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The Cutting Movement Assessment Score (CMAS) is a recently validated field-based qualitative screening tool to

identify athletes that display high-risk postures associated with increased non-contact ACL injury risk during side-

step cutting. Side-step cutting is an action associated with non-contact anterior cruciate ligament (ACL) injury with

a plethora of negative economical, health, and psychological implications. Although ACL injury risk factors are

multifactorial, biomechanical and neuromuscular deficits which contribute to “high-risk” and aberrant movement

patterns are linked to ACL injury risk due to increasing knee joint loads and potential ACL loading. Importantly,

biomechanical and neuromuscular deficits are modifiable; thus, being able to profile and classify athletes as

potentially “high-risk” of injury is a crucial process in ACL injury mitigation. 

knee abduction moment  injury screening  injury risk profiling  CMAS

1. An anterior cruciate ligament injury

An anterior cruciate ligament injury (ACL) is considered one of the most significant and debilitating injuries an

athlete can experience, with an abundance of negative economic , psychological , and health 

implications. ACL injury risk factors are multifactorial (anatomical, hormonal, biomechanical, neuromuscular,

environmental)  and a complex interaction of both internal (within the body) and external (outside the body)

factors . In simplistic terms, ACL injuries occur when a catastrophic applied load exceeds the ligament’s

tolerance , or due to a “fatigue failure” mechanism whereby the accumulation of high magnitudes and repetitive

cycles of knee joint loading . This process, without adequate rest and repair, can lead to micro

damage and subsequent ACL failure  from mechanical loads which previously could be tolerated .

Mitigating ACL injury risk therefore is considered highly important in sports medicine and science environments.

Non-contact ACL injuries generally occur during high-impact tasks such as change of directions (COD) (side-step,

cut or turn, plant-and-cut manoeuvres) , landing (predominantly single-leg weight

bearing) , and deceleration actions ; attributable to the potential generation of high

multiplanar knee joint loading (flexion, rotation, abduction and translatory moments) during foot contact 

, thus increasing ACL strain . These multiplanar knee joint loads are often used as surrogates of

non-contact ACL injury risk , and are amplified during COD, landings, and decelerations when aberrant

and “high-risk” neuromuscular control and biomechanical deficits are displayed (e.g., lateral trunk flexion, knee

valgus, etc.) . Importantly, neuromuscular control and biomechanical deficits are modifiable

through appropriate training and conditioning , which may reduce knee joint loading during

high-impact actions and subsequent risk of non-contact ACL injury . As such, the mechanism of ACL
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injury, from a knee joint loading perspective, has been stated as “multiplanar” ; highlighting the importance of

reducing multiplanar joint loading during high-risk activities to mitigate ACL injury risk .

2. Qualitative Screening: Why Assess Cutting Movement
Quality?

Due to the plethora of negative implications associated with non-contact ACL injury, being able to profile and

classify athletes as potentially “high-risk” of injury is a crucial process in ACL injury mitigation . Side-step

cutting (lateral foot plant) is an important high-intensity action performed in numerous sports, and is a pivotal action

performed to evade opponents, penetrate defensive lines and gain territorial advantage in sports such as rugby,

American football, and handball . However, because side-steps are frequently performed movements

in sports , and performed at high-intensity, and thus have the potential to generate high impact forces

and knee joint loads , they are also commonly observed manoeuvres during non-contact ACL injury events

. For example, 60–67% of non-contact ACL injuries in rugby , American football ,

and handball  occur during side-step cutting, while this manoeuvre is also linked with non-contact ACL injury

events in soccer , badminton , and Australian rules football . Consequently, screening tools and field-based

interventions that can assist in ACL injury risk mitigation is of great interest, particularly for practitioners working in

sports where cutting is the predominant mechanism of non-contact ACL injury.

The ability to predict non-contact ACL injury using screening tools is a contentious issue ; however, much

attention has been placed on screening and profiling movement quality because of the adaptable nature of

movement biomechanics, which in turn is a modifiable ACL risk factor . Additionally, creating “injury-

risk profiles” through the identification of “high-risk” biomechanical and neuromuscular control deficits is considered

important in terms quantifying relative injury risk . For example, “high-risk” postures include knee abduction

angles (KAA–synonymous with knee valgus angles) , lateral trunk flexion , extended

knee postures , and hip internal rotation  are related to greater multiplanar knee joint loads and

subsequent ACL loading .

Figure 1  displays the screening process commonly adopted by practitioners, whereby athletes are typically

screened/profiled during a movement to assess their movement quality, joint kinetics, or kinematics against pre-

determined criteria or benchmarks. This can be done via three-dimensional (3D) motion and ground reaction force

(GRF) analysis whereby joint kinetics and kinematics can be examined and surrogates of injury risk are measured,

creating an “injury-risk profile”, and subsequently used to infer potential injury risk. For example, peak KAMs and

peak KAAs can be measured during a COD or a drop landing to identify athletes who display values greater than

normative data or a threshold to define “high-risk” . Alternatively, qualitative screening of movement quality

may take place using high-speed two-dimensional (2D) cameras, whereby movement is filmed (usually in the

frontal and sagittal plane) and aberrant and “high-risk” movement patterns can be identified via visual observations

(i.e., visible knee valgus/lateral trunk flexion). Qualitative assessments have been shown to reflect aspects of

performance during 3D motion analysis, such as the Landing Error Scoring System (LESS)  and Qualitative

Analysis of Single Leg Loading (QASLS) .
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Figure 1. Screening movement quality process.

Irrespective of the screening method, athletes identified as potentially “higher-risk” of injury can therefore be

prescribed individualised interventions to address the specific “high-risk” deficits . This should theoretically

reduce injury risk, and the training intervention’s success is monitored be re-evaluating and screening movement

quality at the end of the intervention. Practitioners may continuously go through the process multiple times

(normally at the end of mesocycles) during the macrocycle. Therefore, validated and reliable screening tools which

assess movement quality are considered integral for practitioners working in strength and conditioning, sports

medicine, and sports rehabilitation .

The optimal method for assessing movement kinetics and kinematics is 3D and GRF analysis , whereby this

approach is used to identify “high-risk” athletes that display poor movement quality (i.e., knee valgus) and high

multiplanar knee joint moments (surrogates of non-contact ACL injury risk) . Although insightful and can indeed

provide detailed insight into athletes’ movement strategies and surrogates of injury risk, 3D motion and GRF

analysis does have its limitations including, cost, complexity, the time required to perform mass screening, and the

required laboratory facilities ; thus, restricting its use for practitioners in field-based environments.

As such, qualitative screening tools such as the LESS , Tuck Jump Assessment (TJA) , and QASLS
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 have been developed, offering practitioners an easier and cost-effective method to evaluate aberrant

movement quality and postures associated with greater ACL injury risk, typically during landing tasks. Although

screening landing mechanics during vertical orientated tasks is indeed applicable for jump-landing sports where the

landing is the predominant action associated with non-contact ACL injury , changing direction is a

unilateral and multiplanar movement which is biomechanically distinctly different to landing, thus screening landing

lacks specificity to directional changes . This is pertinent for practitioners who seek to profile athletes who

participate in sports (handball, American football, rugby, and soccer) where the side-step cutting is a predominant

mechanism of non-contact ACL injury . Furthermore, mixed findings have been

observed between “high-risk” postures and knee joint loads between landing and cutting tasks , with

researchers demonstrating that “injury-risk profiles” are task dependent . Therefore, it would be more

suitable to assess movement mechanics associated with the primary action of injury in that sport . As

such, there is a requirement for a specific field-based qualitative screening tool to evaluate and identify poor

movement quality and “high-risk” mechanics specifically for cutting.

3. Introducing the Cutting Movement Assessment Score
(CMAS)

The CMAS, initially developed and validated in 2017 , is a 9-item qualitative screening tool (Table 1) that

assesses hip, knee, foot, and trunk postures during side-step cutting relating to the technical determinants of peak

KAMs  (Figure 2) and non-contact ACL injury visual observations . A

detailed rationale and operational definitions for these items are presented in a later section, but briefly these items

relate to penultimate foot contact (PFC) braking strategy, and trunk, hip, knee, and foot postures and motions

during the final “plant” step (Table 1). The CMAS involves filming athletes (ideally ≥100 Hz) during a side-step

cutting task (30–90°) using cameras placed approximately at hip height in the sagittal plane, frontal plane, and if

possible with an additional camera 20–45° relative to the cut. Video footage is retrospectively viewed in video

analysis software, and the athlete’s cutting trial is screened using the CMAS screening tool. The majority (7-items)

of the CMAS criteria follow a dichotomous scale (yes or no), with lateral leg plant distance and frontal/transverse

plane trunk positioning involving a description classification, with 3 and 4 possible descriptors, respectively (Table

1). Athletes are awarded a score if they display any of the items of the CMAS criteria (Table 1), and greater scores

are typically indicative of suboptimal technique and greater peak KAMs .
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Figure 2. Knee abduction moment (KAM) deterministic model. Adapted from ; GRF: Ground reaction force;

COD: Change of direction; ML: Medial-lateral; HBF: Horizontal braking force; FFC: Final foot contact.

Table 1. Cutting Movement Assessment Score Tool (CMAS).

Recommended
Camera Variable Observation Score

Penultimate contact

Side/20–45°
Clear PFC braking strategy

Y/N Y = 0/N = 1

Final Contact

Front/20–45°
Lateral leg plant distance (at initial contact) Wide,

Moderate,
Narrow

Wide = 2,
Moderate = 1,

Narrow = 0

Front/20–45°

Hip in an initial internally rotated

position (at initial contact) Y/N Y = 1/N = 0

Front/20–45°

Initial knee ‘valgus’ position (at initial

contact) Y/N Y = 1/N = 0

All 3

Foot not in neutral foot position (at initial

contact) Y/N Y = 1/N = 0

Front/20–45°

Frontal/transverse plane trunk position

relative to intended direction of travel (at

initial contact and during WA)
L/TR, U, M L/TR = 2, U = 1,

M = 0

Side/20–45°

Trunk upright or leaning back throughout

contact (at initial contact and during WA) Y/N Y = 1/N = 0

Side/20–45°

Limited knee flexion during final contact ≤

30° (during WA) Y/N Y = 1/N = 0
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9. 

Recommended
Camera Variable Observation Score

Front/20–45°
Excessive knee ‘valgus’ motion (during WA)

Y/N Y = 1/N = 0

Low CMAS ≤ 3 Moderate CMAS 4–6 High CMAS ≥ 7 Score /11

Key: PFC: Penultimate foot contact; WA: Weight acceptance; L: Lateral; TR: Trunk rotation; U: Upright; M: Medial;

Y: Yes; N: No.

In the preliminary validation study by Jones et al. , using 3D motion and two 2D cameras (30 Hz) to record video

data for qualitative screening, a strong association between CMAS and peak KAM (ρ  = 0.633; p  < 0.001) was

demonstrated during a 60–90° cut. More recently, Dos’Santos  expanded on the preliminary study by

investigating a greater sample size (41 vs. 8), using an extra camera placed 45° to the cut at a higher sampling

rate (100 Hz vs. 30 Hz), and also slightly modified the CMAS (provided extra details) details to the CMAS

screening tool. Substantiating the preliminary findings , a very large (ρ  = 0.796, p  < 0.001) relationship was

observed between CMAS and peak KAM for participant average data . In addition, athletes were divided into

high (~7) and low (~3) CMAS groups (top 33% and bottom 33%), where cutting kinetics and kinematics were

compared. Importantly, athletes with higher CMASs demonstrated “higher-risk” postures and knee joint loads

connected with ACL injury risk compared to athletes with lower CMASs. These included significantly (moderate to

very large effect sizes) greater mean vertical braking forces, greater peak KAAs, greater initial foot progression

angles, greater lateral foot plant distances, and greater knee flexion (KFM), knee internal rotation (KIRM), and

KAMs .

Later analysis in the study by Dos’Santos et al. , revealed that when statistical analysis was performed for all

pooled trials, female trials, and male trials, large, large, and very large associations were observed between CMAS

and peak KAMs (Supplementary Materials), respectively . Additionally, in terms of cutting mechanics, greater

peak and mean vertical braking forces, greater peak and initial KAAs, and lower peak knee flexion angle and range

of motion, greater initial foot progression angles, greater lateral trunk flexion, greater lateral foot plant distances,

and greater multiplanar knee joint moments were displayed during trials with higher CMASs (≥7) compared to

lower CMASs (≤3) . To the best of our knowledge, the LESS is the only other qualitative screening tool that has

been validated against the gold standard of 3D motion analysis with respect to knee joint moments  and

subsequent surrogates of ACL injury risk. Thus, the CMAS would appear to have validity and be a rigorous enough

method to potentially identify athletes who generate high peak KAMs (and multiplanar knee joint loads) and

potential ACL injury risk. This method requires only three high-speed cameras and video analysis software (which

in most cases is free), which is a cost- and time-effective alternative to 3D motion analysis, and is a field-based

method for practitioners.

4. CMAS Methodological Procedures
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The CMAS is applicable to side-step cuts of 30–90° with published literature using the CMAS during 60–90° ,

70° , and 90° cuts , and in unpublished observations, we have also used the CMAS during 45° cuts. Ideally,

CMAS screening should take place on the same surface that the athlete performs their sport on (e.g., court,

synthetic field-turf, grass) and where possible athletes should wear sport-specific footwear to improve ecological

validity . If athletes hold an implement in their sport (e.g., ball or racket), practitioners may consider

screening cutting trials where athletes hold the implement to improve ecological validity. Anecdotally, we have had

a positive experience screening ball-carrying 45° cutting in rugby union players. Nevertheless, it is advised that

athletes tuck-in loose clothing, and ideally wear tight fitting clothing to make it easier to screen and observe

movement quality and postures. Although the aim of the CMAS is to profile movement quality, practitioners may

consider assessing performance using timing gates positioned at a start and finish line to obtain cutting completion

time to monitor and standardise performance.

Figure 3 provides a schematic representation of the CMAS for administering during 45°, 70°, and 90° cuts. As a

minimum recommendation, practitioners are encouraged to use 2 high-speed cameras for qualitative screening

positioned on tripods placed at approximate hip height at least 3 metres away in the frontal plane and 5 metres

away in the sagittal plane away from the cutting zone. However, to accommodate athletes who pre-rotate during

the cut, and to reduce parallax error, practitioners are strongly encouraged to position an additional camera 20–45°

to the cut to assist in more accurate qualitative screening. Although published research placed the third camera at

45° , we have recently had better observations of CMAS trials with a camera positioned at 20°. This approach

has tended to reduce parallax error because the subjects who pre-rotate are more perpendicular to the 20° camera

in contrast to 45° camera observations. As such, this has made subsequent screening of relevant criteria easier

and is therefore our preferred method going forward. As previously stated, practitioners should ideally use high-

speed cameras for qualitative screening, sampling at a minimum 100 Hz. Access to high-speed cameras for

practitioners is becoming increasingly accessible as most smartphone and tablet technology have high-speed

cameras as default features. Nonetheless, when using high-speed cameras for the CMAS, practitioners should

ensure that there is sufficient lighting to permit accurate qualitative screening.

Figure 3. Schematic representation of the CMAS protocol. (A): 45° cut; (B): 70° cut; (C): 90° cut. Yellow cameras

indicate camera placement for right foot cuts, blue cameras indicate camera placement for left foot cuts, grey
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camera used for both left and right cuts.

It is encouraged that practitioners evaluate 2–3 cutting trials per limb for each athlete during the cutting trials,

typically during a cut which contains a 5-m entry and exit. However, practitioners are free to adjust entry and exit

distances at their own discretion in context of their populations’ sporting demands. From our experience, we have

been able to collect CMAS video footage (along with completion times) for 6 trials (3 trials per limb) in groups of

athletes as large 12 in less than 15 min, highlighting the simplicity and application for large mass screening in

contract to 3D motion analysis.

Once video footage data are collected, video footage should ideally be viewed in a software which enables videos

to be played at various speeds, frame-by-frame, while a software which can open multiple video windows, create

photo-sequences, and also contains drawing tools is also advantageous. We have used Kinovea software (0.8.15

for Windows, Bordeaux, France), which is free, and we have found this software to be more than adequate for

qualitative screening purposes; however, practitioners are free to select an alternative video software at their own

discretion. From our experience, qualitative screening of one trial takes ~3 min. However, given the subjective

nature of qualitative screening, it is strongly encouraged that practitioners within sports science, sports medicine,

and clinical departments are familiar and adequately trained using the CMAS and other qualitative screening tools.

This is to ensure that high levels of intra- and inter-rater reliability are obtained, and more importantly so that the

athlete obtains accurate, consistent, and reliable evaluations . By this, it is strongly encouraged that

practitioners within their departments perform their own in-house training and collect pilot video footage where they

discuss and agree on “low-risk” and “high-risk” movement patterns. These should be consensually agreed by all

coaches, practitioners, and potential raters within the department, team, or institution. Practitioners unfamiliar with

the CMAS may consider receiving training and education from practitioners’ experienced in qualitative screening

and knowledgeable in COD biomechanics. We have had recent success whereby the lead researcher has

facilitated a one hour-training session and created manuals for raters outlining how to grade the cutting trials using

the CMAS, and to establish and uniformly agree on “low-risk” and “high-risk” movement patterns. Subsequently we

have observed high levels of intra- and inter-rater reliability .

5. CMAS Criteria Rationale and Operational Definitions

The purpose of the following section is to provide the rationale and operational definitions for the 9-items of the

CMAS.

5.1. Item (1) Clear PFC Braking Strategy

COD is multistep action with evidence indicating that the PFC is involved in deceleration prior to COD, and is a

“preparatory step” . A “large anterior placement of the foot relative to centre of mass and backward inclination

of the trunk relative to planted foot” is considered to increase horizontal braking forces during the PFC, based on

research demonstrating a relationship between average horizontal GRF during PFC and peak KAMs during the

FFC . Reducing the majority of momentum during the PFC will reduce the braking requirements of the FFC,
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which may result in lower knee joint loads and protect against non-contact injury . Maximising braking

forces during the PFC is considered a safer strategy, as this braking is typically performed in the sagittal plane

whereby the GRF vector is more aligned with the knee joint centre, and importantly the knee goes through

substantially greater flexion as opposed to the FFC .  Figure 4  provides the operational definition and

example yes and no “clear PFC braking strategy” images to assist in qualitative screening.

Figure 4. Operational definition and example images for CMAS item: clear PFC braking strategy.

5.2. Item (2) Lateral Leg Plant Distance

A wide lateral leg plant is a major determinant of peak KAM during side-step cutting . This posture

results in a more medial whole-body position with respect to the foot, creating a large GRF acting laterally outside

the knee. Subsequently, this position results in a large moment arm between the perpendicular distance of the axis

of rotation (knee) to the force (acting outside the knee), creating greater KAMs . Abducted hip positions are

also commonly observed characteristics displayed during visual inspection of non-contact ACL injuries during COD

, and have also been associated with greater KAMs . Wide lateral leg plants are typically

performed to generate greater medio-lateral GRF, thus impulse, for acceleration into the new intended direction 

. Additionally, the lateral leg plant is also considered a “false” step to deceive opponents .  Figure

5 provides the operational definition and example wide, moderate, and narrow “lateral leg plant distance” images to

assist in qualitative screening.
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Figure 5. Operational definition and example images for CMAS item: lateral leg plant.

5.3. Item (3) Hip in an Initially Rotated Position

Internal hip rotation (anatomical rotation) is a contributing factor to dynamic knee valgus which contributes to a

more medially positioned knee relative to the GRF vector, thus increase in moment arm distance and subsequent

KAM . Figure 6 provides the operational definition and example yes and no “hip in an initially rotated

position” images to assist in qualitative screening.
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Figure 6. Operational definition and example images for CMAS items hip in an initial internally rotated position,

initial knee valgus position, and foot not in neutral position.

5.4. Item (4) Initial Knee ‘Valgus’ Position

Initial knee valgus position (anatomical rotation) is associated with peak KAMs during cutting  and

is considered a major determinant. An increased KAA at initial contact has an effect of placing the knee more

medial to the resultant GRF vector, increasing the moment arm distance, leading to an increased KAM.

Additionally, McLean et al.  reported a change in KAA of 2° can cause a 40 Nm increase in KAM (assuming a

GRF of 2500 N), while greater KAAs were reported in female athletes who sustained an ACL injury compared to

uninjured athletes . Moreover, dynamic knee valgus is a commonly observed posture during non-contact ACL

injuries during directional changes and landings . Therefore, improving frontal plane

knee control appears to be a worthwhile strategy to reduce ACL injury risk during side-stepping. Figure 6 provides

the operational definition and example yes and no “initial knee valgus position” images to assist in qualitative

screening.

5.5. Item (5) Foot Not in Neutral Foot Position

Greater initial foot progression angles (anatomical rotation) are associated with greater KAMs , with a neutral

foot position considered the safest strategy . Internally rotated foot positions during weight acceptance can

result in a more medially positioned knee relative to the GRF vector, thus increased moment arm distance and

subsequent KAM . A neutral foot position would most likely result in forces being attenuated in the sagittal
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plane utilising the large knee and hip extensor musculature, which is potentially a safer strategy . Equally,

excessive foot external rotation increases the susceptibility to eversion and pronation which could lead to knee

valgus and tibial internal rotation , thus ACL loading. External rotation of the foot has also been stated

as a visual characteristic observed during COD non-contact ACL injuries .  Figure 6  provides the operational

definition and example yes and no “foot not in neutral foot position” images to assist in qualitative screening.

5.6. Item (6) Frontal/Transverse Plane Trunk Position

The trunk contains approximately half of the body’s mass , and during cutting the entire body’s mass must be

balanced and supported on one leg, thus trunk control and positioning is a critical factor influencing knee joint loads

. Lateral trunk flexion  or trunk rotation  towards stance limb are major determinants of

peak KAM during COD. Laterally flexing the trunk (deviation of the trunk) or rotating the trunk towards the plant leg

shifts weight laterally, creating a more laterally directed GRF vector, thereby increasing its moment arm relative to

the knee joint centre, and therefore increasing the resultant KAM . Conversely, trunk lean and

rotation towards the intended direction of travel shifts the GRF vector more in line with the knee joint centre, thus

decreasing the moment arm distance . Prospective research has shown deficits in trunk control and

proprioception are associated with increased risk of non-contact ACL injury , while lateral trunk flexion is

also an observed visual posture during non-contact ACL injuries during plant-and cut manoeuvres and landings 

.

Collectively, these findings suggest side-step techniques which encourage trunk lean and rotation towards the

intended direction of travel may potentially reduce knee joint loading and subsequent risk of injury .

Computer simulations of side-stepping have showed a reduction in knee valgus loading through shifting the whole-

body centre of mass more medially , while COD technique modification interventions which focus on reducing

lateral foot plant distances and maintaining an erect (frontal plane) trunk posture was found to reduce KAMs .

Furthermore, from a performance perspective, trunk lean and rotation towards the intended direction of travel is

also associated with faster COD performance . Figure 7 provides the operational definition and example

lateral, trunk rotation, upright, and medial “frontal/transverse plane trunk position” images to assist in qualitative

screening.
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Figure 7. Operational definition and example images for CMAS item: frontal/transverse plane trunk position relative

to intended direction of travel.

5.7. Item (7) Trunk Upright or Leaning Back Throughout Contact

Trunk inclination (leaning back or upright) with limited hip flexion and trunk flexion displacement during weight

acceptance may increase the overall knee joint load, due an increased lever arm of the trunk relative to the knee

and increasing the centre of mass distance from the base of support . Some trunk flexion allows generation of

hip moments to help attenuate GRF during weight acceptance and thus, may lower KAMs . Increasing hip

flexion and promoting a hip dominant strategy are involved in GRF attenuation , energy dissipation 

, reducing loading rates  and reducing knee joint loads  during high-impact tasks. Increasing

hip flexion increases the moment arm distance at the hip which creates a greater hip flexor moment (utilising hip

extensor musculature). This can have the effect of unloading the knee by more evenly distributing loading

proximally up the lower-limb chain , thus reducing the demands for the knee. Figure 8 provides the

operational definition and example yes and no “trunk upright or leaning back throughout contact” images to assist

in qualitative screening.

[116]

[62]

[117][118][119] [120]

[121] [119] [119][120][122][123]

[62][119][120][123]
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Figure 8. Operational definition and example images for CMAS items trunk upright or leaning back throughout

contact, limited knee flexion, and excessive knee valgus motion.

5.8. Item (8) Limited Knee Flexion

Extended knee postures with large anterior tibial shear can increase ACL strain  and are also

commonly observed visual characteristics of non-contact ACL injury . Moreover,

stiffer landings and extended knee postures can increase GRFs and are associated with increased risk of ACL

injury . Stiffer weight acceptance strategies can increase impact GRFs , and greater GRFs are

associated with increased KAMs . Lower knee flexion angles are also associated with greater KAMs during

COD . Figure 8 provides the operational definition and example yes and no “limited knee flexion” images to

assist in qualitative screening.

5.9. Item (9) Excessive Knee ‘Valgus’ Motion during Weight Acceptance

The rationale for knee valgus was presented earlier (Item 4).  Figure 8  provides the operational definition and

example yes and no “excessive knee valgus motion during weight acceptance” images to assist in qualitative

screening.

5.10. CMAS Criteria: Considerations for Rearfoot, Midfoot, Forefoot Contact?

[124][125][126][127]

[17][18][19][20][21][23][24][25][26][86][101]

[128] [67][129][130]

[63][69]

[33][68]
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Although not a specific criterion on the CMAS qualitative tool, practitioners are encouraged to monitor foot contact

position during initial contact. Previous research has reported rearfoot techniques evoke more extended, abducted

knee positions, greater GRF, and greater knee joint loads . Additionally, heel strikes are

commonly observed characteristics of non-contact ACL injuries during COD , while an ACL case study also

reported a heel strike during COD . However, an anterior placement of the foot relative to the centre of mass is

required to create posterior braking force, typically characterised with a rearfoot technique to facilitate braking .

From our experience, heel strikes during the FFC appear to be consequence of poor and ineffective PFC braking;

thus, resulting in a large anterior placement of the foot relative to the centre of mass to subsequently create

posterior braking force. Moreover, although greater knee joint loads are present with a rearfoot technique, from an

ankle injury perspective, a rearfoot contact results in a greater surface area, thus base of support and stability for

changing direction. This is particularly important for generating perpendicular force. Conversely, a forefoot landing

results in a reduced surface area and base of support which is most likely suboptimal for perpendicular force

application and ankle joint stability. Additionally, it should be highlighted that a forefoot strategy increases (internal)

ankle plantar-flexor moment and gastrocnemius activity, which acts as an antagonist to the ACL, and may

contribute to ACL strain (tibial shear mechanism) .

6. Practical Applications: Interpreting CMAS Score and the
CMAS Training Recommendations Decision Tree

As strong relationships between CMAS and peak KAMs have been observed , a higher total score is

generally indicative of suboptimal technique and greater non-contact ACL injury risk. Additionally, “higher-risk”

cutting postures connected with ACL injury risk were demonstrated by participants and trials with “high” CMASs

(~7) compared to participants and trials with “low” CMASs (~3) . As such, practitioners can use scores of ≥7,

4–6, and ≤3 as initial benchmarks to classify athletes with high, moderate, and low CMASs , respectively.

However, practitioners should note that suboptimal and unsafe technique may still be displayed during trials with

low CMASs; therefore, it is advised to focus on the CMAS criteria where athletes scored deficits . For

example, an athlete with a low CMAS may still display “high-risk” cutting deficits, such as knee valgus, lateral trunk

flexion, limited knee flexion, or hip internal rotation. Therefore, in this scenario, the athlete would still warrant

specific injury risk mitigation training and conditioning. In addition, it is worth noting that some CMAS criteria are

associated with faster performance . For instance, a wide lateral leg plant is displayed to generate

greater medio-lateral propulsive forces and subsequent exit velocity , while reduced knee flexion is

associated with shorter ground contact time . Thus, practitioners must be mindful and acknowledge the trade-

off between knee joint loading (injury risk) and performance when screening and modifying cutting mechanics.

A low CMAS score generally indicates an ability to performance a cutting task well against the prescribed CMAS

criteria, in a closed, controlled environment. Further work is needed to assess both scoring during tasks in a sport-

specific, open skill environment to determine if performance transitions (scores) to these environments.

Additionally, it is worth highlighting that the CMAS is based on postures associated with ACL injury risk, but the

CMAS is indicating relative risk of injury and we are by no means are stating that athletes with greater scores will

[33][131][132][133][134]

[18][28]

[135]

[136]

[137][138][139]

[55][76][93]

[55][93]

[55][93]

[57][76]

[41][43][67][70]

[41][42]

[43][67]
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definitely sustain an ACL injury. Nevertheless, practitioners are recommended to use the CMAS as a regular

monitoring tool to assist in identifying “high-risk” cutting deficits in their athletes. This can be used to inform and

help develop individualised training programmes to modify the specific deficits and mitigate potential ACL injury risk

. Readers are encouraged to read specific reviews regarding training strategies to mitigate non-contact

ACL injury ; thus, a brief overview is presented in the CMAS training recommendations decision

tree (Figure 9).

Figure 9. CMAS training recommendations decision tree adapted from previous research .
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