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Renal cancer is a heterogeneous group of tumors with different histology, molecular characteristics, clinical
outcomes and responses to treatment. The most common types are clear cell (ccRCC), papillary (pRCC) and
chromophobe RCC (chRCC).

digital pathology deep learning histological biomarkers artificial intelligence

| 1. Introduction

Renal cell carcinoma (RCC), commonly known as renal cancer, is a malignant tumor from the epithelium lining the
renal tubules. RCC accounts for a significant percentage of adult cancers (nearly 3.8%) and a considerable
number of new cases and deaths are reported due to RCC each year. A recent estimate from the American Cancer
Society indicates that there will be 81,800 new cases and 14,890 deaths from RCC in 2023 11,

Renal cancer is a heterogeneous group of tumors with different histology, molecular characteristics, clinical
outcomes and responses to treatment. The most common types are clear cell (ccRCC), papillary (pRCC) and
chromophobe RCC (chRCC) 2,

Tumor classification is a dynamic process that brings together many new areas of information based on advanced
molecular research. Attempts to classify RCC are traditionally based on subtyping according to predominant
cytoplasmic or architectural features, tumor site, background renal disease, similarity of tumors with embryological
structures such as metanephros or a specific hereditary background. Improved classification methods are essential

not only for the precise diagnosis of RCC but also for effective disease management and treatment planning &I,

Morphological verification of the primary lesion and any metastases is essential before treatment and helps to
identify the histological variant of the tumor. Additionally, post-surgical staging is important for evaluating the
probability of recurrence and predicting prognosis. About two-thirds of patients diagnosed with renal cancer have
the disease localized only within the kidney. For this group, the 5-year relative survival rate stands at 93%. If the
renal cancer has metastasized to surrounding tissues or organs and/or the regional lymph nodes, the 5-year
relative survival rate drops to 72% 1. The TNM classification system is widely used to stage renal cancer,
considering factors such as tumor size, invasiveness (germination into the kidney capsule, vessels, pyelocaliceal

system, Gerota’s fascia, etc.) and presence of metastases in lymph nodes and distant organs 2. Stage | and I
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cancers are confined to the kidney, and a partial nephrectomy is typically performed (for tumors up to 7 cm). Stage
lIl cancers either have grown into nearby large veins or have spread to adjacent lymph nodes. In these cases,
radical nephrectomy is the recommended option. Stage IV renal cancer indicates that the cancer has grown
outside of the kidney or has spread to other parts of the body such as distant lymph nodes or other organs. The
treatment approach for stage IV renal cancer depends on extent of the cancer and the individual’'s overall health. In
some cases, surgery may still be a part of treatment, alongside options like immuno- or radiotherapy . It is
noteworthy that despite advancements in other diagnostic modalities, morphological data obtained through
pathological examination continue to hold clinical significance in the management of cancer patients. Certain
morphological characteristics, such as sarcomatoid differentiation, present valuable insights into the

aggressiveness of the tumor and provide targets for personalized treatment (e.g., immunotherapy).

Pathological and histological examination using light microscopy plays a crucial role in determining the histological
type and degree of malignancy in kidney tumors. Traditional grading systems, like the Fuhrman classification, have
limitations in accurately grading tumors. This classification was used to assess malignancy based on an
assessment of the appearance and structure of cell nuclei, and not of the cancer cell as a whole. According to this
system, renal cancer is distinguished into four grades based on the visibility of the nucleoli under varying
microscope magnifications DE.  The current widely used classification is the WHO Classification of
Tumors/International Society of Urological Pathology (WHO/ISUP). Tumor malignancy from grades 1 to 3 is defined
by the prominence of nucleoli in the cancer cell nuclei, while grade 4 is characterized by nuclear pleomorphism and
the presence of giant cells or either rhabdoid or sarcomatoid features. Validation studies for chRCC failed to
demonstrate a correlation between score and outcome for both the Fuhrman classification and the WHO/ISUP
classification, and it was recommended not to evaluate these tumors 2. Interobserver variability and the time-
consuming nature of manually assessing all nuclei on histological slides pose challenges for pathologists. To
overcome these limitations, automated approaches and decision support systems can help reveal subtle

morphological differences between clinical groups and expedite the diagnostic process.

| 2. Machine Learning in the Diagnostics of Kidney Tumors

This section presents a perspective of a data analyst on the development of solutions for Al-assisted diagnostics
for RCC.

2.1. Neural Network Architecture for Histological Image Analysis

Types of machine learning can be categorized as supervised or unsupervised. The first group of methods is used
for the extraction of features from input data to make predictions and solve classification and regression problems.
The classification task is the matching of input data with output labels, that is, the prediction of discrete data. The
regression task is used to match input data with continuous output data, that is, to predict survival. Unsupervised

learning utilizes the internal structure of the data without specifying labels, and is often used for clusterization 19,

https://encyclopedia.pub/entry/50960 2/26



Renal Cancer Management with Al and Digital Pathology | Encyclopedia.pub

Artificial neural networks are the best-known artificial intelligence algorithms. These structures imitate the neural
topology of the human brain. They have several layers of artificial neurons (or nodes), and the neurons in each
layer can implement different transfer functions to provide greater flexibility in solving different problems. A neural
network with a significant number of layers is called a deep learning network. Usually, the available cases are
divided into training and test sets or training, validation and test sets 29,

The ordinary steps required for computer analysis of RCC scans and subsequent training of the neural network
include selection of histological scans; tissue area selection, segmentation and annotation; selection of various
morphological features of segmented areas; application of classifiers; and prediction. Each stage will be discussed
further in detail (Figure 1).
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Figure 1. Typical workflow of Al-assisted histological tissue image analysis includes the acquisition of whole-slide
images, selection of regions of interest and their processing, manual annotation by an expert and classification

using a neural network that generates clinically oriented results.

2.2. Processing of Histological Images

Whole-slide images (WSIs), or scans, of RCC histology slides are typically used for neural network training. WSI—
also known as virtual microscopy—is a technique that involves scanning the entire slide and creating a single high-
resolution digital file. Most authors use scans that are freely available from biobanks and databases such as The
Cancer Genome Atlas (TCGA) (11, Other researchers digitize slides from the histological archives of universities or
medical institutions.

On scanned histological slides, it is necessary to select smaller areas for targeted work—regions of interest (ROISs).

The selection of ROIs for increased accuracy is carried out independently by 2—3 highly qualified pathologists for
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greater objectivity. ROIs are usually square areas selected in images with a side length of 1000 to 2000 pixels.
Microscopic images of cells are then extracted from the ROI and annotated into different classes by the

pathologists 12,

The structures of interest to the observer are then segmented and annotated in the ROI. Segmentation tasks can
be divided into traditional feature extraction or manual methods, as well as using a CNN-based deep learning
approach. There are several methods to segment nuclei: linear filters, thresholding, clustering and region-growing
methods. Segmentation of nuclei using a “mask” can be a two-step process: first, adaptive thresholding in each
hue, saturation and value (HSV) color channel to identify nuclei regions from the background, and then marker-
controlled watershed-based nuclei segmentation to separate touching and overlapping nuclei 1. Wavelet
transformation can also be used as a preparatory step. It reduces image noise and improves cell edges for more
accurate nucleus detection 131, Before the initial segmentation, preprocessing can be performed, including color
deconvolution and image reconstruction. After segmentation, the image can be divided into patches containing

nuclei of cells for neural network training (241,

2.3. Selection of Cell and Tissue Morphological Features

The segmented features of morphological structures can be characterized using quantitative indicators, or
descriptors. In order to obtain the maximum number of descriptors, different methods are used to extract them from
images. When a neural network is applied to assess tumor grade, the following morphological features of nuclei
can be distinguished: size, shape, texture and color. Colors can be analyzed using different channels: red, green
and blue (RGB); HSV; lab color space; or hematoxylin channel in color deconvolution. Quantitative characteristics
related to colors have a mean, standard deviation, median, skewness and kurtosis 1113l The geometry of the
nuclei is also evaluated, these indicators include area, length of the major axis, length of the minor axis, perimeter,
convex area and diameter (23, The texture can be described using the following parameters: energy, Haralick
correlation, sum of variances, inverse difference moment, entropy, inertia, correlation information indicators, sum
average, sum entropy, sum Vvariance, cluster shade, cluster prominence, difference variance, contrast and
difference entropy 13 Texture features provide information about the spatial distribution of grey levels
associated with tissue structure and markers in the cytoplasm and nuclei. The grey-level co-occurrence matrix
encodes the properties of this distribution. The grey-level run-length matrix captures texture features from

contiguous, directional sequences of similar grey-level intensities 13 (Figure 2).
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Figure 2. Descriptors of cell nuclei can be divided into four groups: size, shape, texture and color.

In addition, the data obtained are summarized and processed with the morphological features. Initially, the number
of different descriptors can range from dozens to even thousands. Then, a small set (5-10) of optimal
morphological features is selected to be used as input data for classifiers. The following methods can be applied
for selection: principal component analysis, correlation among features, correlation between the features and the
classes, feature ranking by applying the linear or nonlinear support vector machine (SVM), the mean and variance
of the features belonging to different classes combined into a common quality measure, genetic algorithm, binary
particle swarm optimization, random forest, etc. Each method has a specific set of most important functions. In

order to diversify the features of the image, several different algorithms are usually used, forming an ensemble 131,

2.4. Training Models for Histological Image Analysis

To train a model to assign classes to segmented nuclei, the following classifiers are most commonly applied: SVM
and random forest. The random forest method is used to evaluate the importance of features in class recognition.
The importance of a feature is measured by rearranging its values and evaluating the increase in classification
error compared to the original value of the feature 18, The main idea of the support vector machine is the
translation of the original vectors into a higher dimensional space and the search for a separating hyperplane with
the largest gap in this space. Two parallel hyperplanes are constructed on either side of the class-separating
hyperplane. The models are then trained, tested and their performance is evaluated on a sample using 10-fold
cross-validation (10-fold CV). Model performance is assessed in terms of diagnostic accuracy, sensitivity,

specificity, positive predictive value and negative predictive value 12!,

Convolutional neural networks (CNNs) are applied to process histological images, aiming at efficient pattern

recognition and related to deep learning technologies. For more accurate visualization, a complex architectural
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neural network is sometimes used, combining CNN and fully connected and output layer neural networks 81,
When the CNN is applied to a new image, it first convolves the image using a variety of different types of filters.
During convolution, the filter systematically scans the image to determine if it has a specific pattern, such as edges
or curves. For each filter, a feature map is created, which is the result of the dot product between the filter and the
image. The next stage is pooling. It reduces nearby clusters of pixels to a single pixel representing the maximum
value of the nearby pixels. Pooling is necessary to compress a large image to reduce processing power. Pooling
also allows the model to generate new examples by averaging out minute details. After the final pooling step, the
multidimensional image is converted to a vector image. With each training step, the model adjusts its parameters to
minimize the loss on the training data. Loss is measured as the categorical entropy cross-error between the
pathology and the network prediction. The model then iterates over the entire training dataset multiple times to
optimize its weight. These are called “training epochs”. If the model does not show a significant reduction in error
after several epochs, it then calculates a set of predictions based on the validation set of histological data used
during training. Model performance after validation is used to further tune model parameters and improve

performance metrics. Training is stopped when validation performance no longer improves [,

2.5. Automated Detection of Morphological Features

CNNs can be used to automate the extraction of tumor tissue ROIs from each WSI. These ROIs are then reviewed
by a pathologist to remove erroneous fragments. ROIs must include both cancerous tissue and different types of
surrounding tissues (stromal or parenchymal parts of the organ) when training a neural network to discriminate
normal tissue from tumor tissue. The datasets usually consist of ROl images with consistent resolution and
magnification, encompassing zones of immune cell infiltration, necrosis, normal and dystrophic renal parenchyma,
etc. 181 In the development of neural networks for the evaluation of the topographic characteristics of the tumors, it
is necessary to train the neural network to recognize each type of tissue. It is difficult to develop a set of algorithms
for such classification because there are a large number of cell types in the tumor microenvironment, each
requiring a different set of features to be recognized. Instead, researchers are using an unsupervised learning
approach to classify cells based on their morphology without marking their types via an autoencoder. Stacked
sparse autoencoder (SSAE) is a neural network consisting of multiple layers of sparse autoencoders (SAES),

where the output of each layer is the input of each successive layer [24],

Vascularization, the presence of necrosis and tumor growth into surrounding tissues, such as the renal capsule or
Gerota’s fascia, can affect the progression and prognosis of the tumor. The newest machine learning tools provide
new ways to quantify the cellular composition and spatial organization. The tumor microenvironment, including
immune cells, cancer-associated fibroblasts, endothelial cells, surrounding normal cells and others, plays a critical
role in influencing tumor behavior and progression. However, a heterogeneous tumor microenvironment may
promote resistance to systemic therapies 19, For more accurate detection of tumor vessels, it is possible to train
the neural network on scans of immunohistochemical specimens with antibodies to vascular endothelium (CD31,
CD34) [2921] various types of immune cells are also detected by specific antibodies: macrophages—CD68; tumor-

associated macrophages—CD163; T-lymphocytes—CD3; cytotoxic T-lymphocytes—CD8; and B lymphocytes—
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CD20. Other markers can also be evaluated, such as the immunosuppression marker PD-L1, the proliferation

marker Ki-67, the epithelial marker PanCK and the mesenchymal marker vimentin 221,

2.6. Directions for Practical Application of Histological Al Models

Once trained and validated, neural networks can predict survival using clinical and epidemiological data like
gender, age and TNM stage. LASSO regression (least absolute shrinkage and selection operator regression) is
applied to select the most informative features. LASSO regression is an algorithm that performs explanatory
variable selection (feature selection) and regularization (to reduce variance). Predicting overall survival, risk of
recurrence or other outcomes in cancer patients can be helpful in developing individualized treatment plans and

ensuring patient follow-up 231,

Another interesting task is the use of pretrained neural networks to diagnose different tumors. The ability to project
previously learned knowledge to new situations is an important skill for making clinical decision. As the biological
behavior and features of malignancy are common to different carcinomas, pathologists can often use a fairly
general knowledge of common pathologies to make an approximate assessment of the clinical behavior of rare,
atypical lesions. Recent achievements in deep learning have enabled convolutional neural networks to perform
very complex image-based classification tasks. However, diagnostic neural networks are rarely used outside their
intended learning context. Therefore, researchers propose to transfer deep learning functions to histomorphological
analysis by referring to neural networks pretrained on different types of cancer as generalizable, scalable and

shared digital pathology tools for tissue annotation, classification, quality assurance and profiling (8],

A very promising area is the analysis of gene defects in RCC. The protein products of damaged genes define
molecular features of diagnostic value and accurately reflect the key biological mechanisms underlying cancer. To
date, the exact prognostic relationship between the proteomics and histological features of the tumor is not reliably
known and is an important subject for study. Histological scans and gene defect data are selected from gene banks
such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC) or The Cancer Genome Atlas (TCGA). Al
technologies can help to introduce microRNAs as biomarkers for the detection and prognosis of cancers due to
their inherent stability and resilience, especially in renal cell carcinoma 241, In addition, Al, in particular the random
forest method, is used to make hypotheses about the impact of different types of genetic damage on prognosis and

survival 12,

An important aspect is accurate preoperative diagnosis using noninvasive research methods such as radiomics.
Some investigators showed that the analysis of radiological signs in venous-phase computed tomography followed
by machine learning can very accurately differentiate subtypes of renal tumors (221281, There are publications in
which the histopathological characteristics of the tumor (metastatic and nonmetastatic RCC) were analyzed using
machine learning in conjunction with clinical data like MRI and CT scans [&. Other researchers have investigated
the association between WHO/ISUP tumor grade and radiological data from 406 patients using SVM in
combination with three feature selection algorithms such as Least Absolute Compression and Selection Operator
(LASSO), Recursive Feature Elimination (RFE) and Relief [28],
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| 3. Differential Diagnosis of RCC

For reliable diagnosis and follow-up of patients with different types of RCC, it is necessary to accurately determine
the histological variant of the tumor. The challenge lies in distinguishing between the main types of renal cancer.
This problem can also be solved with the help of digital pathology. Introducing Al into routine histopathology will
allow additional analysis methods to be used for the determination of the histological type of cancer before the

pathologist makes a confident diagnosis, significantly speeding up the diagnostic process (Figure 3).

Genetics §

.. Nuclear
Grade T™—

Tumor
Microenvironment

o0k

Diagnostics
and
Prediction

R AP
Papillry REC. ~ r
\ RCC \
. : Genetics §
Microenvironment Genetics §

*k

Figure 3. Differential diagnosis of a renal cancer histological types (clear cell, papillary and chromophobe renal cell
carcinomas). This problem involves differentiating between these three types and other benign and malignant

tumors of kidney. Modern guidelines are based on a combination of genetical and morphological criteria.

In addition to accurate identification of the histological type of cancer, another important problem is differentiating
between malignant and benign tumors. This problem is significant for oncocytoma and chRCC and for metanephric
adenoma and pRCC. In one of the publications, the authors analyzed 48 histological scans (12 for each
histological type of tumor—clear cell, papillary, chromophobe RCC and oncocytoma). The scans were converted to
four-level greyscale images and then segmentation was performed. A variety of features were extracted from the
RCC images and used for the correct classification of histological subtypes. Classification was performed with over
90% accuracy using a simple multiclass Bayesian classifier assuming multivariate Gaussian distributions 22, In a
similar study, the authors rejected segmentation and used the Harris angle method to localize key points across 48
scans of four types of renal tumors; however, the Bayesian classifier achieved an accuracy of 83% 9. Mengdan
Zhu et al. developed a deep neural network model that can accurately classify digitized scans of histological
specimens after surgical resection and biopsy into five groups: ccRCC, pRCC, chRCC, renal oncocytoma and
normal tissue. The mean area under the curve (AUC) of the classifier on histological scans after resection, biopsy

scans from Dartmouth-Hitchcock Medical Center and WSI scans from TCGA were 0.98 (95% confidence interval
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(Cl): 0.97-1.00), 0.98 (95% CI: 0.96-1.00) and 0.97 (95% CI: 0.96-0.98), respectively B, Training the neural
network to recognize benign renal lesions is also important. The authors collected a set of histological scans with
the following types of renal tumors: ccRCC, pRCC, chRCC, clear cell papillary renal cell carcinoma (ccpRCC),
oncocytoma and metanephric adenoma. A classifier was then built using Google AutoML Vision, a commercial
application programming interface for developing Al-based image classifiers. After 1 h of training, the classifier had
an average accuracy of 76% (the area under the precision—recall curve—AuPRC). The classifier was then trained
for 8 h and the average accuracy (auPRC) of the final model was 93%. The final version of the tumor classifier
correctly identified 47/55 (85%) cases (ccRCC 11/13, pRCC 14/15, chRCC 10/11, ccpRCC 2/4, oncocytoma 8/9
and metanephric adenoma 2/3). All tumors with a ratio greater than 0.77 were correctly classified 22, In another
publication, the authors created a framework consisting of three convolutional neural networks. Scans with RCC
were divided into three different size patches (small size = 250 x 250, medium size = 350 x 350 and large size =
450 x 450), and each neural network processed a section of a certain size. Four tissue types were identified from
the histological scans: fat, kidney parenchyma, ccRCC and pRCC. The framework successfully classified four
classes and demonstrated superior performance compared to established modern methods (pixel accuracy: 0.89
via ResNet18; proposed: 0.92) [33].

Differential expression and localization of immunohistochemical markers in different renal cancer subtypes may be
relevant to tumor progression and response to immuno- or other targeted therapies. The expression of some
antibodies can predict disease outcome and indicate malignancy (PD-L1, Ki-67). Other antibodies can be used as
markers of vascularization (CD31) and tissue infiltration by various types of immune cells (CD3, CD8, CD20,
CD68), which also gives them prognostic value. In one study, the authors examined the microenvironment in
different types of renal cancer and also compared tissue samples with metastases or recurrences (n = 15). A total
of 83 kidney tumors were analyzed: both types of pRCC (n = 20) and (n = 49), collecting duct carcinoma (CDC; n =
14) and high-grade urothelial carcinoma (HGUC; n = 5). Machine learning was used to analyze 10 different
markers on scans of immunohistochemical specimens from different tumors, including markers of mesenchymal
tissue, immune infiltration and endothelium and cell proliferation. The HALO random forest classifier was trained
using the HALO Area quantification v1.0 algorithm to distinguish membranous and/or cytoplasmic expression of
CD68, CD163, CD3, CD8, CD20 and vimentin. For CD31, Ki67 and PDL1, the object colocalization v1.2 algorithm
was used. This algorithm detected positively stained cells or objects based on their size and shape and determined
the total number of positively stained objects per 1 mm? area. The Ki-67 and vimentin scoring algorithms were
trained on the whole tissue. Both tumor and nontumor areas were included in the training. The area percentage of
a positive marker was calculated by dividing the area of positive staining by the total tissue area and multiplying by
100. After statistical analysis, immune markers showed different levels of expression in different histological cancer
types: the number of CD3+ T cells and CD20+ B cells were statistically significantly higher in CDC. CD68+
macrophages predominated in type 1 pRCC. PD-L1 was significantly increased in metastatic samples. Ki-67
expression was lower in type 1 pRCC than in type 2 pRCC (IRR = 0.47, 95% CI = 0.21-0.92, p = 0.017). This study

provided new insight into the nature of rare renal cancers, which are often understudied 22,

To improve diagnostics, some researchers used neural networks that have been pretrained to diagnose different

tumors. For instance, Kevin Faust et al. applied a CNN previously trained to recognize the histomorphology of brain
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tumors on 550 digital images of two types of renal cell carcinoma (396 ccRCC, 154 pRCC). In total, 512 different
features were extracted to perform clustering of the image set and to analyze the clinical and biological significance
generated between patient subgroups. Notably, CNNs pretrained on large histological datasets can extend learning
to new pathologies, eliminating clinically significant differences in tissue structure within and between patients

without further optimization [2&!.

The trained histological models can be further developed and used to assess prognosis. This makes them not only
diagnostic but also predictive. In the study, the authors trained a CNN on histological scans from TCGA to
recognize tumor tissue from normal tissue and then to determine the histological type of tumor (clear cell, papillary
and chromophobe RCC) with an accuracy of 87.69%. Using a CNN model that differentiates RCC from normal
tissue, the authors identified tumor locations with high probability of risk and generated a probability heat map.
Based on the tumor areas, several characteristics of the tumor shape and nuclei, such as area and perimeter, were
extracted from slide images of each RCC. The risk index for every patient was calculated using a regularized Cox—
LASSO model for each feature and validated using a two-stage cross-validation procedure. Thirteen cancer cell
morphology characteristics and six nuclear morphology characteristics were found to be significantly associated
with patient survival (p-value < 0.05) [23],

Neural networks can be multitask-trained; for instance, they can be trained to identify both tumor and normal
tissue, determine the histological type of a tumor and its grade and evaluate the prognosis of the disease.
Champion et al. classified histological scans of different types of RCC into the four Fuhrman grades based on the
color and texture of nuclei. Nuclear shape and topological features were also considered. The cohort consisted of
47% ccRCC, 33% pRCC and 20% chRCC; a total of 160 scans were used. From each image, 1316 color, textural,
formal and topological features for each cancer type were extracted using the binary segmentation method. After
training and validation, this model classified different RCC images into four grades of the Fuhrman classification
with an accuracy of 90.4% [2l. Other researchers developed a CNN that differentiated between types of renal
cancer and from normal tissue, and also graded the tumor according to Fuhrman. The model achieved an overall
accuracy of 99.1% for distinguishing normal parenchyma from RCC in the cohort (sensitivity 100%, specificity
97.1%). The accuracy for differentiating clear cell, papillary and chromophobe histotypes of RCC was 97.5%. The
accuracy of the Fuhrman classification was 98.4% 7. As the Fuhrman classification’s applicability to chRCC

remains debatable, many pathologists opt for the Paner classification in their practice 2433 (Table 1).

Table 1. Al models for differential diagnosis of renal cancer.

Characteristics Data Technique Results Prognosis Reference
Different types of A set of 48 Segmentation, Approximately 90% - [29]
RCC images uniformly classification accuracy
distributed in 12 (mu|tic|ass
samples from Bayes classifier
each subclass assuming
multivariate
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Characteristics

Different types of
RCC

Different types of
RCC

Different types of
RCC

Different types of
RCC

Data

48 images, 12 for
each subtype:
CC, CH, ON and
PA

79 RCC biopsy
slides from 2015
to 2017 from
DHMC, 917
whole-slide
images of kidney
cancer from
TCGA

TCGA slide
images of RCC
and normal
tissues

TCGA slide
images of RCC
(g 396 KIRC and
154 KIRP tumors)

Technique
Gaussian
distributions)

The Harris
corner
detection
method,
Bayesian
classifier

Annotation,
creation of a
deep neural
network, patch
extraction,
classification

Creation of
CNN, patch
extraction,
classification
(SVM), LASSO
regression

Clusterization,
CNN

Results

83% accuracy

AUC of the
classifier on the
internal resection
slides, internal
biopsy slides and
external TCGA
slides were 0.98
(95% confidence
interval (Cl): 0.97—
1.00), 0.98 (95% CI:
0.96-1.00) and 0.97
(95% CI: 0.96—
0.98), respectively

Classification
accuracy for clear
cell and
chromophobe RCC
vs. normal tissue
was 93.39% and
87.34%,
respectively;
94.07% accuracy to
identify the type of
RCC

Segmentation of
tumor regions and
other relevant
histopathologic
patterns (e.g.,
adenosquamous
and poorly
differentiated
regions)
Extraction of
features generated
subgroups enriched
for clinically
relevant subtypes
and outcomes

Prognosis Reference

13 tumor
shape
features and
6 nuclei
shape

features [23]
were
signifcantly
associated
with patient
survival

Correlation
was
identified
with survival [18]
outcomes
and
Fuhrman
grading

https://encyclopedia.pub/entry/50960



Renal Cancer Management with Al and Digital Pathology | Encyclopedia.pub

Characteristics Data

252 WSI of clear

cell renal cell
carcinoma
(ccRCCQO),
papillary renal
cell carcinoma
(PRCC),
chromophobe
renal cell
carcinoma
(chRCC), clear
cell papillary
renal cell
carcinoma
(ccpRCCQ),
oncocytoma and
metanephric
adenoma

Different types of
RCC

Cases of clear
cell RCC (27)
and clear cell
papillary RCC
(14) from
University of
Louisville,
Louisville, KY,
USA

Different types of
RCC

83 primary renal
tumors and
matched
metastatic or
recurrence tissue
samples (n = 15):
papillary renal
cell carcinoma
(PRCC) types 1
(n=20)and 2 (n
= 49), collecting
duct carcinomas
(CDC; n=14)
and high-grade
urothelial
carcinomas
(HGUC; n=5)

The tumor
microenvironment
in different types of
RCC

4 grades of RCC 160 RGB images

(clear cell, of H&E-stained
papillary, renal carcinoma
chromophobe) tissue samples,

| 4. Clear Cell RCC

Technique Results Prognosis Reference

Al-based patch 85% accurate

; (32]
classifier classification
An ensemble
. Framework
pyramidal deep .
learning model succeeded in
that utilizes a classifying th_e four
hierarchy of classes (pixel
three CNNs accuracy: 0.92)
Number of CD3+ T
cells was
statistically
The HALO S|gn|f|cantly hlgher
in CDC than in 22]
random forest -
classifier PRCC.
CD68+
macrophages
predominated in
pRCC.
Segmentation, 90.4% accuracy for - [16]
classification Fuhrman grading
(radial-basis

kernel support
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Characteristics Data Technique Results Prognosis Reference gm renal
based on Fuhrman 1316 color, vector
classification shape, texture machines) nand are
and topology in adults,
features

10 known
99.1% accurate ging tests
4 grades of RCC Normal (3000 identification of m 6 to 12

(clear cell, samples) or RCC Creation of RCC tisue | .
papillary, (1?,168 samples) CNN, patch 97.5%.acc.urate i [17] " the third
chromophobe) tissue samples extraction identification of ssociated

based on Fuhrman

from 42 patients

RCC type

3]

classification from TCGA 98.4% accurate

Fuhrman grading
The most important parameter associated with the prognosis of the disease is grading. For this purpose, the nuclei
of the tumor cells are evaluated in ccRCC. Previously, a four-tiered Fuhrman classification was used based on
nuclear morphology and visualizing the nucleoli. The current classification, WHO/ISUP, also consists of four

grades. Sometimes, the use of two-step classifications is suggested to simplify the workflow.

It is also possible to determine high and low tumor grade by automatically estimating the size of the nuclei. Using
the spatial distribution of nucleus sizes, the authors created a heat map and determined the nucleus diameter
characteristic of each grade. They also showed that the average size of the nucleus in scans of high-grade ccRCC
is 6 um and in low-grade ccRCC is 9 um. The investigators used the automatic color recognition algorithm built into
the WS-Recognizer program and the support vector machine as the classifier. The program sampled red, blue and
green pixels for training of the classifier 12, Kruk et al. showed automatic grading in ccRCC according to Fuhrman
classification. The accuracy of the determination was 96.7%, and the sensitivity and specificity for each grade were
different, ranging from 87.3 to 99.3% 131, Other researchers created an automated image classification pipeline for
separation of ccRRC into two groups based on grades. The pipeline used machine learning and feature extraction
methods based on the pixel intensity of the image to analyze the nuclei and visualize the nucleoli. The pipeline
generated two sets of selected nucleolus image regions from images using two separate detectors. The pipeline
then quantified the pleomorphic patterns of nuclei by combining features extracted from multiple regions of the
image with the nucleus €.

Machine learning technologies can contribute to the prognosis of ccRCC and potentially help improve the clinical
management of this disease. An Al-based computer program can predict the outcome of renal cancer patients by
simultaneously analyzing various medical data (microscopic images, CT/MRI scans and genomic data). For this,
the authors created a comprehensive multimodal deep learning model (MM DLM) consisting of an individual 18-
layer residual neural network (ResNet) for each image model and genomic data. The neural network was first
trained on histological scans, then CT and MRI scans and genomic data were added to the training. A total of 113
patients were analyzed with an accuracy of 83.43% + 11.62% with a maximum of 100% at 12-fold cross-validation
(21 The investigators demonstrated that the image scoring used by the pipeline correlated (R = 0.59) with the
existing scoring system based on multigene analysis, a key prognostic indicator for ccRCC patients (7. Another
publication showed that a pathological signature based on machine learning can act as a new prognostic marker

for patients with ccRCC. The authors performed nuclear detection and segmentation in ccRCC using QuPath
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digital pathology software in three different patient cohorts. Morphological features of tumor cells, nuclei and
cytoplasm were determined. Least absolute shrinkage and selection was performed using the Glmnet package to
determine optimal digital pathology features and calculate coefficients for each feature in the model. The mean
follow-up time for the cohorts was 26.4 + 16.8, 54.9 + 27.8 and 43.2 + 30.6 months, respectively. The following
prognostic factors were selected for LASSO analysis: nucleus circularity, nucleus min caliper, nucleus hematoxylin
optical density mean, nucleus hematoxylin OD min and cell eosin OD std dev. These features were included in the
development of the multilayer perceptron system (MLPS). A Cox regression analysis showed that MLPS could be
used as an independent prognostic factor for the outcome of patients with ccRCC. An integrated homogram based
on an MLPS, a tumor staging system and a malignancy scoring system improved the current accuracy of predicting
survival in patients with ccRCC, with area under the curve values of 89.5%, 90.0%, 88.5% and 85.9% for predicting

disease-free survival at 1, 3, 5 and 10 years after diagnosis 7.

Prediction of renal progression can also be based on assessment of vascularization, size of necrotic areas and
other histoarchitectural features. Necrosis is associated with worse outcome. The density of vessels in a tumor
correlates with invasiveness and hematogenous metastasis. Immunohistochemical staining with antibodies against
the endothelium and digitalization of these specimens are often used to simplify vessel detection. In one study, an
algorithm was developed to evaluate the relationship between expressed genes and blood vessel morphology. Two
machine learning tools were developed: one to identify endothelial cells and the other to define the boundaries of
blood vessels and perivascular areas. To automate the annotation of endothelial cell nuclei and improve the
accuracy of the machine learning approach, the authors applied cell-type information from immunohistochemical
slides to hematoxylin-and-eosin-stained images of the exact same tissue section. Then, a vascular area mask was
created. Nine vascular features were found to predict survival in the patient cohort (n = 64, RR = 2.3). Two
generalized linear models based on 14 genes (14VF and 14GT) divided patients into good and poor survival
groups (RR 14VF = 2.4, RR 14GT = 3.33) [29,

Data from immunohistochemical studies with antibodies that detect tumor-infiltrating lymphocytes indicating
malignant potential were also used for predictive assessment. Stenzel PJ et al. investigated the expression of
antibodies against tumor-infiltrating CD3-positive T cells, CD8-positive cytotoxic T lymphocytes (CTLS), regulatory
T cells, B cells, plasma cells, macrophages, granulocytes, programmed cell death receptor-1 (PD-1) and its ligand
PD-L1 in a large number of patients with ccRCC (n = 756). Immunohistochemistry slides were digitized and
analyzed using the HALO platform. A cytonuclear module (v1.4el.6), which included a tissue classifier to
distinguish between tumor and nontumor tissue, was used to quantify positively stained cells and the total number
of cells in the analyzed area. Univariate survival analysis showed that an increase in the number of tumor-
infiltrating B cells, T cells and PD-1-positive cells was significantly associated with a good prognosis, and a high
level of intratumoral granulocytes, macrophages, cytotoxic T cells and PD-L1 was associated with a poor
prognosis. High infiltration with cytotoxic lymphocytes or B cells and high expression of PD-L1 in ccRCC cells were
qgualified as independent predictive biomarkers. Next, the authors investigated the prognosis of patients after

nivolumab therapy by examining the expression of immune cells and PD-1/PD-L1 [28],
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The application of Al to investigate a series of molecular markers in each sample has predictive value and can be
integrated with morphological features to improve risk stratification and personalized therapy. In one study, a semi-
automated method was developed to investigate 62 markers and their combinations in 150 primary ccRCCs using
multiplex immunofluorescence, NanoString GeoMx digital spatial profiling and Al image analysis. TMA images were
analyzed using Definiens®® Tissue Studio and histological scans were analyzed using Indica Labs Halo®® Al
software. As with Tissue Studio, tumor-stroma segmentation included only tumor regions and nuclear
segmentation was based on Heochst staining intensity. Co-expression of cancer stem cell and epithelial-to-
mesenchymal transition markers such as OCT4 and ZEB1 were found to indicate poor outcome. OCT4 and the

immune markers CD8, CD34 and CD163 significantly stratified patients in the intermediate phase of treatment 2,

The relationship between histological features of ccRCC and genetic and epigenetic data, which are also
successfully used as prognostic markers, has been extensively studied in the literature. The authors used machine
learning, including deep neural networks, to investigate the relationship between proteomics and histological
scans. In a first step, a proteomics-based diagnostic model was generated using a random forest (RF) classifier.
The sample consisted of 997 protein gene products. The model was able to differentiate between normal and
ccRCC samples with an overall accuracy of 0.98 (10-fold CV results) and high sensitivity and specificity (0.97 and
0.99, respectively). In the second step, the authors created a complex-architecture CNN that distinguished ccRCC
from normal kidney tissue with an accuracy of 0.95 in the test dataset, and high sensitivity and specificity (1 and
0.93, respectively). In the third step, both models were tested simultaneously on 24 samples (14 with ccRCC and
10 with normal tissue). Then, the models were trained to analyze the correlation between the proteomics data and

the genes encoding them, and between each dataset and the histology-based prediction 18],

Artificial intelligence can play an important role in the diagnosis of rare disease subtypes identified by genetic
alterations. TFE3 Xpl11.2 translocation renal cell carcinoma (TFE3-RCC) has a more aggressive growth pattern
than other RCC subtypes, but TFE3-RCC is very difficult to diagnose using standard light microscopy. An
automated computational pipeline was developed to extract features from the images. Fifty-two features were
identified that differentiated TFE3-RCC from ccRCC. Classification model tests on the external validation set
showed high accuracy with areas under the ROC curve from 0.842 to 0.894. Furthermore, this result demonstrated
the ability to capture minor morphological differences between TFE3-RCC and ccRCC and may significantly

improve the diagnosis of rare ccRCC variants 49 (Table 2).

Table 2. Al models for analysis of whole-slide images of clear cell renal cell carcinoma.

Characteristics Data Technique Results Prognosis Reference
4 grades of RCC 160 RGB Segmentation, 90.4% accuracy - [15]
(clear cell, images of H&E- classification for Fuhrman
papillary, stained renal (radial-basis grading
chromophobe) carcinoma kernel support
based on tissue samples; vector
Fuhrman 1316 color, machines)
classification shape, texture
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Characteristics

High-grade (1, 2
Fuhrman grade)
and low-grade (3,
4 Fuhrman grade)
renal cell
carcinoma

High-grade (1, 2
Fuhrman grade)
and low-grade (3,
4 Fuhrman grade)
renal cell
carcinoma

High-grade (1, 2
Fuhrman grade)
and low-grade (3,
4 Fuhrman grade)
of renal cell
carcinoma

High-grade (1, 2

Fuhrman grade)

and low-grade (3,
4 Fuhrman grade)

Data
and topology
features

395 WSI and
clinical data of
ccRCC cases
from TCGA,
1895 ROI

39 WS of
ccRCC cases
from the
archives at the
University of
Pittsburgh
Medical Centre

94 scans with
ccRCC cases
from Military
Institute of
Medicine,
Warsaw,
Poland; 3446
microscopic
images of
nuclei,
extracted from
these slides

Histopathologic

tissue slides of

59 patients with
ccRCC who

Technique

Segmentation
(thresholding +
marker-
controlled
watershed-
based), Creation
of the automated
2-tiered grading
system and
developing
machine
learning, LASSO
regression

Automatic stain
recognition
algorithm
implemented in
WS-Recognizer,
classification
(SVM)

Segmentation
(wavelet
transformation +
watershed
implementation),
classification
(SVM and RF)

An automated
image
classification
pipeline

Results

The LASSO
model consisted
of 26 features (18
unique) and
predicted grade
with 84.6%
sensitivity and
81.3% specificity
in the test set

The maximum
nuclear size
distinguished

high-grade and

low-grade tumors
with a false-
positive rate of

0.2 and a true-

positive rate of
1.0. The area

under the curve
was 0.97,
suggesting
adequate

sensitivity and
specificity

Average accuracy
of classification
was 96.7%,
sensitivity and
specificity for
each grade were
different, ranging
from 87.3 to
99.3%

The final
classification was
performed by a
support vector

Prognosis

In the extended
test set,
predicted grade
was
significantly
associated with
overall survival
after adjusting
for age and
gender (hazard
ratio 2.05; 95%
Cl 1.21-3.47)

Image score
used by the
pipeline, termed
fraction value,

Reference

(11
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Characteristics
renal cell
carcinoma

Connecting
histopathology
imaging and
proteomics in
clear cell renal
cell cancer

Deep learning
model for

Data
underwent
surgery at
Singapore

General
Hospital were
assembled
retrospectively

The proteomics
data with 216
samples were

downloaded
from the
CPTAC Data
Portal. This
dataset
included
complete
information for
9964 proteins
measured in
194 samples

(84 normal, 110

tumor samples).
The histology

dataset was
obtained from
The Cancer
Imaging Archive
(TCIA) and
included 783
slide images

The Cancer
Genome Atlas

Technique

CNN, fully
connected
neural network,
classification

A new,
comprehensive,

Results
machine and
achieved F-

scores ranging
from 0.73 t0 0.83

The proteomics-
based
classification
model was
capable of
distinguishing
between ccRCC
and normal
samples with an
overall accuracy
of 0.98 (10-fold
CV results), as
well as with high
sensitivities and
specificities (0.97
and 0.99
respectively).
Histology-based
classification
model was
capable of
distinguishing
between ccRCC
and normal
samples with an
accuracy of 0.95
on the test
dataset, as well
as with high
sensitivities and
specificities (1
and 0.93
respectively)

The model
trained on the

Prognosis Reference
correlated (R =
0.59) with an
existing
multigene-
assay-based
scoring system
that has
previously been
demonstrated
to be a strong
indicator of
prognosis in
patients with
ccRCC

The correlations
between protein
expression and
image-based
predictions
were also
concordant with
the correlations
between gene
expression and [16]
image-based
predictions, in
particular for
the strongest
positive and
negative
correlations
observed in
each correlation
setting

The model [27]
showed the
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Characteristics
prognosis
prediction in
ccRCC

Machine learning-
based pathomics
signature as a
prognostic marker
for patients with
ccRCC

Morphological
differences
between TFE3-
RCC and ccRCC

Data
cohort including
230 patients;
the Mainz
cohort including
18 patients with
ccRCC

Clinical
Proteomic
Tumor Analysis
Consortium
(CPTAC) (59
patients);
Shanghai
General
Hospital (146
patients); and
The Cancer
Genome Atlas
(TCGA) (278
patients)

Whole-slide
images of 74
TFE3-RCC
cases and 74
clear cell RCC
cases from
Indiana

Technique
multimodal deep
learning model
was developed

Segmentation,
detection
(watershed cell
detection), an
analysis
pipeline, LASSO
analysis

Segmentation
(hierarchical
multilevel
thresholding),
nucleus-level
feature
extraction and

Results
tiles achieved a
mean C-index of
0.7169 £ 0.0296
with a maximum
of 0.7638 and a
mean C-index of
0.7424 + 0.0339
with a maximum

of 0.7821,

respectively.
When combining
conventional
histopathological
input with CT and
MRI images, the
mean C-index
increased to
0.7791 £ 0.0278
with a maximum
of 0.8123

The mean follow-
up duration of
26.4 +16.8, 54.9
+27.8and 43.2 +
30.6 months,
respectively

Tests of the
classification
models on an
external
validation set
revealed high
accuracy with

Prognosis Reference
prognosis of

ccRCC patients

with a mean C-

index of 0.7791
and a mean
accuracy of

83.43%

Integration
nomogram
based on
MLPS, tumor
stage system
and tumor
grade system
improved the
current survival
prediction

accuracy for [37]
ccRCC
patients, with
area under
curve values of
89.5%, 90.0%,
88.5% and
85.9% for 1-, 3-,
5- and 10-year
disease-free
survival
prediction
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Characteristics

Vascular
phenotypes in
renal cancer and
predicting

Prognostic and
predictive value of
tumor-infiltrating
leukocytes and
PD1, PDL1 in
clear cell renal
cell carcinoma

Data
University,
University of
Michigan and
TCGA

8 cases of
ccRCC (H&E-
stained digital

slides with

CD31 and

CD45
antibodies),
discovery
cohort of 64
cases within the
Cancer
Genome Atlas
(TCGA)

Tissue samples
from 756
patients with
primary ccRCC,
treated at the
Department of
Urology at the
University of
Heidelberg

Technique
image-level
feature
extraction,
classification
(logistic
regression, SVM
with linear
kernel, SVM with
Gaussian kernel,
and random
forest)

Annotation,
classification
(SVM, random
forest, GLMNET)

Image Analysis
with HALO

Results
AUC ranging from
0.842 t0 0.894

Pixel-wise
classification
ultimately
resulted in a
binary (black and
white) image of
tumor vasculature
that was
assessed by
referencing
annotated images
in a testing set
(AUC =0.79)

Univariate
survival analysis
revealed that
increased tumor-
infiltrating B-cells,
T-cells and PD-1-
positive cells
were significantly
associated with
favorable cancer-
specific survival
and high levels of
intratumoral
granulocytes,
macrophages,
cytotoxic T-cells
and PD-L1 were
significantly
associated with
poor cancer-
specific survival

Prognosis

Two prediction
models were
built for 14
genes. Both
models
performed
similarly to a
previously
reported, non-
overlapping, 34
gene panel
(Clear Code
34)33 (C-Index:
Stage + CC34 =
0.75)

In patients
responding to
nivolumab
therapy,
significantly
higher densities
of CD3-positive
T-cells, PD-1-
positive tumor-
specific T cells
and cytotoxic T
lymphocytes
were observed
in tumor centers
and invasive
margins
compared to
nonresponders
and mixed
responders (p <
0.01). Density
of PD-L1-
positive cells in

Reference
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~ Characteristics Data Technique Results Prognosis Reference
the invasive
margin also
showed a counts fOI’
tendency to be ate of 80—
higher in )
responders, pillae and
though not 'mors are
statistically di
significant (p = yrotruding
0.2) notype of
[3]
We found that
coexpression of
cancer.ster.n cell Analysis of a renal
and epithelial-to- -
showed that a mor in its
. mesenchymal L
Tissue samples transition markers combination of i ¢
from 150 PD1+ T cells peline for
atients who such as OCT4 and ZEB1 ali
Tumor P . Definiens Tissue and ZEB1 were : Fline was
. . were diagnosed . . S predicted 5-
microenvironment . Studio, Indica indicative of poor . [39] RCC from
with ccRCC year survival,
of clear cell renal Labs Halo Al outcome. OCT4 .
) from the i whereas these thological
cell carcinoma atholo software and the immune wo features did
grchivegir{ markers CD, not reach ared with
Edinburgh CD34and CD163 o icical tal results
significantly sianificance
stratified patients 9 ate-stage
. . alone
at intermediate 'd cellular
phase of
treatment stage and
Sullype were U.0s alu u.bo, respecuvely. I1ie predicled rsk Inuex acnieveu ai AUC 01 U.7o. 1nese technologies

not only provide new insights into the topological organization of cancers, but can also be integrated with genomic

data in future studies to develop new integrative biomarkers 141,

The integration of morphological and genetic data is another approach to predictive evaluation. In one publication,
the authors aimed to comprehensively characterize the immune microenvironment of pPRCC based on genetic data
analysis, using computational biology to analyze profile data. Based on a multiomics bioinformatics analysis, the
authors found that pRCC had the characteristics of a “hot” tumor. However, CD8+ T cells in the tumor tissue did not
limit its progression. Therefore, patients with pRCC may derive greater clinical benefit from treatment that can
reverse CD8+ T cell deficiency. In addition, the expression of CCL5 and FASLG may be associated with the
formation of an immunosuppressive microenvironment in the pRCC. The immune microenvironment presented in
this study provides new insights for further experimental and clinical research into individualized immunotherapy for
patients with pRCC 1, Le Li et al. performed a bioinformatic screening to investigate and identify potential
biomarkers of DNA damage and oxidative stress in pRCC. RNA sequencing data were loaded from the TCGA
database and differentially expressed genes (DEGSs) were identified using a variety of clustering and classification
algorithms. The results of this analysis suggested that the BDKRB1, NMUR2, PMCH and SAAL1 genes could be

potential predictive biomarkers and novel therapeutic targets for pPRCC 42 (Table 3).

Table 3. Al models for analysis of whole-slide images of papillary cell renal cell carcinoma.
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Characteristics Data Technique Results Prognosis Reference

Patients with pRCC
type 2 have worse
prognosis than those

Nucleus with pRCC type 1
segmentation and Recall was (log-rank test p =
Topological features 190 WSI N . (4159 - 9 p=
. patch extraction, 0.00946).
in renal from . 168)/4082 = . .
creation of stacked Patient stratification
tumor TCGA, 97.77%, and . . [14]
. : sparse autoencoder, - using the predicted
microenvironment 856 . precision was e .
. . . LASSO-regularized risk index provided
associated with ROIs in . (4159 - .
atient survival total Cox regression 168)/4159 = the best prognosis
P model (LASSO-Cox - prediction AUCs for
95.96% .
model) 5-year survival for
stage and subtype of
0.63 and 0.66,
respectively

| 6. Chromophobe RCC

Chromophobe renal cell carcinoma (chRCC) derives from the cortical collecting ducts and has an incidence of 3—

5%. chRCC has a much better prognosis than clear cell and papillary RCC, with a 5-year survival rate of over 90%.

The nuclei often have a characteristic irregular wrinkled (raisin-like) appearance and binucleation is common. The
morphology of the cells is highly variable and can be confusing to the inexperienced observer and lead to negative

conclusions.

Although grading systems for chRCC have been proposed, none are currently widely accepted and incorporated
into clinical guidelines. The WHO/ISUP classification also has not been validated for chRCC. There are currently
suggestions for two-, three- and four-stage grading systems, with the most prominent example being the three-
stage Paner classification. However, there is no additional predictive value after considering TNM stage and

sarcomatoid differentiation 31,

According to the WHO classification, chRCC is divided into two subtypes: classical and eosinophilic. Large cells
with reticular cytoplasm and prominent cell membranes (pale cells) are characteristic of classic chRCC. The
authors studied three cohorts of patients: 42 from the Department of Pathology and Molecular Pathology at the
University Hospital Zurich, 199 from various institutes and medical clinics in Japan and 66 from the TCGA. There
was no difference in survival between the eosinophilic and classic types in any of the patient cohorts. To determine
genotype/phenotype correlation, they performed genome-wide CNV analysis using the Affymetrix OncoScan®®
CNV Assay (Affymetrix/Thermo Fisher Scientific, Waltham, MA, USA) in 33 chRCCs. In the combined Swiss and
TCGA cohorts, losses of chromosomes 1, 2, 6, 10, 13 and 17 were significantly more frequent in the classic variant
(p < 0.05 each), suggesting that classic chRCC is characterized by higher chromosomal instability. This molecular

difference allows the identification of two chRCC variants 431,
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A challenge in the diagnosis of renal cell carcinoma (RCC) is the differentiation between chRCC and benign renal
oncocytoma. These tumor types are histologically and morphologically similar but require different clinical
management. There are a large number of articles in the literature where machine learning has been used for the
differentiation of oncocytoma from chRCC via computed tomography and other radiological methods 2414511461 |
one publication, Kevin Brennan et al. analyzed DNA methylation in fresh frozen oncocytoma and chRCC samples
and used machine learning to identify differentially methylated cytosine phosphate guanine (CPG) site signatures
that reliably distinguished oncocytoma from chRCC. Surprisingly, oncocytoma was characterized by more
abnormal methylation than chRCC. A total of 79 CpGs were identified with large differences in methylation between
oncocytoma and chRCC. The diagnostic model distinguished oncocytoma from chRCC at 10-fold cross-validation
(AUC = 0.96 (95% CI, 0.88 to 1.00)). The CPG profile also allowed for differentiation between oncocytoma and
other subtypes of RCC, as well as normal tissue, making it a potential diagnostic biomarker for oncocytoma &4
(Table 4).

Table 4. Al models for analysis of whole-slide images of chromophobe cell renal cell carcinoma.

Characteristics Data Technique Results Prognosis Reference
42 Swiss
chRCCs, 119 - Classic chRCC chRCCs without
Statistical
Types of Japanese analysis (Cox showed any CN loss of
chromophobe chRCCs and regression significantly more chromosome 1, 2,
renal cell whole-slide analysis chromosome 2 (p 6, 10, 13, 17,21
carcinoma and digital images Kaplan—Méier < 0.05), and groups revealed [43]
their of 66 chRCCs analysis chromosome 6 100% survival in
chromosomal from the Fisher's ex,act losses (p < 0.01) the combined
losses Cancer test) than eosinophilic Swiss/TCGA-KICH
Genome Atlas RCC cohorts
(TCGA)
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