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Machine Learning (ML) is a subclass of artificial intelligence (AI) that can be defined as a semi-automated system in which

computers create an algorithm by learning from observed data. Machine learning algorithms create a model based on

training data and use it to make predictions or judgments without having to be explicitly programmed to do so. In recent

years, decision makers and the scientific community have paid close attention to the use of machine learning in risk and

reliability assessment. Currently, quite a good amount of work is being carried out in mine equipment failure and reliability

assessments and predictive maintenance analysis. A machine learning approach can be used for predicting failures and

also to identify important parameters that predict failures.
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1. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised machine learning algorithm that can be used for classification and

regression problems. In the SVM algorithm, each data item is plotted as a point in n-dimensional space where n is the

number of features considered, with each feature being the value of a particular coordinate . Then, the aim is to perform

classification by finding the hyper-plane that differentiates the two classes very well. SVMs maximize the margin around

the separating plane, and the decision function is fully specified by a subset of training samples called the support vectors

. The optimal SVM hyperplane for binary classification is represented in Figure 1.

Figure 1. Optimal hyperplane for binary classification .

A separating hyper plane can be used to divide data that is linear. However, the data is frequently non-linear, and the

datasets are closely linked. To account for this, the input data is non-linearly mapped to a high-dimensional space. After

that, the new mapping is linearly separable. Kernel trick allows SVM’s to form nonlinear boundaries. The kernel function’s
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purpose is to allow operations to be conducted in the input space instead of the possibly high-dimensional feature space.

As a result, the two classes can be separated in the feature space. Different kernel functions exist, such as polynomial,

radial basis function (RBF), and sigmoid function, and the choice of a kernel function is determined by the application . It

can be noted that SVM is mainly used for forecasting failures, fault diagnosis and pattern recognition. The previous works

used TTF, TBF, audio signals, vibration data, and fault states as input data for SVM algorithms. From the time horizon, it

can be noted SVM was widely popular from 2010 to 2015 in mining.

In , the authors used SVM to detect defects and fault patterns of unexpected heavy equipment failures. SVM classifier

was used to divide data as normal and abnormal and only normal data was used for learning using restricted Boltzmann

machine (RBM) and then based on patterns, faults in the system were identified. In , the authors used the SVM

regression algorithm to forecast TBFs using historical observations of LHD failures. A Pareto analysis detected the LHD’s

engine as the most critical system. TBFs of 32 failures were obtained. Twenty-five records were used for SVR modelling

and the remaining for testing. Mean absolute percentage error (MAPE) and normalized root mean square error (NRMSE)

values were used to evaluate model performance. A polynomial kernel function of the third degree resulted in the best

predictions (minimum errors). An absolute percentage error value of less than 2% was achieved, demonstrating excellent

forecasting applicability of SVR. In , the authors have explored the application of the SVM classification approach for

pattern recognition and failure forecasting on mining shovels. The failure behavior of a fleet of ten mining shovels during 1

year of operation was investigated and the shovels were classified into four clusters using k-means clustering algorithms,

based on their reliability. Future failures were predicted using the support vector machine (SVM) classification technique.

Historical failure (component type) and time to repair data were used to predict the next failure type for all shovels. Four

different kernel functions, namely linear, polynomial, RBF and sigmoid function were examined in combination with

different values of C parameter, using a grid search attempt. The best C–K pair that resulted in the maximum number of

correct classes for the test dataset was selected for each shovel from each cluster using a grid search method, and the

results were validated using particle swarm optimization. The SVM technique was shown to be successful with a

prediction accuracy of over 75%. In , the authors proposed principal component analysis (PCA) with the SVM method

for fault diagnosis of mine hoists. PCA was used to extract relevant time domain and frequency domain features and using

these, a multi-class SVM algorithm model corresponding to nine different fault states output was built. Comparison of

various methods showed the PCA-SVM method successfully diagnosed faults in the mine hoists system. The RBF kernel

function system had the best classification properties and the accuracy of the model turned out to be around 98%. In ,

the authors developed a SVM based ensemble model for reliability forecasting of a mine dumper. The hyperparameters of

the SVM were selected by applying a genetic algorithm. A case study was conducted investigating a dumper operated at a

coal mine in India. Time-to-failure historical data for the LHD were collected, and cumulative time to failure was calculated

for reliability forecasting. The hyperparameters of the SVM models were selected using genetic algorithm-based learning.

Study results demonstrate that the developed model performs well with high accuracy (determination coefficient R   =

0.97) in the prediction of LHD future failure times, and a comparison with other methods demonstrates the superiority of

the proposed ensemble SVM model. In , the authors have proposed a classification method for an automated operating

mode to increase the performance of vibration-based online condition monitoring systems for applications such as

gearboxes, motors, and their constituent components. Several variations of the system have been tested and found to be

successful. A swing machinery system of an electromagnetic excavator is used to see how this method functions on

dynamic signals gathered from an operating machine. The empty and full swing cycles are the two classification classes

with vibration and speed as input parameters. SVM and other classification models were used to analyze swing

performance. Data were collected over a period of 45 h on an operation. In , the authors developed a method for

monitoring and tracking both location and action for automated construction equipment. The authors have proposed an

audio-based method for tracking and activity analysis of heavy construction equipment. The equipment generates distinct

sound patterns while performing a certain task and these audio signals are filtered and converted into time–frequency

representations. This data is classified into different activity representations using a multiclass SVM classification

algorithm, and the results demonstrated the potential capacity to correctly recognize various equipment actions with 80%

model accuracy.

2. The k-Nearest Neighbors KNN

The k-nearest neighbors (KNN) method is a supervised machine learning algorithm that can be used to address

classification and regression problems . KNN is a kind of instance-based learning (also known as lazy learning), in

which the function is only estimated locally, and all computation is deferred until classification. When there is very little

prior knowledge about the data distribution, the KNN is the most basic and simplest classification algorithm. The data

points are categorized based on how their neighbors are classified. The algorithm’s idea is that all data points with similar

characteristics are in close proximity. Given a K value, the nearest K neighbors are chosen for any new point, and the
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class containing the most points out of the k points is allocated to the new point. The choice of K, as well as the distance

measure used to pick the nearest K points, determine the performance of a KNN classifier. In the case of KNN, a small

training sample size can significantly impact the selection of the optimal neighborhood size K, and the sensitivity of K

selection can significantly decrease KNN classification performance. In general, KNN is susceptible to data sparsity, noisy

mislabeled points, and outliers from other classes if the K value chosen is too small or too large . From the

literature review, it can be inferred that KNN data is recently gaining popularity in mining. It is mainly used in fault

diagnosis and real time fault monitoring. Faults are monitored and identified both at system and sub-system levels.

In , the authors studied a historical failure dataset of a dragline to conduct predictive maintenance. The authors used

the k-Nearest Neighbors algorithm to predict the failure mode but there was a chance of overfitting in the methodology.

Hence, a combination of the genetic algorithm and k-Nearest Neighbor algorithm was applied for the failure dataset. This

enhanced the model performance, and the results were better predicted. In another study, , the authors collected

vibration signals of main journal-bearings of an IC engine from condition monitoring methods. The vibration signals were

classified under normal, oil starvation, and extreme wear fault. Thirty features were extracted from the processing of

signals, and KNN and ANN were applied to train the dataset and later for diagnostic use. Variable K ranging from 1 to 20

with the step size of 1 was used to get better classification results. The experimental results showed diagnostic methods

were reliable in separating fault conditions in the bearings. In , the authors proposed a new methodology of weighted k-

Nearest Neighbor classifier where a square inverse weighting technique was used to improve the accuracy of the KNN

model for fault diagnosis of rolling bearing elements. Three bearing conditions were classified: healthy, inner, and outer

race fault. The algorithm indicated that this method enables fault detection in bearings with high accuracy. In , the

authors presented a fault diagnosis technique based on acoustic emission (AE) analysis with the Hilbert–Huang transform

(HHT) and data mining tool. In , the authors proposed a real-time online fault diagnosis method for rolling bearings

based on the KNN algorithm. The rolling bearing vibration signal is preprocessed, and feature parameters are extracted.

The data was preprocessed, with 100 raw points as one sample, for a total of 8496 samples. Different classification

models like decision tree C4.5, CART algorithm and KNN were used to classify fault data. Real-time online extraction of

the characteristic parameters of the vibration signal was used to realize real-time online faults through the fault diagnosis

model. Results show that the fault diagnosis model based on the KNN algorithm is better than the fault diagnosis model.

3. Naïve Bayes Classifier

Naïve Bayes, a supervised machine learning algorithm, assumes an underlying probability distribution and captures

uncertainty about the model logically by calculating probabilities of occurrences. It is used to solve diagnostic and

predictive issues. It calculates explicit hypothesis probabilities and is robust to noise in the input data . The naïve Bayes

algorithm is a straightforward probability classifier that derives a set of probabilities by counting the frequency and

combinations of values in a data set. When assessing the value of the class variable, the method applies Bayes’ theorem

and assumes that all variables are independent. In a range of controlled categorization challenges, the algorithm learns

quickly .

There are different types of Naïve Bayes classifiers. When characteristic values are continuous, it is assumed that the

values associated with each class are spread according to the Gaussian distribution, which is the Normal distribution. On

multinomial distributed data, multinomial naïve Bayes is preferred. Bernoulli naïve Bayes is employed when data is

distributed according to multivariate Bernoulli distributions. That is, multiple features exist, but each one is considered to

have a binary value. As a result, binary values are required for features . Naïve Bayes has recently earned a lot of

attention because of its high learning and prediction accuracy, and more importantly, the algorithm works well for mining

data and conditions. In the literature work, naïve Bayes was used in fault diagnosis and assessing faults’ damage and

fault classifications.

In , the authors predicted RUL of bearings using the naïve Bayes algorithm. Firstly, the statistical method is used to

extract the features of the vibration signal, and the root mean square (RMS) is regarded as the main performance

degradation index. Second, the correlation coefficient is used to select the statistical characteristics that have high

correlation with the RMS. Then, in order to avoid the fluctuation of the statistical feature, the improved Weibull distributions

(WD) algorithm is used to fit the fluctuation feature of bearings at different recession stages, which is used as the input of

the naïve Bayes (NB) training stage. During the testing stage, the true fluctuation feature of the bearings is used as the

input of NB. After the NB testing, five classes are obtained: health states and four states for bearing degradation. Finally,

the exponential smoothing algorithm is used to smooth the five classes and to predict the RUL of bearings. The

experimental results show that the proposed method is effective for RUL prediction of bearings. In , the authors used

Naïve Bayes for bearing fault diagnosis on enhanced independent data. Data-based fault diagnostics of mechanical

components has become a new hotspot. Their approach was based on processing the data vector (attribute feature and
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sample dimension) to reduce the limitations of Naïve Bayes by an independence hypothesis. The statistical characteristics

of the bearings’ original signal were extracted, decision trees were used to select important features of the signal, and low

correlation features were selected. The authors used SVM models in the next step to prune redundant vectors, and in the

last step used Naïve Bayes on the processed data to diagnose faults. In , the authors studied non-repairable

equipment with multiple and independent failure modes, where only incomplete information about the failure mode was

obtained through condition monitoring. The study focused on obtaining a probability matrix representing the relationship

between actual health and condition monitoring information of the equipment and Naïve Bayes was used as a classifier to

classify each failure mode based on the degree of damage. An experimental planetary gearbox system is used to gather

condition monitoring data for damage degree classification considering four failure modes. A forward feature selection is

used to find the best set of features. The classification accuracy increases to 94.76%. In , the authors applied a Naïve

Bayes classifier for diagnosing faults of rolling element bearings and indicated that the Naïve Bayes classifier presented

higher levels of accuracy of 96% without any feature engineering requirement.

4. Decision Tree

Decision tree is a supervised machine learning method for constructing classification systems based on multiple

parameters or generating prediction algorithms for a target variable. In this method, a population is divided into branch-like

segments that form an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and

can handle huge, complex datasets without imposing a complex parametric framework . Decision trees are mainly

effective in handling non-linear datasets. Like stepwise selection in regression analysis, decision tree methods can be

used to pick the most relevant predictor variables from a large number of features in datasets and to assess the relative

importance of these variables on the decision variable. Moreover, decision trees can also handle missing data very well. It

is also easy to handle a variety of input data: nominal, numeric and textual .

However, other target functions of the decision tree can also include, minimizing the number of nodes or minimizing the

average depth to find the most important predictors. Pruning is the practice of removing redundant nodes from a tree to

obtain the best decision tree possible. A general decision tree structure is represented in Figure 2.

Figure 2. A general decision tree structure .

In , the authors in their work proposed an equipment reliability model for pumps, designed by applying a data extraction

algorithm on equipment maintenance records residing in SAP applications. The author has initially applied unsupervised

learning to perform cluster evaluation. Thereafter, the data from the finalized model was applied to a supervised learning

algorithm where the classifier was trained to predict equipment breakdown. The classifier was tested on test data sets

where it was observed that support vector machine (SVM) and decision tree (DT) algorithms were able to classify and

predict equipment breakdown with high accuracy and a true positive rate (TPR) of more than 95 percent.
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In , the authors proposed the fault diagnosis method of an industrial ventilator (Fan) based on analysis-decision trees.

The operating of the fan was followed in five different conditions: a healthy condition and then affected by four different

faults, those affecting inner and outer races of rolling bearings, the mass unbalance and mechanical looseness. Fifteen

factors including mean, median, variance indicators (including the greatest three peaks by amplitude in each condition)

that described the vibration signals were extracted for each spectrum. In each condition, 30 signals were recorded to have

150 indicator vectors, divided into two sets. Twelve trees were built on the base of numeric attributes, DecisionStump, FT,

J48, J48graft, LADTree, LMT, NBTree, RandomForest, RandomTree, REPTree, and SimpleCart. Genetic algorithms

optimized the finding of the best choice representative tree. The RandomForest Tree is preconized for establishing a

diagnostic tool for the studied industrial Fan. In , the authors emphasize the problem of finding out good features that

discriminate the different fault conditions of the bearing. The selection of good features is an important phase in pattern

recognition and requires detailed domain knowledge. Their paper illustrated the use of a Decision Tree that identifies the

best features from a given set of samples for the purpose of classification. It uses Proximal Support Vector Machine

(PSVM), which has the capability to efficiently classify the faults using statistical features. The criterion used to identify the

best feature invokes the concepts of entropy reduction and information gain that are used in Decision Tree. The vibration

signal from a piezoelectric transducer is captured for the following conditions: good bearing, bearing with inner race fault,

bearing with outer race fault, and inner and outer race fault. The statistical features are extracted using decision tree and

classified successfully using PSVM and SVM. In , the authors used Decision Tree combined with Bayesian network for

fault diagnosis of motor faults. This entry describes the model structure and the basic ideas of Decision Tree and

Bayesian network, combines the advantages of the two, and solves the uncertainty of diagnosis information effectively.

5. Logistic Regression

In binary classification, logistic regression analysis performs exceptionally well, particularly with categorical variables with

[0, 1] classes. Based on the values of predictor variables, either categorical or numerical, logistic regression models can

estimate the likelihood of a failure occurrence . In logistic regression, the dependent variable has a Bernoulli

distribution. Thus, for any given linear combination of independent variables, an unknown probability, P, of the response

variable is estimated. To do so, a link function must be used to link the independent variables to Bernoulli’s distribution,

with the natural log of the odds ratio or the logit acting as the link function. This function converts a linear combination of

explanatory variables to Bernoulli’s probability distribution, which has a domain of 0 to 1.

Logistic regression is a supervised learning technique often used in failure predictions and preventive maintenance

strategies. Cost data, failure data, sensor data and acoustic electric signals were the input data used in logistic regression

in previous work. The algorithm was used to predict economic success, RPN, machine state in the next 24 h given the

current state and equipment reliability.

In , the authors used logistic regression models based on cost to accurately predict economic success or failure using

the fleet data for 378 single axle dump trucks. In , the authors proposed a systematic approach for developing a

standard equation for the risk priority number (RPN) measure, using the methodology of interval number-based logistic

regression. The aim is to reduce risks of failure, using FMEA in terms of the risk priority number (RPN). The logistic

regression model helped identify the probability of risk of failure of high-capacity submersible pumps. Another study aimed

to propose a model for predicting mechanical equipment failure from various sensor data collected in the manufacturing

process. This study constructed a Hadoop-based big data platform to distribute many datasets for research, and

performed logistic regression modelling to predict the main variables causing the failure from various collected variables.

As a result of the study, the main variables in the manufacturing process that cause equipment failure were derived from

the collected sensor data, and the fitness and performance evaluations for the prediction model were made using the

ROC curve . In , the authors applied logistic regression to predict machine state 24 h in the future, given the current

machine state. A confusion matrix was used to evaluate model performance. In , the authors used logistic regression

models and acoustic emissions (AE) to evaluate the reliability of the cutting tool to determine best maintenance practice.

As it is difficult to monitor cutting forces in practice, a combination of both AE and logistic models are effective in reliability

analysis. Reliability models are constructed using AE signals and cutting force as parameters. The results show that AE

feature extractions and logistic models work effectively in reliability estimations.

6. K-Means Algorithm

K-Means clustering is an unsupervised learning approach that is used in machine learning to handle clustering problems.

It divides the unlabeled data into many clusters. The K-Means clustering method is easy and accurate, flexible to handle

large data, has a good speed of convergence, and has adaptability to sparse data. K-Means clusters the data into

different groups and provides a simple technique to determine the categories of groups in an unlabeled dataset without
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any training. It is a centroid-based approach, where each cluster has its own centroid. The goal of this algorithm is to

minimize the sum of distances between the data point and their corresponding clusters. The K-means clustering algorithm

finds the best value for K center points or centroids by an iterative process and assigns each data point to its closest K-

center. Those points which are near to the K-center create a cluster. The distance of the point from the centroid in each

step is calculated using Euclidean method. Hence data points from each cluster are similar in some way and are far from

other clusters. The K value is user defined for the algorithm that is generated. The Elbow method is the most popular way

that helps in selecting the optimal K value. The method is based on minimizing within cluster sum of square values

(WCSS) that defines total variation in the data .

In , the authors have tried to implement a clustering method to group maintainable equipment based on their need for

maintenance according to time to failure, and the location of these machines. The main aim was to reduce scheduling

process and time and a standard maintenance procedure for the machines in each cell. In , the authors examined the

condition-based equipment data using a data analytics approach to develop a predictive maintenance program. K-means

for clustering the failure characteristic, support vector regression (SVR) model used for predicting equipment failure were

the two models used in their study.

7. The Neural Network ANN

The neural network (NN) plays a vital part in the human brain, and ANN is an unsupervised learning technique created

from biology. ANN stands for artificial neural networks, and biological neurons inspired it. It is a massively parallel

computing system made up of many basic processors connected by a large number of interconnections. ANNs learn the

basic rules from a series of given symbolic circumstances in instances rather than following a set of laws specified by

human experts. They are organized into three layers (i.e., input layer, several hidden layers, and an output layer).

Furthermore, the relationships between the network processing units are the source of the ANNs’ analytical activity. ANNs

are the most extensively used machine learning algorithms. Multilayer perceptrons (MLPs) with backpropagation learning

are based on a supervised technique and have three layers: input, hidden, and output . Compared to other classic

machine learning techniques, ANN models have significant advantages in dealing with random, fuzzy, and nonlinear data.

ANNs are best suited for systems with a complicated, large-scale structure and ambiguous data. They are commonly

employed for a wide range of issues . ANNs do, however, also have some drawbacks. As a hardware-dependent

algorithm, ANN requires GPU for processing and to create them in the first place. ANN requires a large amount of training

data to build the appropriate algorithm. When using the sigmoid activation function, ANN algorithms frequently encounter

vanishing and expanding gradient difficulties and the challenge remains in finding the loss function. The algorithms of ANN

are black boxes in nature, where results are based on the experience of training data and not a specified program, making

it difficult for modification and explanation to business stakeholders. Despite the shortcomings of ANN, neural networks

are gaining wide popularity in the mining industry and researchers are mostly moving towards the use of ANN in failure

analysis and predictive maintenance. The sample neural network architecture is shown in Figure 3.

Figure 3. Sample neural network architecture .
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ANN is widely used in reliability and fault analysis of mining machines. Several literature works can be found using ANN

for analysis. ANN has been used in mining since the early 2000s. However, the ANN architecture was not as developed

as it is today, and only feed-forward networks were used in the algorithm. Presently, ANN is used with higher accuracy

and better results in predicting equipment failures and reliability. ANN is used for fault diagnostics of numerous types of

rotating machinery that use signal processing techniques to extract features and further input these to the ANN model to

classify faults . In  the authors studied electric motor faults with ANN feedforward networks and self-

organizing maps. Data was taken from stator current and mechanical vibration signals for major motor faults. The study

showed the effectiveness of both algorithms and feedforward networks looked more promising for electric motor analysis.

In , the authors used multilayer perceptrons (MLP) in ANN to classify dragline faults using two years failure data. There

were 16 causes in total that lead to dragline failure. Two different models for analysis of these faults, using seven causes,

seven symptoms and five fault parameters of drag systems have been developed. The prediction accuracy of symptoms

using the cause was 94.2% and that of fault using symptom was 97.1%. In , the authors demonstrated on how neural

networks can be used in vibration monitoring analysis of rolling element bearing and derived how it can be effective in

handling noisy data. In , presented a multi-state algorithm for dynamic condition monitoring of a gear. The algorithm

information referred to the gear status and estimated the mesh stiffness per shaft revolution in case that any abnormality

is detected. This network was fed with statistical parameters obtained from the wavelet coefficients derived for the most

sensitive levels of decomposition to damage; the output resulted in the drop in the averaged torsional meshing stiffness

when a failure appears, which is highly related to local failure. In , the authors proposed a rotor vibration fault diagnosis

approach, that transforms multiple vibration signals into symmetrized dot pattern (SDP) images, and then identifies the

SDP graphical feature characteristic of different vibration states using a convolutional neural network (CNN). A CNN can

reliably and accurately identify vibration faults by extracting the feature information of SDP images adaptively through

deep learning. The proposed approach was tested experimentally using a rotor vibration test bed, and the results obtained

were compared to those obtained with an equivalent CNN-based image recognition approach using orbit plot images. The

rotor fault diagnosis precision was improved from 92% to 96.5%.
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