
Image Segmentation Techniques
Subjects: Computer Science, Artificial Intelligence

Contributor: Ying Yu, Chunping Wang, Qiang Fu, Renke Kou, Fuyu Huang, Boxiong Yang, Tingting Yang, Mingliang Gao

Image segmentation, which has become a research hotspot in the field of image processing and computer vision, refers to

the process of dividing an image into meaningful and non-overlapping regions, and it is an essential step in natural scene

understanding. 
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1. Introduction

Image segmentation is one of the most popular research fields in computer vision, and forms the basis of pattern

recognition and image understanding. The development of image segmentation techniques is closely related to many

disciplines and fields, e.g., autonomous vehicles , intelligent medical technology , image search engines ,

industrial inspection, and augmented reality.

Image segmentation divides images into regions with different features and extracts the regions of interest (ROIs). These

regions, according to human visual perception, are meaningful and non-overlapping. There are two difficulties in image

segmentation: (1) how to define “meaningful regions”, as the uncertainty of visual perception and the diversity of human

comprehension lead to a lack of a clear definition of the objects, it makes image segmentation an ill-posed problem; and

(2) how to effectively represent the objects in an image. Digital images are made up of pixels, that can be grouped

together to make up larger sets based on their color, texture, and other information. These are referred to as “pixel sets”

or “superpixels”. These low-level features reflect the local attributes of the image, but it is difficult to obtain global

information (e.g., shape and position) through these local attributes.

2. Classic Segmentation Methods

The classic segmentation algorithms were proposed for grayscale images, which mainly consider gray-level similarity in

the same region and gray-level discontinuity in different regions. In general, region division is based on gray-level

similarity, and edge detection is based on gray-level discontinuity. Color image segmentation involves using the similarity

between pixels to segment the image into different regions or superpixels, and then merging these superpixels.

2.1. Edge Detection

The positions where the gray level changes sharply in an image are generally the boundaries of different regions. The

task of edge detection is to identify the points on these boundaries. Edge detection is one of the earliest segmentation

methods and is also called the parallel boundary technique. The derivative or differential of the gray level is used to

identify the obvious changes at the boundary. In practice, the derivative of the digital image is obtained by using the

difference approximation for the differential. Examples of edge detection results are represented in Figure 1.
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Figure 1. Edge detection results of different differential operators. (a) Original (b) SobelX (c) SobelY (d) Sobel (e) Kirsch

(f) Roberts (g) Canny and (h) Laplacian.

These operators are sensitive to noise and are only suitable for images with low noise and complexity. The Canny

operator performs best among the operators shown in Figure 1. It has strong denoising ability, and also processes the

segmentation of lines well with continuity, fineness, and straightness. However, the Canny operator is more complex and

takes longer to execute. In the actual industrial production, a thresholding gradient is usually used in the case of high real-

time requirement. On the contrary, the more advanced Canny operator is selected in the case of high quality requirement.

Although differential operators can locate the boundaries of different regions efficiently, the closure and continuity of the

boundaries cannot be guaranteed due to numerous discontinuous points and lines in the high-detail regions. Therefore, it

is necessary to smooth the image before using a differential operator to detect edges.

Another edge detection method is the serial boundary technique, that concatenates points of edges to form a closed

boundary. Serial boundary techniques mainly include graph-searching algorithms and dynamic programming algorithms.

In graph-searching algorithms, the points on the edges are represented by a graph structure, and the path with the

minimum cost is searched in the graph to determine the closed boundaries, which is always computationally intensive.

The dynamic programming algorithm utilizes heuristic rules to reduce the search computation.

The active contours method approximates the actual contours of the objects by matching the closed curve (i.e., the initial

contours based on gradient) with the local features of the image, and finds the closed curve with the minimum energy by

minimizing the energy function to achieve image segmentation. The method is sensitive to the location of the initial

contour, so the initialization must be close to the target contour. Moreover, its non-convexity easily leads to the local

minimum, so it is difficult to converge to the concave boundary. Lankton and Tannenbaum  proposed a framework that

considers the local segmentation energy to evolve contours, that could produce the initial localization according to the

locally based global active contour energy and effectively segment objects with heterogeneous feature profiles.

2.2. Region Division

The region division strategy includes serial region division and parallel region division. Thresholding is a typical parallel

region division algorithm. The threshold is generally defined by the trough value in a gray histogram with some processing

to make the troughs in the histogram deeper or to convert the troughs into peaks. The optimal grayscale threshold can be

determined by the zeroth-order or first-order cumulant moment of the gray histogram to maximize the discriminability of

the different categories.

The serial region technique involves dividing the region segmentation task into multiple steps to be performed

sequentially, and the representative steps are region growing and region merging.

Region growing involves taking multiple seeds (single pixels or regions) as initiation points and combining the pixels with

the same or similar features in the seed neighborhoods in the regions where the seed is located, according to a

predefined growth rule until no more pixels can be merged. The principle of region merging is similar to the region

growing, except that region merging measures the similarity by judging whether the difference between the average gray
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value of the pixels in the region obtained in the previous step and the gray value of its adjacent pixels is less than the

given threshold K. Region merging can be used to solve the problem of hard noise loss and object occlusion, and has a

good effect on controlling the segmentation scale and processing unconventional data; however, its computational cost is

high, and the stopping rule is difficult to affirm.

2.3. Graph Theory

The image segmentation method based on graph theory maps an image to a graph, that represents pixels or regions as

vertices of the graph, and represents the similarity between vertices as weights of edges. Image segmentation, based on

graph theory, is regarded as the division of vertices in the graph, analyzing the weighted graph with the principle and

method based on graph theory, and obtaining optimal segmentation with the global optimization of the graph (e.g., the

min-cut).

Graph-based region merging uses different metrics to obtain optimal global grouping instead of using fixed merging rules

in clustering. Felzenszwalb et al.  used the minimum spanning tree (MST) to merge pixels after the image was

represented as a graph.

Image segmentation based on MRF (Markov random field) introduces probabilistic graphical models (PGMs) into the

region division to represent the randomness of the lower-level features in the images. It maps the image to an undigraph,

where each vertex in the graph represents the feature at the corresponding location in the image, and each edge

represents the relationship between two vertices. According to the Markov property of the graph, the feature of each point

is only related to its adjacent features.

2.4. Clustering Method

K-means clustering is a special thresholding segmentation algorithm that is proposed based on the Lloyd algorithm. The

algorithm operates as follows: (i) initialize K points as clustering centers; (ii) calculate the distance between each point i in

the image and K cluster centers, and select the minimum distance as the classification ki; (iii) average the points of each

category (the centroid) and move the cluster center to the centroid; and (iv) repeat steps (ii) and (iii) until algorithm

convergence. Simply put, K-means is an iteration process for computing the cluster centers. The K-means has noise

robustness and quick convergence, but it is not conducive to processing nonadjacent regions, and it can only converge to

the local optimum solution instead of the global optimum solution.

Spectral clustering is a common clustering method based on graph theory, that divides the weighted graph and creates

subgraphs with low coupling and high cohesion. Achanta et al.  proposed a simple linear iterative clustering (SLIC)

algorithm that used K-means to generate superpixels; its segmentation results are shown in Figure 3. SLIC can be

applied to 3D supervoxel generation. 

Figure 2. SLIC segmentation results (number of superpixels: 10, 20, 50, and 100).

2.5. Random Walks

Random walks is a segmentation algorithm based on graph theory, that is commonly used in image segmentation, image

denoising , and image matching . By assigning labels to adjacent pixels in accordance with predefined rules, pixels

with the same label can be represented together to distinguish different objects.

3. Co-Segmentation Methods

The classic segmentation methods usually focus on the feature extraction of a single image, which makes it difficult to

obtain the high-level semantic information of the image. In 2006, Rother et al.  proposed the concept of collaborative

segmentation for the first time. Collaborative segmentation, or co-segmentation for short, involves extracting the common
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foreground regions from multiple images with no human intervention, to obtain prior knowledge. Figure 3 shows a set of

examples of co-segmentation results.

Figure 3. Two examples of co-segmentation results.

3.1. MRF-Based Co-Segmentation

Rother et al.  extended the MRF segmentation and utilized prior knowledge to solve the ill-posed problems in multiple

image segmentation. First, they segmented the foreground of the seed image, and assumed that the foreground objects

of a set of images are similar; then, they built the energy function according to the consistency of the MRF probability

distribution and the global constraint of the foreground feature similarity; finally, they estimated whether each pixel belongs

to the foreground or background by minimizing the energy function to achieve the segmentation of the foreground and

background.

3.2. Co-Segmentation Based on Random Walks

Collins et al.  extended the random walks model to solve the co-segmentation problem, further utilized the

quasiconvexity to optimize the segmentation algorithm, and provided a professional CUDA library to calculate the linear

operation of the image sparse features. Fabijanska et al.  proposed an optimized random walks algorithm for 3D voxel

image segmentation, using a supervoxel instead of a single voxel, which greatly saved computing time and memory

resources.

3.3. Co-Segmentation Based on Active Contours

Meng et al.  extended the active contour method to co-segmentation, constructed an energy function based on

foreground consistency between images and background inconsistency within each image, and solved the energy

function minimization by level set. Zhang et al.  proposed a deformable co-segmentation algorithm which transformed

the prior heuristic information of brain anatomy contained in multiple images into the constraints controlling the brain MRI

segmentation, and acquired the minimum energy function by level set, solving the problem of brain MRI image

segmentation.

3.4. Clustering-Based Co-Segmentation

Clustering-based co-segmentation is an extension of the clustering segmentation of a single image. Joulin et al. 

proposed a co-segmentation method based on spectral clustering and discriminative clustering. They used spectral

clustering to segment a single image based on local spatial information, and then used discriminative clustering to

propagate the segmentation results in a set of images to achieve co-segmentation. Kim et al.  divided the image into

superpixels, used a weighted graph to describe the relevance of superpixels, converted the weighted graph into an affinity

matrix to describe the relation of the intra-image, and then adopted spectral clustering to achieve co-segmentation.

3.5. Co-Segmentation Based on Graph Theory

Co-segmentation based on graph theory partitions an image into a digraph.

In contrast to the digraph mentioned earlier, Meng et al.  divided each image into several local regions based on the

object detection, and then used these local regions as nodes to construct a digraph instead of using superpixels or pixels

as nodes. Nodes are connected by directed edges, and the weight of the edges represents the local region similarity and

saliency map between the two objects. Thereupon, the image co-segmentation problem was converted into the problem

of finding the shortest path on the digraph.
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3.6. Co-Segmentation Based on Thermal Diffusion

Thermal diffusion image segmentation maximizes the temperature of the system by changing the location of the heat

source, and its goal is to find the optimal location of the heat source to achieve the best segmentation effect. Anisotropic

diffusion is a nonlinear filter that can not only reduce the Gaussian noise but also preserve image edges. It is often used in

image processing to reduce noise while enhancing image details. Kim et al.  proposed a method called CoSand, that

adopted temperature maximization modeling on anisotropic diffusion, where k heat sources maximize the temperature

corresponding to the segmentation of k-categories; they achieved large-scale multicategory co-segmentation by

maximizing the segmentation confidence of each pixel in the image.

3.7. Object-Based Co-Segmentation

Alexe et al.  proposed an object-based measurement method to quantify the possibility that an image window contains

objects of any category. The probability of whether it is an object in each sampling window was calculated in advance, and

the highest scoring window was used as the feature calibration for each category of objects according to the Bayesian

theory. The method could distinguish between objects with clear spatial boundaries, e.g., telephones, as well as

amorphous background elements, e.g., grass, that greatly reduced the number of specified category object detection

windows.

4. Semantic Segmentation Based on Deep Learning

With the continuous development of image acquisition equipment, there has been a great increase in the complexity of

image details and the difference in objects (e.g., scale, posture). Low-level features (e.g., color, brightness, and texture)

are difficult to obtain good segmentation results from, and feature extraction methods based on manual or heuristic rules

cannot meet the complex needs of current image segmentation, that puts forward the higher generalization ability of

image segmentation models.

Semantic texton forests  and random forest  methods were generally used to construct semantic segmentation

classifiers before deep learning was applied to the field of image segmentation. For the past few years, deep learning

algorithms have been increasingly applied to segmentation tasks, and the segmentation effect and performance have

been significantly improved. The original approach divides the image into small patches to train a neural network and then

classifies the pixels. This patch classification algorithm  has been adopted because the fully connected layers of the

neural network require fixed-size images.

4.1. Encoder–Decoder Architecture

Encoder–decoder architecture is based on FCNs. Prior to FCNs, convolutional neural networks (CNNs) achieved good

effects in image classification, e.g., LeNet-5 , AlexNet , and VGG , whose output layers are the categories of

images. However, semantic segmentation needs to map the high-level features back to the original image size after

obtaining high-level semantic information. This requires an encoder–decoder architecture.

In the encoder stage, convolution and pooling operations are mainly performed to extract high-dimensional features

containing semantic information. The convolution operation involves performing the multiplication and summing of the

image-specific region with different convolution kernels pixel-for-pixel, and then transforming the activation function to

obtain a feature map. The pooling operation involves sampling within a certain region (the pooling window), and then

using a certain sampling statistic as the representative feature of the region. The backbone blocks commonly used in

segmentation network encoders are VGG, Inception , and ResNet .

4.2. Skip Connections

Skip connections or shortcut connections were developed to improve rough pixel positioning. With deep neural network

training, the performance decreases as the depth increases, which is a degradation problem. To ameliorate this problem,

different skip connection structures have been proposed in ResNet and DenseNet . In contrast, U-Net  proposed a

new long skip connection. U-Net makes jump connections and cascades of features from layers in the encoder to the

corresponding layers in the decoder to obtain the fine-grained details of images.

4.3. Dilated Convolution

Dilated convolution, also known as atrous convolution, is constructed by inserting holes into the convolution kernel to

expand the receptive field and reduce the computation during down-sampling. In FCN, the max-pooling layers are
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replaced by dilated convolution to maintain the receiving field of the corresponding layer and the high resolution of the

feature map.

The DeepLab series  are classic models in the field of semantic segmentation. Prior to putting forward

DeepLab V1, the semantic segmentation results were usually rough due to the transfer invariance lost in the pooling

process, and the probabilistic relationship between labels not used for prediction. To ameliorate these problems, DeepLab

V1  uses dilated convolution to solve the problem of resolution reduction during up-sampling, and uses fully connected

conditional random fields (fully connected CRFs) to optimize the post-processing of segmented images to obtain objects

at multi-scales and context information.

4.4. Multiscale Feature Extraction

Spatial pyramid pooling (SPP) was proposed to solve the problem of the CNNs requiring fixed-size input images. He et al.

 developed the SPP-net and verified its effectiveness in semantic segmentation and object detection. To make the most

of image context information, Zhao et al.  developed PSPNet with a pyramid pooling module (PPM). Using ResNet as

the backbone network, the PSPNet utilized PPM to extract and aggregate different subregion features at different scales,

that were then up-sampled and concatenated to form the feature map, that carried both local and global context

information. It is particularly worth noting that the number of pyramid layers and the size of each layer are variable, that

depend on the size of the feature map input to the PPM.

4.5. Attention Mechanisms

To represent the dependency between different regions in an image, especially the long-distance regions, and obtain their

semantic relevance, some methods commonly used in the field of natural language processing (NLP) have been applied

to computer vision, that have made good achievements in semantic segmentation. The attention mechanism was first put

forward in the computer vision field in 2014. The Google Mind team  adopted the recurrent neural network (RNN)

model to apply attention mechanisms to image classification, making attention mechanisms gradually popular in image

processing tasks.

RNN can model the short-term dependence between pixels, connect pixels, and process them sequentially, which

establishes a global context relationship.

LSTM (long short-term memory) adds a new function to record long-term memory, that can represent long-distance

dependence. Byeon et al.  used LSTM to achieve pixel-for-pixel segmentation of scene images, which proved that

image texture information and spatial model parameters could be learned in a 2D LSTM model.

Self-attention mechanisms are mostly used in the encoder network to represent the correlation between different regions

(pixels) or different channels of the feature maps. It computes a weighted sum of pairwise affinities across all positions of

a single sample to update the feature at each position. Self-attention mechanisms have produced many influential

achievements in image segmentation, e.g., PSANet , DANet , APCNet , CARAFE , and CARAFE++ .

References

1. Anwesh, K.; Pal, D.; Ganguly, D.; Chatterjee, K.; Roy, S. Number plate recognition from enhanced super-resolution usi
ng generative adversarial network. Multimed. Tools Appl. 2022, 1–17.

2. Jin, B.; Cruz, L.; Gonçalves, N. Deep Facial Diagnosis: Deep Transfer Learning from Face Recognition to Facial Diagn
osis. IEEE Access 2020, 8, 123649–123661.

3. Zhao, M.; Liu, Q.; Jha, R.; Deng, R.; Yao, T.; Mahadevan-Jansen, A.; Tyska, M.J.; Millis, B.A.; Huo, Y. VoxelEmbed: 3D
Instance Segmentation and Tracking with Voxel Embedding based Deep Learning. In Proceedings of the International
Workshop on Machine Learning in Medical Imaging, Strasbourg, France, 27 September 2021; Volume 12966, pp. 437–
446.

4. Yao, T.; Qu, C.; Liu, Q.; Deng, R.; Tian, Y.; Xu, J.; Jha, A.; Bao, S.; Zhao, M.; Fogo, A.B.; et al. Compound Figure Separ
ation of Biomedical Images with Side Loss. In Proceedings of the Deep Generative Models, and Data Augmentation, L
abelling, and Imperfections, Strasbourg, France, 1 October 2021; Volume 13003, pp. 173–183.

5. Lankton, S.; Tannenbaum, A. Localizing Region-Based Active Contours. IEEE Trans. Image Process. 2008, 17, 2029–2
039.

[32][33][34][35]

[32]

[36]

[37]

[38]

[39]

[40] [41] [42] [43] [44]



6. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient Graph-Based Image Segmentation. Int. J. Comput. Vis. 2004, 59, 167–
181.

7. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Su-p
erpixel Method. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282.

8. Pan, W.; Lu, X.Q.; Gong, Y.H.; Tang, W.M.; Liu, J.; He, Y.; Qiu, G.P. HLO: Half-kernel Laplacian Operator for Sur-face S
moothing. Comput. Aided Des. 2020, 121, 102807.

9. Chen, H.B.; Zhen, X.; Gu, X.J.; Yan, H.; Cervino, L.; Xiao, Y.; Zhou, L.H. SPARSE: Seed Point Auto-Generation for Ran
dom Walks Segmentation Enhancement in medical inhomogeneous targets delineation of morphological MR and CT im
ages. J. Appl. Clin. Med. Phys. 2015, 16, 387–402.

10. Drouyer, S.; Beucher, S.; Bilodeau, M.; Moreaud, M.; Sorbier, L. Sparse Stereo Disparity Map Densification using Hiera
rchical Image Segmentation. In Mathematical Morphology and Its Applications to Signal and Image Processing; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1022.

11. Rother, C.; Minka, T.P.; Blake, A.; Kolmogorov, V. Cosegmentation of Image Pairs by Histogram Matching—Incorporatin
g a Global Constraint into MRFs. In Proceedings of the IEEE Computer Society Conference on Computer Vision and P
attern Recognition (CVPR), New York, NY, USA, 17–22 June 2006; pp. 993–1000.

12. Collins, M.D.; Xu, J.; Grady, L.; Singh, V. Random Walks based Multi-image Segmentation: Quasiconvexity Results and
GPU-based Solutions. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Pro
vidence, RI, USA, 16–21 June 2012; pp. 1656–1663.

13. Fabijanska, A.; Goclawski, J. The Segmentation of 3D Images using the Random Walking Technique on a Randomly Cr
eated Image Adjacency Graph. IEEE Trans. Image Process. 2015, 24, 524–537.

14. Meng, F.; Li, H.; Liu, G. Image Co-segmentation via Active Contours. In Proceedings of the 2012 IEEE International Sy
mposium on Circuits and Systems (ISCAS), Seoul, Republic of Korea, 20–23 May 2012; pp. 2773–2776.

15. Zhang, T.; Xia, Y.; Feng, D.D. A Deformable Cosegmentation Algorithm for Brain MR Images. In Proceedings of the Ann
ual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August
–1 September 2012; pp. 3215–3218.

16. Joulin, A.; Bach, F.; Ponce, J. Discriminative Clustering for Image Co-segmentation. In Proceedings of the 2010 IEEE C
omputer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 Ju
ne 2010; pp. 1943–1950.

17. Kim, E.; Li, H.; Huang, X. A Hierarchical Image Clustering Cosegmentation Framework. In Proceedings of the IEEE Co
mputer Society Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2
012; pp. 686–693.

18. Meng, F.; Li, H.; Liu, G.; Ngan, K.N. Object Co-Segmentation Based on Shortest Path Algorithm and Saliency Model. IE
EE Trans. Multimed. 2012, 14, 1429–1441.

19. Kim, G.; Xing, E.P.; Li, F.F.; Kanade, T. Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusi
on. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011;
pp. 169–176.

20. Alexe, B.; Deselaers, T.; Ferrari, V. What Is an Object? In Proceedings of the 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 73–80.

21. Johnson, M.; Shotton, J.; Cipolla, R. Semantic Texton Forests for Image Categorization and Segmentation. In Decision
Forests for Computer Vision and Medical Image Analysis, Advances in Computer Vision and Pattern Recognition; Crimi
nisi, A., Shotton, J., Eds.; Springer: London, UK, 2013.

22. Lindner, C.; Thiagarajah, S.; Wilkinson, J.M.; The arcOGEN Consortium; Wallis, G.A.; Cootes, T.F. Fully Automatic Seg
mentation of the Proximal Femur using Random Forest Regression Voting. IEEE Trans. Med. Imaging 2013, 32, 1462–
1472.

23. Li, H.S.; Zhao, R.; Wang, X.G. Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks fo
r Pixelwise Classification. arXiv 2014, arXiv:1412.4526.

24. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 19
98, 86, 2278–2324.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun.
ACM 2017, 60, 84–90.

26. Karen, S.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1
556.



27. Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going D
eeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (C
VPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

28. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Visio. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 2818–2826.

29. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 I
EEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 77
0–778.

30. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Densely Connected Convolutional Networks. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2261–2269.

31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,
arXiv:1505.04597.

32. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutio
nal Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062.

33. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2017, arXiv:1606.00915.

34. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. ar
Xiv 2017, arXiv:1706.05587.

35. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Se
mantic Image Segmentation. Proceeding of the European conference on computer vision (ECCV). arXiv 2018, arXiv:18
02.02611.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IE
EE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916.

37. Zhao, H.S.; Shi, J.P.; Qi, X.J.; Jia, J.Y. Pyramid Scene Parsing Network. arXiv 2017, arXiv:1612.01105v2.

38. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. In Proceedings of the 27th Inter
national Conference on Neural Information Processing Systems (NIPS’14), Montreal, QC, Canada, 8–13 December 20
14; Volume 2, pp. 2204–2212.

39. Byeon, W.; Breuel, T.M.; Raue, F.; Liwicki, M. Scene labeling with LSTM recurrent neural networks. In Proceedings of t
he 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; p
p. 3547–3555.

40. Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Loy, C.C.; Lin, D.; Jia, J. PSANet: Point-wise Spatial Attention Network for Scene P
arsing. In Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018.

41. Fu, J.; Liu, J.; Tian, H.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IE
EE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; p
p. 3141–3149.

42. He, J.; Deng, Z.; Zhou, L.; Wang, Y.; Qiao, Y. Adaptive Pyramid Context Network for Semantic Segmentation. In Procee
dings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 7511–7520.

43. Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE: Content-Aware ReAssembly of FEatures. In Proceeding
s of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019; pp. 3007–3016.

44. Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE++: Unified Content-Aware ReAssembly of FEatures. IEE
E Trans. Pattern Anal. Mach. Intell. 2021, 44, 4674–4687.

Retrieved from https://encyclopedia.pub/entry/history/show/99202


