulations were performed near ACE2 protease domain al and a2 helices, thus far from
the optahvitiecsitecrakeday potdcbRughysial dgivat dnaeidratibesiite dtangizeo Fith@eslb@ 5@ gily jacvenaxsidasectinea
derpegiopratheiiing he Tveadnedines (Figuie:3adibespdugtisstebightdeckingsheeteol thet Uaal msiayaddendih Ripr/
pRiulismind REBY/PIrkeih NRBEaleark @ Dhedces) butaitheat—B, kealdnim doweirsdateibdtibresperE SVARD(vith
Bralkensh Tabégdib(Figyrerdsudbnt C, involving a pre-incubation of Spike S1 with ACE2-coated plate.

In all cases, we noted that RES&Z@RNgys produced a smaller effect than PD. This observation is consistent with the
L 2 2 -
Molecular Docking r@llts*,&a&vaxs shom'ng a hig ' gated targets (Table 1).
-
Moreover, we evidenced ghasthe more conyenien
noedFpape oo
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the perc : i ibition produced by PD, in this

as B, consisting of
5 and Figure S9 for the
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Figure 3. RDE2;Bpica iRt 0T ointhper assay. dosEedtnkad A9 KEHFlyphenols were pre-incubated with ACE2 on
the plate, and then Spike was added; in Treatment B, the polyphenols were pre-incubated with Spike in solution,
BRUHAE R RRe 742 ahavadde @ROA EEDeRi eseinctin g ifffaiiyniibe ghestre Asiveisiketireenie-RBlbake ok kire
Reée tarfheHuahuse el K LWeR RIKEA Gt EIRARES . o asKaR FITHIBHRIM Wate RAEQERRY dBrhvatdigtite
EPRRTIRIMARRE AREIGRRh&RF 1badhibe (ifRfuriesarid taaiopfiavestisaire (Eaeirbl Dpihaimashalablsdak Yibingiee

09K e aYegaineoandiion-gf @reosf the interfacial pockets through polar and hydrophobic contacts (Figure 4c,d).
PD binds in the same pocket as RESV (Figure 4a,b) but interacting with more surrounding residues, thus showing

areigineetsckirmdcBrevér8. Alkcatepeh®abie 2@ qivhamtntratiorf BEBNY (whankatataha)mpounds confirming the

observed trend (Figure S10).
Table 1. Docking scores (i.e., the approximate binding energy estimated by the docking scoring function, kcal/mol

Buits)ekgu dtilyaradr Rt fe\ofogu aiite ¢ dockettgimses (0-350 uM) of RESV and PD were explored for the ACE2:Spike-
binding inhibition assay under the optimal conditions found (Treatment B). This experiment afforded the

i RESV ‘eatments
Spike A/B interface -7.3 >-6.5 *E2:Spike
Spike A/C interface -7.3 >-6.5
ACE2 -8.4 -6.9
S:ACE2 region | -8.1 -7.6
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4= I
| =
- — § : 13,‘3
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Figure 6. ACE2:Spike inhibition binding assay. In all treatments, the polyphenols were pre-incubated with Spike in
solution. Chemiluminescence intensities were measured on the 96-well plate with a luminescence reader and
converted in percentages of ACE2:Spike-binding inhibition with respect to the positive control. p-values have been
calculated using the Student’s t-test (** p < 0.01).

Analysis of these data evidenced that the highest effect was obtained at 250 uM PD concentration, with a binding-
inhibitory activity of ca. 20%.
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Thus, in the conditions o.l“ ti\is#specific’qg'say; we could not te the |g 3 W P g e did not reach
the 100% bindin@fibitiop'.hﬂ'ﬂis beffyiour could be pro e to sd
polyphenols, especially RESV 251 in the assay buffer conditions.
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could be mainly due ts sol "@- d aggregation ®sdes of : ; iti for PD. In addition,

even if the binding of RESV oceurs; t "'Téoijld not impede the interaction 2 and Spike proteins.

bl .
Indeed docking simulationgpfedicted a_pwer binding score by RESV edlllh ACE2 and their
.

complex.

| 4. Conclﬁgions

..;brr:‘é: - ‘
" g <L
In this work, the binding abilities?ﬁhe natural c_or%‘:\fmeds Q SV) towards two key

—-Sqﬁe‘-vir

O%BQ/RESV with both Spi ' ed proteins, as
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molecular docking S|mulat|02§

A A L } ----%
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molecular structures.

Molecular docking targeted at Spike and ACE2 surface pockets near their interaction sites and the interface of the
EiGary 22338 MPIPahE RESDIE damp e kevessed sreseREal thisgiRe: ADE dnsfifiateGaRfkifies by both PD and
RESYV ligands. In all cases, the predicted binding with PD appeared stronger than with RESV. These Molecular
Dottienspdatal thegi@n¢regage I fuitherstigatedtatidhel imestom ety eem et at SpikyiRBPDaadthRBESY ACE 2e riectopr
veeddeeh iRE Sife cisnfothe AGE2 iSfuka fecggniioR2 cavity far from the interaction sites between the two protein
domains. On the contrary, in the best PD binding mode, the ligand binds onto a pocket located at one end of the
ReTHRERNE AMpIexah R PRASIRAHNE HSiRINPSterd dankdaniaeriRMEPAHAS RESIRI0BS RElTBANYdNREEMiCH
RESAYSHNG " RS TR IRRTHIM GXRRIHTE Y FRARMRIS) tieeagiliBoSidRDARSREYY ithiBIETFRERAE With RiWlingsRiuds Strike
RTateiBnWite ther AfebRVENGERRY tHeUWoRRaRAYR SIifeN&EE 2 SHnee dRpRP AR AahdothResaSAtefaBR S RENIRY iR
PBIREPIEM QS rtAB U (et Rikes BERh IRR I HIO R &R0 EMPI2ARBSEBRY 3HAM: docking simulations on the already
assembled Spike:ACE2 complex reveal the potential capability of PD, but also RESV, to insert themselves into the
SV dEd 900G TR AR STHE R A88UEP th &0 BN & SN GRS TTRGE 8o YR L0 P ABRBHinY e HELE
fGRYRIROSI LGRS RFILGRI SHGirOctTFeGRIV) AERArENRE Side effects and toxicity of PD even at high
dosage, as demonstrated by its use as a nutraceutical product (as a human food supplement, the recommended

dose of polydatin is 160 mg/day for assumption cycles of at least three months 2! and in clinical applications 23
ls4]
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In addition, we have here showed a biochemical assay not considering (i) several biological aspects of ACE2-Spike
binding only identifiable by cellular assays, e.g., the role of biological multimerization B3, (i) solubility issues and
aggregation state of the studied polyphenols, especially RESV BYBL in the assay buffer conditions (not
considered by the modelling studies), (iii) synergistic effects deriving from the interaction of these polyphenols with

other key viral proteins or other host targets, which could reinforce the overall result.

From the current picture, PD emerges as a potential candidate drug/protective agent, which can act as a sort of
“biological mask”. It can inhibit the binding of Spike to ACE2 and therefore reduce viral entry into host cells, also
being well-known its favourable properties like high water solubility and metabolic stability, good oral absorption
and absence of side effects, as well as beneficial and protective effects during inflammation particularly of the

respiratory tract 28],
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