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Renal cancer is a heterogeneous group of tumors with different histology, molecular characteristics, clinical

outcomes and responses to treatment. The most common types are clear cell (ccRCC), papillary (pRCC) and

chromophobe RCC (chRCC).

digital pathology  deep learning  histological biomarkers  artificial intelligence

1. Introduction

Renal cell carcinoma (RCC), commonly known as renal cancer, is a malignant tumor from the epithelium lining the

renal tubules. RCC accounts for a significant percentage of adult cancers (nearly 3.8%) and a considerable

number of new cases and deaths are reported due to RCC each year. A recent estimate from the American Cancer

Society indicates that there will be 81,800 new cases and 14,890 deaths from RCC in 2023 .

Renal cancer is a heterogeneous group of tumors with different histology, molecular characteristics, clinical

outcomes and responses to treatment. The most common types are clear cell (ccRCC), papillary (pRCC) and

chromophobe RCC (chRCC) .

Tumor classification is a dynamic process that brings together many new areas of information based on advanced

molecular research. Attempts to classify RCC are traditionally based on subtyping according to predominant

cytoplasmic or architectural features, tumor site, background renal disease, similarity of tumors with embryological

structures such as metanephros or a specific hereditary background. Improved classification methods are essential

not only for the precise diagnosis of RCC but also for effective disease management and treatment planning .

Morphological verification of the primary lesion and any metastases is essential before treatment and helps to

identify the histological variant of the tumor. Additionally, post-surgical staging is important for evaluating the

probability of recurrence and predicting prognosis. About two-thirds of patients diagnosed with renal cancer have

the disease localized only within the kidney. For this group, the 5-year relative survival rate stands at 93%. If the

renal cancer has metastasized to surrounding tissues or organs and/or the regional lymph nodes, the 5-year

relative survival rate drops to 72% . The TNM classification system is widely used to stage renal cancer,

considering factors such as tumor size, invasiveness (germination into the kidney capsule, vessels, pyelocaliceal

system, Gerota’s fascia, etc.) and presence of metastases in lymph nodes and distant organs . Stage I and II
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cancers are confined to the kidney, and a partial nephrectomy is typically performed (for tumors up to 7 cm). Stage

III cancers either have grown into nearby large veins or have spread to adjacent lymph nodes. In these cases,

radical nephrectomy is the recommended option. Stage IV renal cancer indicates that the cancer has grown

outside of the kidney or has spread to other parts of the body such as distant lymph nodes or other organs. The

treatment approach for stage IV renal cancer depends on extent of the cancer and the individual’s overall health. In

some cases, surgery may still be a part of treatment, alongside options like immuno- or radiotherapy . It is

noteworthy that despite advancements in other diagnostic modalities, morphological data obtained through

pathological examination continue to hold clinical significance in the management of cancer patients. Certain

morphological characteristics, such as sarcomatoid differentiation, present valuable insights into the

aggressiveness of the tumor and provide targets for personalized treatment (e.g., immunotherapy).

Pathological and histological examination using light microscopy plays a crucial role in determining the histological

type and degree of malignancy in kidney tumors. Traditional grading systems, like the Fuhrman classification, have

limitations in accurately grading tumors. This classification was used to assess malignancy based on an

assessment of the appearance and structure of cell nuclei, and not of the cancer cell as a whole. According to this

system, renal cancer is distinguished into four grades based on the visibility of the nucleoli under varying

microscope magnifications . The current widely used classification is the WHO Classification of

Tumors/International Society of Urological Pathology (WHO/ISUP). Tumor malignancy from grades 1 to 3 is defined

by the prominence of nucleoli in the cancer cell nuclei, while grade 4 is characterized by nuclear pleomorphism and

the presence of giant cells or either rhabdoid or sarcomatoid features. Validation studies for chRCC failed to

demonstrate a correlation between score and outcome for both the Fuhrman classification and the WHO/ISUP

classification, and it was recommended not to evaluate these tumors . Interobserver variability and the time-

consuming nature of manually assessing all nuclei on histological slides pose challenges for pathologists. To

overcome these limitations, automated approaches and decision support systems can help reveal subtle

morphological differences between clinical groups and expedite the diagnostic process.

2. Machine Learning in the Diagnostics of Kidney Tumors

This section presents a perspective of a data analyst on the development of solutions for AI-assisted diagnostics

for RCC.

2.1. Neural Network Architecture for Histological Image Analysis

Types of machine learning can be categorized as supervised or unsupervised. The first group of methods is used

for the extraction of features from input data to make predictions and solve classification and regression problems.

The classification task is the matching of input data with output labels, that is, the prediction of discrete data. The

regression task is used to match input data with continuous output data, that is, to predict survival. Unsupervised

learning utilizes the internal structure of the data without specifying labels, and is often used for clusterization .
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Artificial neural networks are the best-known artificial intelligence algorithms. These structures imitate the neural

topology of the human brain. They have several layers of artificial neurons (or nodes), and the neurons in each

layer can implement different transfer functions to provide greater flexibility in solving different problems. A neural

network with a significant number of layers is called a deep learning network. Usually, the available cases are

divided into training and test sets or training, validation and test sets .

The ordinary steps required for computer analysis of RCC scans and subsequent training of the neural network

include selection of histological scans; tissue area selection, segmentation and annotation; selection of various

morphological features of segmented areas; application of classifiers; and prediction. Each stage will be discussed

further in detail (Figure 1).

Figure 1. Typical workflow of AI-assisted histological tissue image analysis includes the acquisition of whole-slide

images, selection of regions of interest and their processing, manual annotation by an expert and classification

using a neural network that generates clinically oriented results.

2.2. Processing of Histological Images

Whole-slide images (WSIs), or scans, of RCC histology slides are typically used for neural network training. WSI—

also known as virtual microscopy—is a technique that involves scanning the entire slide and creating a single high-

resolution digital file. Most authors use scans that are freely available from biobanks and databases such as The

Cancer Genome Atlas (TCGA) . Other researchers digitize slides from the histological archives of universities or

medical institutions.

On scanned histological slides, it is necessary to select smaller areas for targeted work—regions of interest (ROIs).

The selection of ROIs for increased accuracy is carried out independently by 2–3 highly qualified pathologists for
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greater objectivity. ROIs are usually square areas selected in images with a side length of 1000 to 2000 pixels.

Microscopic images of cells are then extracted from the ROI and annotated into different classes by the

pathologists .

The structures of interest to the observer are then segmented and annotated in the ROI. Segmentation tasks can

be divided into traditional feature extraction or manual methods, as well as using a CNN-based deep learning

approach. There are several methods to segment nuclei: linear filters, thresholding, clustering and region-growing

methods. Segmentation of nuclei using a “mask” can be a two-step process: first, adaptive thresholding in each

hue, saturation and value (HSV) color channel to identify nuclei regions from the background, and then marker-

controlled watershed-based nuclei segmentation to separate touching and overlapping nuclei . Wavelet

transformation can also be used as a preparatory step. It reduces image noise and improves cell edges for more

accurate nucleus detection . Before the initial segmentation, preprocessing can be performed, including color

deconvolution and image reconstruction. After segmentation, the image can be divided into patches containing

nuclei of cells for neural network training .

2.3. Selection of Cell and Tissue Morphological Features

The segmented features of morphological structures can be characterized using quantitative indicators, or

descriptors. In order to obtain the maximum number of descriptors, different methods are used to extract them from

images. When a neural network is applied to assess tumor grade, the following morphological features of nuclei

can be distinguished: size, shape, texture and color. Colors can be analyzed using different channels: red, green

and blue (RGB); HSV; lab color space; or hematoxylin channel in color deconvolution. Quantitative characteristics

related to colors have a mean, standard deviation, median, skewness and kurtosis . The geometry of the

nuclei is also evaluated, these indicators include area, length of the major axis, length of the minor axis, perimeter,

convex area and diameter . The texture can be described using the following parameters: energy, Haralick

correlation, sum of variances, inverse difference moment, entropy, inertia, correlation information indicators, sum

average, sum entropy, sum variance, cluster shade, cluster prominence, difference variance, contrast and

difference entropy . Texture features provide information about the spatial distribution of grey levels

associated with tissue structure and markers in the cytoplasm and nuclei. The grey-level co-occurrence matrix

encodes the properties of this distribution. The grey-level run-length matrix captures texture features from

contiguous, directional sequences of similar grey-level intensities  (Figure 2).
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Figure 2. Descriptors of cell nuclei can be divided into four groups: size, shape, texture and color.

In addition, the data obtained are summarized and processed with the morphological features. Initially, the number

of different descriptors can range from dozens to even thousands. Then, a small set (5–10) of optimal

morphological features is selected to be used as input data for classifiers. The following methods can be applied

for selection: principal component analysis, correlation among features, correlation between the features and the

classes, feature ranking by applying the linear or nonlinear support vector machine (SVM), the mean and variance

of the features belonging to different classes combined into a common quality measure, genetic algorithm, binary

particle swarm optimization, random forest, etc. Each method has a specific set of most important functions. In

order to diversify the features of the image, several different algorithms are usually used, forming an ensemble .

2.4. Training Models for Histological Image Analysis

To train a model to assign classes to segmented nuclei, the following classifiers are most commonly applied: SVM

and random forest. The random forest method is used to evaluate the importance of features in class recognition.

The importance of a feature is measured by rearranging its values and evaluating the increase in classification

error compared to the original value of the feature . The main idea of the support vector machine is the

translation of the original vectors into a higher dimensional space and the search for a separating hyperplane with

the largest gap in this space. Two parallel hyperplanes are constructed on either side of the class-separating

hyperplane. The models are then trained, tested and their performance is evaluated on a sample using 10-fold

cross-validation (10-fold CV). Model performance is assessed in terms of diagnostic accuracy, sensitivity,

specificity, positive predictive value and negative predictive value .

Convolutional neural networks (CNNs) are applied to process histological images, aiming at efficient pattern

recognition and related to deep learning technologies. For more accurate visualization, a complex architectural
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neural network is sometimes used, combining CNN and fully connected and output layer neural networks .

When the CNN is applied to a new image, it first convolves the image using a variety of different types of filters.

During convolution, the filter systematically scans the image to determine if it has a specific pattern, such as edges

or curves. For each filter, a feature map is created, which is the result of the dot product between the filter and the

image. The next stage is pooling. It reduces nearby clusters of pixels to a single pixel representing the maximum

value of the nearby pixels. Pooling is necessary to compress a large image to reduce processing power. Pooling

also allows the model to generate new examples by averaging out minute details. After the final pooling step, the

multidimensional image is converted to a vector image. With each training step, the model adjusts its parameters to

minimize the loss on the training data. Loss is measured as the categorical entropy cross-error between the

pathology and the network prediction. The model then iterates over the entire training dataset multiple times to

optimize its weight. These are called “training epochs”. If the model does not show a significant reduction in error

after several epochs, it then calculates a set of predictions based on the validation set of histological data used

during training. Model performance after validation is used to further tune model parameters and improve

performance metrics. Training is stopped when validation performance no longer improves .

2.5. Automated Detection of Morphological Features

CNNs can be used to automate the extraction of tumor tissue ROIs from each WSI. These ROIs are then reviewed

by a pathologist to remove erroneous fragments. ROIs must include both cancerous tissue and different types of

surrounding tissues (stromal or parenchymal parts of the organ) when training a neural network to discriminate

normal tissue from tumor tissue. The datasets usually consist of ROI images with consistent resolution and

magnification, encompassing zones of immune cell infiltration, necrosis, normal and dystrophic renal parenchyma,

etc. . In the development of neural networks for the evaluation of the topographic characteristics of the tumors, it

is necessary to train the neural network to recognize each type of tissue. It is difficult to develop a set of algorithms

for such classification because there are a large number of cell types in the tumor microenvironment, each

requiring a different set of features to be recognized. Instead, researchers are using an unsupervised learning

approach to classify cells based on their morphology without marking their types via an autoencoder. Stacked

sparse autoencoder (SSAE) is a neural network consisting of multiple layers of sparse autoencoders (SAEs),

where the output of each layer is the input of each successive layer .

Vascularization, the presence of necrosis and tumor growth into surrounding tissues, such as the renal capsule or

Gerota’s fascia, can affect the progression and prognosis of the tumor. The newest machine learning tools provide

new ways to quantify the cellular composition and spatial organization. The tumor microenvironment, including

immune cells, cancer-associated fibroblasts, endothelial cells, surrounding normal cells and others, plays a critical

role in influencing tumor behavior and progression. However, a heterogeneous tumor microenvironment may

promote resistance to systemic therapies . For more accurate detection of tumor vessels, it is possible to train

the neural network on scans of immunohistochemical specimens with antibodies to vascular endothelium (CD31,

CD34) . Various types of immune cells are also detected by specific antibodies: macrophages—CD68; tumor-

associated macrophages—CD163; T-lymphocytes—CD3; cytotoxic T-lymphocytes—CD8; and B lymphocytes—
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CD20. Other markers can also be evaluated, such as the immunosuppression marker PD-L1, the proliferation

marker Ki-67, the epithelial marker PanCK and the mesenchymal marker vimentin .

2.6. Directions for Practical Application of Histological AI Models

Once trained and validated, neural networks can predict survival using clinical and epidemiological data like

gender, age and TNM stage. LASSO regression (least absolute shrinkage and selection operator regression) is

applied to select the most informative features. LASSO regression is an algorithm that performs explanatory

variable selection (feature selection) and regularization (to reduce variance). Predicting overall survival, risk of

recurrence or other outcomes in cancer patients can be helpful in developing individualized treatment plans and

ensuring patient follow-up .

Another interesting task is the use of pretrained neural networks to diagnose different tumors. The ability to project

previously learned knowledge to new situations is an important skill for making clinical decision. As the biological

behavior and features of malignancy are common to different carcinomas, pathologists can often use a fairly

general knowledge of common pathologies to make an approximate assessment of the clinical behavior of rare,

atypical lesions. Recent achievements in deep learning have enabled convolutional neural networks to perform

very complex image-based classification tasks. However, diagnostic neural networks are rarely used outside their

intended learning context. Therefore, researchers propose to transfer deep learning functions to histomorphological

analysis by referring to neural networks pretrained on different types of cancer as generalizable, scalable and

shared digital pathology tools for tissue annotation, classification, quality assurance and profiling .

A very promising area is the analysis of gene defects in RCC. The protein products of damaged genes define

molecular features of diagnostic value and accurately reflect the key biological mechanisms underlying cancer. To

date, the exact prognostic relationship between the proteomics and histological features of the tumor is not reliably

known and is an important subject for study. Histological scans and gene defect data are selected from gene banks

such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC) or The Cancer Genome Atlas (TCGA). AI

technologies can help to introduce microRNAs as biomarkers for the detection and prognosis of cancers due to

their inherent stability and resilience, especially in renal cell carcinoma . In addition, AI, in particular the random

forest method, is used to make hypotheses about the impact of different types of genetic damage on prognosis and

survival .

An important aspect is accurate preoperative diagnosis using noninvasive research methods such as radiomics.

Some investigators showed that the analysis of radiological signs in venous-phase computed tomography followed

by machine learning can very accurately differentiate subtypes of renal tumors . There are publications in

which the histopathological characteristics of the tumor (metastatic and nonmetastatic RCC) were analyzed using

machine learning in conjunction with clinical data like MRI and CT scans . Other researchers have investigated

the association between WHO/ISUP tumor grade and radiological data from 406 patients using SVM in

combination with three feature selection algorithms such as Least Absolute Compression and Selection Operator

(LASSO), Recursive Feature Elimination (RFE) and Relief .
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3. Differential Diagnosis of RCC

For reliable diagnosis and follow-up of patients with different types of RCC, it is necessary to accurately determine

the histological variant of the tumor. The challenge lies in distinguishing between the main types of renal cancer.

This problem can also be solved with the help of digital pathology. Introducing AI into routine histopathology will

allow additional analysis methods to be used for the determination of the histological type of cancer before the

pathologist makes a confident diagnosis, significantly speeding up the diagnostic process (Figure 3).

Figure 3. Differential diagnosis of a renal cancer histological types (clear cell, papillary and chromophobe renal cell

carcinomas). This problem involves differentiating between these three types and other benign and malignant

tumors of kidney. Modern guidelines are based on a combination of genetical and morphological criteria.

In addition to accurate identification of the histological type of cancer, another important problem is differentiating

between malignant and benign tumors. This problem is significant for oncocytoma and chRCC and for metanephric

adenoma and pRCC. In one of the publications, the authors analyzed 48 histological scans (12 for each

histological type of tumor—clear cell, papillary, chromophobe RCC and oncocytoma). The scans were converted to

four-level greyscale images and then segmentation was performed. A variety of features were extracted from the

RCC images and used for the correct classification of histological subtypes. Classification was performed with over

90% accuracy using a simple multiclass Bayesian classifier assuming multivariate Gaussian distributions . In a

similar study, the authors rejected segmentation and used the Harris angle method to localize key points across 48

scans of four types of renal tumors; however, the Bayesian classifier achieved an accuracy of 83% . Mengdan

Zhu et al. developed a deep neural network model that can accurately classify digitized scans of histological

specimens after surgical resection and biopsy into five groups: ccRCC, pRCC, chRCC, renal oncocytoma and

normal tissue. The mean area under the curve (AUC) of the classifier on histological scans after resection, biopsy

scans from Dartmouth-Hitchcock Medical Center and WSI scans from TCGA were 0.98 (95% confidence interval
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(CI): 0.97–1.00), 0.98 (95% CI: 0.96–1.00) and 0.97 (95% CI: 0.96–0.98), respectively . Training the neural

network to recognize benign renal lesions is also important. The authors collected a set of histological scans with

the following types of renal tumors: ccRCC, pRCC, chRCC, clear cell papillary renal cell carcinoma (ccpRCC),

oncocytoma and metanephric adenoma. A classifier was then built using Google AutoML Vision, a commercial

application programming interface for developing AI-based image classifiers. After 1 h of training, the classifier had

an average accuracy of 76% (the area under the precision–recall curve—AuPRC). The classifier was then trained

for 8 h and the average accuracy (auPRC) of the final model was 93%. The final version of the tumor classifier

correctly identified 47/55 (85%) cases (ccRCC 11/13, pRCC 14/15, chRCC 10/11, ccpRCC 2/4, oncocytoma 8/9

and metanephric adenoma 2/3). All tumors with a ratio greater than 0.77 were correctly classified . In another

publication, the authors created a framework consisting of three convolutional neural networks. Scans with RCC

were divided into three different size patches (small size = 250 × 250, medium size = 350 × 350 and large size =

450 × 450), and each neural network processed a section of a certain size. Four tissue types were identified from

the histological scans: fat, kidney parenchyma, ccRCC and pRCC. The framework successfully classified four

classes and demonstrated superior performance compared to established modern methods (pixel accuracy: 0.89

via ResNet18; proposed: 0.92) .

Differential expression and localization of immunohistochemical markers in different renal cancer subtypes may be

relevant to tumor progression and response to immuno- or other targeted therapies. The expression of some

antibodies can predict disease outcome and indicate malignancy (PD-L1, Ki-67). Other antibodies can be used as

markers of vascularization (CD31) and tissue infiltration by various types of immune cells (CD3, CD8, CD20,

CD68), which also gives them prognostic value. In one study, the authors examined the microenvironment in

different types of renal cancer and also compared tissue samples with metastases or recurrences (n = 15). A total

of 83 kidney tumors were analyzed: both types of pRCC (n = 20) and (n = 49), collecting duct carcinoma (CDC; n =

14) and high-grade urothelial carcinoma (HGUC; n = 5). Machine learning was used to analyze 10 different

markers on scans of immunohistochemical specimens from different tumors, including markers of mesenchymal

tissue, immune infiltration and endothelium and cell proliferation. The HALO random forest classifier was trained

using the HALO Area quantification v1.0 algorithm to distinguish membranous and/or cytoplasmic expression of

CD68, CD163, CD3, CD8, CD20 and vimentin. For CD31, Ki67 and PDL1, the object colocalization v1.2 algorithm

was used. This algorithm detected positively stained cells or objects based on their size and shape and determined

the total number of positively stained objects per 1 mm  area. The Ki-67 and vimentin scoring algorithms were

trained on the whole tissue. Both tumor and nontumor areas were included in the training. The area percentage of

a positive marker was calculated by dividing the area of positive staining by the total tissue area and multiplying by

100. After statistical analysis, immune markers showed different levels of expression in different histological cancer

types: the number of CD3+ T cells and CD20+ B cells were statistically significantly higher in CDC. CD68+

macrophages predominated in type 1 pRCC. PD-L1 was significantly increased in metastatic samples. Ki-67

expression was lower in type 1 pRCC than in type 2 pRCC (IRR = 0.47, 95% CI = 0.21–0.92, p = 0.017). This study

provided new insight into the nature of rare renal cancers, which are often understudied .

To improve diagnostics, some researchers used neural networks that have been pretrained to diagnose different

tumors. For instance, Kevin Faust et al. applied a CNN previously trained to recognize the histomorphology of brain
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tumors on 550 digital images of two types of renal cell carcinoma (396 ccRCC, 154 pRCC). In total, 512 different

features were extracted to perform clustering of the image set and to analyze the clinical and biological significance

generated between patient subgroups. Notably, CNNs pretrained on large histological datasets can extend learning

to new pathologies, eliminating clinically significant differences in tissue structure within and between patients

without further optimization .

The trained histological models can be further developed and used to assess prognosis. This makes them not only

diagnostic but also predictive. In the study, the authors trained a CNN on histological scans from TCGA to

recognize tumor tissue from normal tissue and then to determine the histological type of tumor (clear cell, papillary

and chromophobe RCC) with an accuracy of 87.69%. Using a CNN model that differentiates RCC from normal

tissue, the authors identified tumor locations with high probability of risk and generated a probability heat map.

Based on the tumor areas, several characteristics of the tumor shape and nuclei, such as area and perimeter, were

extracted from slide images of each RCC. The risk index for every patient was calculated using a regularized Cox–

LASSO model for each feature and validated using a two-stage cross-validation procedure. Thirteen cancer cell

morphology characteristics and six nuclear morphology characteristics were found to be significantly associated

with patient survival (p-value < 0.05) .

Neural networks can be multitask-trained; for instance, they can be trained to identify both tumor and normal

tissue, determine the histological type of a tumor and its grade and evaluate the prognosis of the disease.

Champion et al. classified histological scans of different types of RCC into the four Fuhrman grades based on the

color and texture of nuclei. Nuclear shape and topological features were also considered. The cohort consisted of

47% ccRCC, 33% pRCC and 20% chRCC; a total of 160 scans were used. From each image, 1316 color, textural,

formal and topological features for each cancer type were extracted using the binary segmentation method. After

training and validation, this model classified different RCC images into four grades of the Fuhrman classification

with an accuracy of 90.4% . Other researchers developed a CNN that differentiated between types of renal

cancer and from normal tissue, and also graded the tumor according to Fuhrman. The model achieved an overall

accuracy of 99.1% for distinguishing normal parenchyma from RCC in the cohort (sensitivity 100%, specificity

97.1%). The accuracy for differentiating clear cell, papillary and chromophobe histotypes of RCC was 97.5%. The

accuracy of the Fuhrman classification was 98.4% . As the Fuhrman classification’s applicability to chRCC

remains debatable, many pathologists opt for the Paner classification in their practice  (Table 1).

Table 1. AI models for differential diagnosis of renal cancer.
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Characteristics Data Technique Results Prognosis Reference
Different types of

RCC
A set of 48

images uniformly
distributed in 12
samples from
each subclass

Segmentation,
classification
(multiclass

Bayes classifier
assuming

multivariate

Approximately 90%
accuracy
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Characteristics Data Technique Results Prognosis Reference
Gaussian

distributions)

Different types of
RCC

48 images, 12 for
each subtype:

CC, CH, ON and
PA

The Harris
corner

detection
method,
Bayesian
classifier

83% accuracy -

Different types of
RCC

79 RCC biopsy
slides from 2015

to 2017 from
DHMC, 917
whole-slide

images of kidney
cancer from

TCGA

Annotation,
creation of a
deep neural

network, patch
extraction,

classification

AUC of the
classifier on the

internal resection
slides, internal

biopsy slides and
external TCGA

slides were 0.98
(95% confidence

interval (CI): 0.97–
1.00), 0.98 (95% CI:
0.96–1.00) and 0.97

(95% CI: 0.96–
0.98), respectively

-

Different types of
RCC

TCGA slide
images of RCC

and normal
tissues

Creation of
CNN, patch
extraction,

classification
(SVM), LASSO

regression

Classification
accuracy for clear

cell and
chromophobe RCC
vs. normal tissue
was 93.39% and

87.34%,
respectively;

94.07% accuracy to
identify the type of

RCC

13 tumor
shape

features and
6 nuclei
shape

features
were

signifcantly
associated
with patient

survival

Different types of
RCC

TCGA slide
images of RCC

(g 396 KIRC and
154 KIRP tumors)

Clusterization,
CNN

Segmentation of
tumor regions and

other relevant
histopathologic
patterns (e.g.,

adenosquamous
and poorly

differentiated
regions)

Extraction of
features generated
subgroups enriched

for clinically
relevant subtypes

and outcomes

Correlation
was

identified
with survival
outcomes

and
Fuhrman
grading
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4. Clear Cell RCC

Characteristics Data Technique Results Prognosis Reference

Different types of
RCC

252 WSI of clear
cell renal cell

carcinoma
(ccRCC),

papillary renal
cell carcinoma

(pRCC),
chromophobe

renal cell
carcinoma

(chRCC), clear
cell papillary

renal cell
carcinoma
(ccpRCC),

oncocytoma and
metanephric

adenoma

AI-based patch
classifier

85% accurate
classification

-

Different types of
RCC

Cases of clear
cell RCC (27)
and clear cell
papillary RCC

(14) from
University of

Louisville,
Louisville, KY,

USA

An ensemble
pyramidal deep
learning model
that utilizes a
hierarchy of
three CNNs

Framework
succeeded in

classifying the four
classes (pixel

accuracy: 0.92)

-

The tumor
microenvironment
in different types of

RCC

83 primary renal
tumors and

matched
metastatic or

recurrence tissue
samples (n = 15):

papillary renal
cell carcinoma
(pRCC) types 1
(n = 20) and 2 (n
= 49), collecting
duct carcinomas
(CDC; n = 14)
and high-grade

urothelial
carcinomas

(HGUC; n = 5)

The HALO
random forest

classifier

Number of CD3+ T
cells was

statistically
significantly higher

in CDC than in
pRCC.
CD68+

macrophages
predominated in

pRCC.

-

4 grades of RCC
(clear cell,
papillary,

chromophobe)

160 RGB images
of H&E-stained
renal carcinoma
tissue samples,

Segmentation,
classification
(radial-basis

kernel support

90.4% accuracy for
Fuhrman grading

-
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Clear cell renal cell carcinoma (ccRCC) is a morphologically heterogeneous malignant tumor derived from renal

tubular epithelial cells. The tumor cells have a predominantly clear and sometimes eosinophilic cytoplasm and are

surrounded by an abundant network of blood vessels. ccRCC is the most common type of sporadic RCC in adults,

accounting for 60–75% of all RCC. Most cases of ccRCC develop sporadically, meaning there are no known

hereditary predisposing factors. It is usually diagnosed incidentally, for example as part of medical imaging tests

not related to kidney disease. Metastases are found in 25% of patients, and their survival rate ranges from 6 to 12

months. In 70–90% of all cases of ccRCC, there are certain pathological changes in the long arm of the third

chromosome, the 3p segment. Frequently, inactivation of the von Hippel–Lindau disease gene is found, associated

with a mis-sense mutation and/or hypermethylation of the promoter of this gene .

The most important parameter associated with the prognosis of the disease is grading. For this purpose, the nuclei

of the tumor cells are evaluated in ccRCC. Previously, a four-tiered Fuhrman classification was used based on

nuclear morphology and visualizing the nucleoli. The current classification, WHO/ISUP, also consists of four

grades. Sometimes, the use of two-step classifications is suggested to simplify the workflow.

It is also possible to determine high and low tumor grade by automatically estimating the size of the nuclei. Using

the spatial distribution of nucleus sizes, the authors created a heat map and determined the nucleus diameter

characteristic of each grade. They also showed that the average size of the nucleus in scans of high-grade ccRCC

is 6 µm and in low-grade ccRCC is 9 µm. The investigators used the automatic color recognition algorithm built into

the WS-Recognizer program and the support vector machine as the classifier. The program sampled red, blue and

green pixels for training of the classifier . Kruk et al. showed automatic grading in ccRCC according to Fuhrman

classification. The accuracy of the determination was 96.7%, and the sensitivity and specificity for each grade were

different, ranging from 87.3 to 99.3% . Other researchers created an automated image classification pipeline for

separation of ccRRC into two groups based on grades. The pipeline used machine learning and feature extraction

methods based on the pixel intensity of the image to analyze the nuclei and visualize the nucleoli. The pipeline

generated two sets of selected nucleolus image regions from images using two separate detectors. The pipeline

then quantified the pleomorphic patterns of nuclei by combining features extracted from multiple regions of the

image with the nucleus .

Machine learning technologies can contribute to the prognosis of ccRCC and potentially help improve the clinical

management of this disease. An AI-based computer program can predict the outcome of renal cancer patients by

simultaneously analyzing various medical data (microscopic images, CT/MRI scans and genomic data). For this,

the authors created a comprehensive multimodal deep learning model (MM DLM) consisting of an individual 18-

layer residual neural network (ResNet) for each image model and genomic data. The neural network was first

trained on histological scans, then CT and MRI scans and genomic data were added to the training. A total of 113

patients were analyzed with an accuracy of 83.43% ± 11.62% with a maximum of 100% at 12-fold cross-validation

. The investigators demonstrated that the image scoring used by the pipeline correlated (R = 0.59) with the

existing scoring system based on multigene analysis, a key prognostic indicator for ccRCC patients . Another

publication showed that a pathological signature based on machine learning can act as a new prognostic marker

for patients with ccRCC. The authors performed nuclear detection and segmentation in ccRCC using QuPath

Characteristics Data Technique Results Prognosis Reference
based on Fuhrman

classification
1316 color,

shape, texture
and topology

features

vector
machines)

4 grades of RCC
(clear cell,
papillary,

chromophobe)
based on Fuhrman

classification

Normal (3000
samples) or RCC
(12,168 samples)

tissue samples
from 42 patients

from TCGA

Creation of
CNN, patch
extraction

99.1% accurate
identification of

RCC tisue
97.5% accurate
identification of

RCC type
98.4% accurate

Fuhrman grading
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[3]

[12]

[13]

[36]

[21]

[27]



Renal Cancer Management with AI and Digital Pathology | Encyclopedia.pub

https://encyclopedia.pub/entry/50960 14/26

digital pathology software in three different patient cohorts. Morphological features of tumor cells, nuclei and

cytoplasm were determined. Least absolute shrinkage and selection was performed using the Glmnet package to

determine optimal digital pathology features and calculate coefficients for each feature in the model. The mean

follow-up time for the cohorts was 26.4 ± 16.8, 54.9 ± 27.8 and 43.2 ± 30.6 months, respectively. The following

prognostic factors were selected for LASSO analysis: nucleus circularity, nucleus min caliper, nucleus hematoxylin

optical density mean, nucleus hematoxylin OD min and cell eosin OD std dev. These features were included in the

development of the multilayer perceptron system (MLPS). A Cox regression analysis showed that MLPS could be

used as an independent prognostic factor for the outcome of patients with ccRCC. An integrated nomogram based

on an MLPS, a tumor staging system and a malignancy scoring system improved the current accuracy of predicting

survival in patients with ccRCC, with area under the curve values of 89.5%, 90.0%, 88.5% and 85.9% for predicting

disease-free survival at 1, 3, 5 and 10 years after diagnosis .

Prediction of renal progression can also be based on assessment of vascularization, size of necrotic areas and

other histoarchitectural features. Necrosis is associated with worse outcome. The density of vessels in a tumor

correlates with invasiveness and hematogenous metastasis. Immunohistochemical staining with antibodies against

the endothelium and digitalization of these specimens are often used to simplify vessel detection. In one study, an

algorithm was developed to evaluate the relationship between expressed genes and blood vessel morphology. Two

machine learning tools were developed: one to identify endothelial cells and the other to define the boundaries of

blood vessels and perivascular areas. To automate the annotation of endothelial cell nuclei and improve the

accuracy of the machine learning approach, the authors applied cell-type information from immunohistochemical

slides to hematoxylin-and-eosin-stained images of the exact same tissue section. Then, a vascular area mask was

created. Nine vascular features were found to predict survival in the patient cohort (n = 64, RR = 2.3). Two

generalized linear models based on 14 genes (14VF and 14GT) divided patients into good and poor survival

groups (RR 14VF = 2.4, RR 14GT = 3.33) .

Data from immunohistochemical studies with antibodies that detect tumor-infiltrating lymphocytes indicating

malignant potential were also used for predictive assessment. Stenzel PJ et al. investigated the expression of

antibodies against tumor-infiltrating CD3-positive T cells, CD8-positive cytotoxic T lymphocytes (CTLS), regulatory

T cells, B cells, plasma cells, macrophages, granulocytes, programmed cell death receptor-1 (PD-1) and its ligand

PD-L1 in a large number of patients with ccRCC (n = 756). Immunohistochemistry slides were digitized and

analyzed using the HALO platform. A cytonuclear module (v1.4e1.6), which included a tissue classifier to

distinguish between tumor and nontumor tissue, was used to quantify positively stained cells and the total number

of cells in the analyzed area. Univariate survival analysis showed that an increase in the number of tumor-

infiltrating B cells, T cells and PD-1-positive cells was significantly associated with a good prognosis, and a high

level of intratumoral granulocytes, macrophages, cytotoxic T cells and PD-L1 was associated with a poor

prognosis. High infiltration with cytotoxic lymphocytes or B cells and high expression of PD-L1 in ccRCC cells were

qualified as independent predictive biomarkers. Next, the authors investigated the prognosis of patients after

nivolumab therapy by examining the expression of immune cells and PD-1/PD-L1 .

[37]
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The application of AI to investigate a series of molecular markers in each sample has predictive value and can be

integrated with morphological features to improve risk stratification and personalized therapy. In one study, a semi-

automated method was developed to investigate 62 markers and their combinations in 150 primary ccRCCs using

multiplex immunofluorescence, NanoString GeoMx digital spatial profiling and AI image analysis. TMA images were

analyzed using Definiens  Tissue Studio and histological scans were analyzed using Indica Labs Halo  AI

software. As with Tissue Studio, tumor–stroma segmentation included only tumor regions and nuclear

segmentation was based on Heochst staining intensity. Co-expression of cancer stem cell and epithelial-to-

mesenchymal transition markers such as OCT4 and ZEB1 were found to indicate poor outcome. OCT4 and the

immune markers CD8, CD34 and CD163 significantly stratified patients in the intermediate phase of treatment .

The relationship between histological features of ccRCC and genetic and epigenetic data, which are also

successfully used as prognostic markers, has been extensively studied in the literature. The authors used machine

learning, including deep neural networks, to investigate the relationship between proteomics and histological

scans. In a first step, a proteomics-based diagnostic model was generated using a random forest (RF) classifier.

The sample consisted of 997 protein gene products. The model was able to differentiate between normal and

ccRCC samples with an overall accuracy of 0.98 (10-fold CV results) and high sensitivity and specificity (0.97 and

0.99, respectively). In the second step, the authors created a complex-architecture CNN that distinguished ccRCC

from normal kidney tissue with an accuracy of 0.95 in the test dataset, and high sensitivity and specificity (1 and

0.93, respectively). In the third step, both models were tested simultaneously on 24 samples (14 with ccRCC and

10 with normal tissue). Then, the models were trained to analyze the correlation between the proteomics data and

the genes encoding them, and between each dataset and the histology-based prediction .

Artificial intelligence can play an important role in the diagnosis of rare disease subtypes identified by genetic

alterations. TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) has a more aggressive growth pattern

than other RCC subtypes, but TFE3-RCC is very difficult to diagnose using standard light microscopy. An

automated computational pipeline was developed to extract features from the images. Fifty-two features were

identified that differentiated TFE3-RCC from ccRCC. Classification model tests on the external validation set

showed high accuracy with areas under the ROC curve from 0.842 to 0.894. Furthermore, this result demonstrated

the ability to capture minor morphological differences between TFE3-RCC and ccRCC and may significantly

improve the diagnosis of rare ccRCC variants  (Table 2).

Table 2. AI models for analysis of whole-slide images of clear cell renal cell carcinoma.

®® ®®

[39]

[16]
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Characteristics Data Technique Results Prognosis Reference

4 grades of RCC
(clear cell,
papillary,

chromophobe)
based on
Fuhrman

classification

160 RGB
images of H&E-

stained renal
carcinoma

tissue samples;
1316 color,

shape, texture

Segmentation,
classification
(radial-basis

kernel support
vector

machines)

90.4% accuracy
for Fuhrman

grading
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Characteristics Data Technique Results Prognosis Reference
and topology

features

High-grade (1, 2
Fuhrman grade)

and low-grade (3,
4 Fuhrman grade)

renal cell
carcinoma

395 WSI and
clinical data of
ccRCC cases
from TCGA,
1895 ROI

Segmentation
(thresholding +

marker-
controlled

watershed-
based), Creation
of the automated
2-tiered grading

system and
developing
machine

learning, LASSO
regression

The LASSO
model consisted

of 26 features (18
unique) and

predicted grade
with 84.6%

sensitivity and
81.3% specificity

in the test set

In the extended
test set,

predicted grade
was

significantly
associated with
overall survival
after adjusting

for age and
gender (hazard
ratio 2.05; 95%
CI 1.21–3.47)

High-grade (1, 2
Fuhrman grade)

and low-grade (3,
4 Fuhrman grade)

renal cell
carcinoma

39 WSI of
ccRCC cases

from the
archives at the
University of
Pittsburgh

Medical Centre

Automatic stain
recognition
algorithm

implemented in
WS-Recognizer,

classification
(SVM)

The maximum
nuclear size
distinguished

high-grade and
low-grade tumors

with a false-
positive rate of
0.2 and a true-
positive rate of
1.0. The area

under the curve
was 0.97,

suggesting
adequate

sensitivity and
specificity

-

High-grade (1, 2
Fuhrman grade)

and low-grade (3,
4 Fuhrman grade)

of renal cell
carcinoma

94 scans with
ccRCC cases
from Military
Institute of
Medicine,
Warsaw,

Poland; 3446
microscopic
images of

nuclei,
extracted from
these slides

Segmentation
(wavelet

transformation +
watershed

implementation),
classification

(SVM and RF)

Average accuracy
of classification

was 96.7%,
sensitivity and
specificity for

each grade were
different, ranging

from 87.3 to
99.3%

-

High-grade (1, 2
Fuhrman grade)

and low-grade (3,
4 Fuhrman grade)

Histopathologic
tissue slides of
59 patients with

ccRCC who

An automated
image

classification
pipeline

The final
classification was
performed by a
support vector

Image score
used by the

pipeline, termed
fraction value,
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Characteristics Data Technique Results Prognosis Reference
renal cell

carcinoma
underwent
surgery at
Singapore
General

Hospital were
assembled

retrospectively

machine and
achieved F-

scores ranging
from 0.73 to 0.83

correlated (R =
0.59) with an

existing
multigene-

assay-based
scoring system

that has
previously been
demonstrated
to be a strong

indicator of
prognosis in
patients with

ccRCC

Connecting
histopathology
imaging and
proteomics in
clear cell renal

cell cancer

The proteomics
data with 216
samples were
downloaded

from the
CPTAC Data
Portal. This

dataset
included
complete

information for
9964 proteins
measured in
194 samples

(84 normal, 110
tumor samples).

The histology
dataset was

obtained from
The Cancer

Imaging Archive
(TCIA) and

included 783
slide images

CNN, fully
connected

neural network,
classification

The proteomics-
based

classification
model was
capable of

distinguishing
between ccRCC

and normal
samples with an
overall accuracy
of 0.98 (10-fold
CV results), as

well as with high
sensitivities and

specificities (0.97
and 0.99

respectively).
Histology-based

classification
model was
capable of

distinguishing
between ccRCC

and normal
samples with an
accuracy of 0.95

on the test
dataset, as well

as with high
sensitivities and
specificities (1

and 0.93
respectively)

The correlations
between protein
expression and
image-based
predictions
were also

concordant with
the correlations
between gene
expression and
image-based
predictions, in
particular for
the strongest
positive and

negative
correlations
observed in

each correlation
setting

Deep learning
model for

The Cancer
Genome Atlas

A new,
comprehensive,

The model
trained on the

The model
showed the
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Characteristics Data Technique Results Prognosis Reference
prognosis

prediction in
ccRCC

cohort including
230 patients;

the Mainz
cohort including
18 patients with

ccRCC

multimodal deep
learning model
was developed

tiles achieved a
mean C-index of
0.7169 ± 0.0296
with a maximum
of 0.7638 and a
mean C-index of
0.7424 ± 0.0339
with a maximum

of 0.7821,
respectively.

When combining
conventional

histopathological
input with CT and
MRI images, the
mean C-index
increased to

0.7791 ± 0.0278
with a maximum

of 0.8123

prognosis of
ccRCC patients
with a mean C-
index of 0.7791

and a mean
accuracy of

83.43%

Machine learning-
based pathomics

signature as a
prognostic marker
for patients with

ccRCC

Clinical
Proteomic

Tumor Analysis
Consortium

(CPTAC) (59
patients);
Shanghai
General

Hospital (146
patients); and
The Cancer

Genome Atlas
(TCGA) (278

patients)

Segmentation,
detection

(watershed cell
detection), an

analysis
pipeline, LASSO

analysis

The mean follow-
up duration of

26.4 ± 16.8, 54.9
± 27.8 and 43.2 ±

30.6 months,
respectively

Integration
nomogram
based on

MLPS, tumor
stage system

and tumor
grade system
improved the

current survival
prediction

accuracy for
ccRCC

patients, with
area under

curve values of
89.5%, 90.0%,

88.5% and
85.9% for 1-, 3-,
5- and 10-year
disease-free

survival
prediction

Morphological
differences

between TFE3-
RCC and ccRCC

Whole-slide
images of 74
TFE3-RCC

cases and 74
clear cell RCC

cases from
Indiana

Segmentation
(hierarchical

multilevel
thresholding),
nucleus-level

feature
extraction and

Tests of the
classification
models on an

external
validation set
revealed high
accuracy with

-
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Characteristics Data Technique Results Prognosis Reference
University,

University of
Michigan and

TCGA

image-level
feature

extraction,
classification

(logistic
regression, SVM

with linear
kernel, SVM with
Gaussian kernel,

and random
forest)

AUC ranging from
0.842 to 0.894

Vascular
phenotypes in

renal cancer and
predicting

8 cases of
ccRCC (H&E-
stained digital

slides with
CD31 and

CD45
antibodies),
discovery

cohort of 64
cases within the

Cancer
Genome Atlas

(TCGA)

Annotation,
classification

(SVM, random
forest, GLMNET)

Pixel-wise
classification

ultimately
resulted in a

binary (black and
white) image of

tumor vasculature
that was

assessed by
referencing

annotated images
in a testing set
(AUC = 0.79)

Two prediction
models were
built for 14

genes. Both
models

performed
similarly to a
previously

reported, non-
overlapping, 34

gene panel
(Clear Code

34)33 (C-Index:
Stage + CC34 =

0.75)

Prognostic and
predictive value of
tumor-infiltrating
leukocytes and
PD1, PDL1 in
clear cell renal
cell carcinoma

Tissue samples
from 756

patients with
primary ccRCC,

treated at the
Department of
Urology at the
University of
Heidelberg

Image Analysis
with HALO

Univariate
survival analysis

revealed that
increased tumor-
infiltrating B-cells,
T-cells and PD-1-

positive cells
were significantly
associated with

favorable cancer-
specific survival

and high levels of
intratumoral

granulocytes,
macrophages,

cytotoxic T-cells
and PD-L1 were

significantly
associated with

poor cancer-
specific survival

In patients
responding to

nivolumab
therapy,

significantly
higher densities
of CD3-positive
T-cells, PD-1-
positive tumor-
specific T cells
and cytotoxic T

lymphocytes
were observed

in tumor centers
and invasive

margins
compared to

nonresponders
and mixed

responders (p <
0.01). Density

of PD-L1-
positive cells in
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5. Papillary RCC

Papillary renal cell carcinoma (pRCC) derives from the epithelium of the distal convoluted tubule and accounts for

10–15% of all renal cancer cases. pRCC is a less aggressive tumor than ccRCC, with a 5-year survival rate of 80–

85%. pRCC is a heterogeneous disease with two main histological subtypes. Type 1 tumors consist of papillae and

tubular structures covered by small cells with basophilic cytoplasm and small oval nuclei. Type 2 tumors are

composed of papillae covered by large cells with eosinophilic cytoplasm and large spherical nuclei (with protruding

nucleoli). In some cases, pRCC is indolent and multifocal. In others, it has an aggressive lethal phenotype of

solitary tumors .

As mentioned earlier, the tumor microenvironment plays a very important role in predicting the course of a renal

tumor. It also allows histological biomarkers to be indicated. Evaluation of the microenvironment of the tumor in its

different subtypes presents an interesting challenge. In one study, the authors proposed a new pipeline for

automated topological characterization of cellular structures in the tumor microenvironment. This pipeline was

tested on a large publicly available set of histopathological images from a cohort of 190 patients with pRCC from

the TCGA. A univariate survival analysis was then performed on 50 morphological features and two pathological

variables (TNM stage and pRCC subtype). Stages II and III were combined into one group and compared with

stage I. Patients with type 2 pRCC showed a worse prognosis than patients with type 1. The experimental results

demonstrated that the proposed topological features can successfully stratify early- and intermediate-stage

patients with excellent survival. These results also showed superiority over traditional clinical features and cellular

morphological characteristics. In addition, the AUCs predicting the binary 5-year survival outcome for stage and

subtype were 0.63 and 0.66, respectively. The predicted risk index achieved an AUC of 0.78. These technologies

not only provide new insights into the topological organization of cancers, but can also be integrated with genomic

data in future studies to develop new integrative biomarkers .

The integration of morphological and genetic data is another approach to predictive evaluation. In one publication,

the authors aimed to comprehensively characterize the immune microenvironment of pRCC based on genetic data

analysis, using computational biology to analyze profile data. Based on a multiomics bioinformatics analysis, the

authors found that pRCC had the characteristics of a “hot” tumor. However, CD8+ T cells in the tumor tissue did not

limit its progression. Therefore, patients with pRCC may derive greater clinical benefit from treatment that can

reverse CD8+ T cell deficiency. In addition, the expression of CCL5 and FASLG may be associated with the

formation of an immunosuppressive microenvironment in the pRCC. The immune microenvironment presented in

this study provides new insights for further experimental and clinical research into individualized immunotherapy for

patients with pRCC . Le Li et al. performed a bioinformatic screening to investigate and identify potential

biomarkers of DNA damage and oxidative stress in pRCC. RNA sequencing data were loaded from the TCGA

database and differentially expressed genes (DEGs) were identified using a variety of clustering and classification

algorithms. The results of this analysis suggested that the BDKRB1, NMUR2, PMCH and SAA1 genes could be

potential predictive biomarkers and novel therapeutic targets for pRCC  (Table 3).

Table 3. AI models for analysis of whole-slide images of papillary cell renal cell carcinoma.

Characteristics Data Technique Results Prognosis Reference
the invasive
margin also
showed a

tendency to be
higher in

responders,
though not
statistically

significant (p =
0.2)

Tumor
microenvironment
of clear cell renal

cell carcinoma

Tissue samples
from 150

patients who
were diagnosed

with ccRCC
from the

pathology
archive in
Edinburgh

Definiens Tissue
Studio, Indica
Labs Halo AI

software

We found that
coexpression of
cancer stem cell
and epithelial-to-

mesenchymal
transition markers

such as OCT4
and ZEB1 were

indicative of poor
outcome. OCT4
and the immune
markers CD8,

CD34 and CD163
significantly

stratified patients
at intermediate

phase of
treatment

Analysis
showed that a
combination of
PD1+ T cells

and ZEB1
predicted 5-

year survival,
whereas these

two features did
not reach
statistical

significance
alone
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6. Chromophobe RCC

Chromophobe renal cell carcinoma (chRCC) derives from the cortical collecting ducts and has an incidence of 3–

5%. chRCC has a much better prognosis than clear cell and papillary RCC, with a 5-year survival rate of over 90%.

The nuclei often have a characteristic irregular wrinkled (raisin-like) appearance and binucleation is common. The

morphology of the cells is highly variable and can be confusing to the inexperienced observer and lead to negative

conclusions.

Although grading systems for chRCC have been proposed, none are currently widely accepted and incorporated

into clinical guidelines. The WHO/ISUP classification also has not been validated for chRCC. There are currently

suggestions for two-, three- and four-stage grading systems, with the most prominent example being the three-

stage Paner classification. However, there is no additional predictive value after considering TNM stage and

sarcomatoid differentiation .

According to the WHO classification, chRCC is divided into two subtypes: classical and eosinophilic. Large cells

with reticular cytoplasm and prominent cell membranes (pale cells) are characteristic of classic chRCC. The

authors studied three cohorts of patients: 42 from the Department of Pathology and Molecular Pathology at the

University Hospital Zurich, 199 from various institutes and medical clinics in Japan and 66 from the TCGA. There

was no difference in survival between the eosinophilic and classic types in any of the patient cohorts. To determine

genotype/phenotype correlation, they performed genome-wide CNV analysis using the Affymetrix OncoScan

CNV Assay (Affymetrix/Thermo Fisher Scientific, Waltham, MA, USA) in 33 chRCCs. In the combined Swiss and

TCGA cohorts, losses of chromosomes 1, 2, 6, 10, 13 and 17 were significantly more frequent in the classic variant

(p < 0.05 each), suggesting that classic chRCC is characterized by higher chromosomal instability. This molecular

difference allows the identification of two chRCC variants .

Characteristics Data Technique Results Prognosis Reference

Topological features
in renal
tumor

microenvironment
associated with
patient survival

190 WSI
from

TCGA,
856

ROIs in
total

Nucleus
segmentation and
patch extraction,

creation of stacked
sparse autoencoder,
LASSO-regularized

Cox regression
model (LASSO–Cox

model)

Recall was
(4159 −

168)/4082 =
97.77%, and
precision was

(4159 −
168)/4159 =

95.96%

Patients with pRCC
type 2 have worse

prognosis than those
with pRCC type 1
(log-rank test p =

0.00946).
Patient stratification
using the predicted
risk index provided
the best prognosis
prediction AUCs for
5-year survival for

stage and subtype of
0.63 and 0.66,

respectively
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A challenge in the diagnosis of renal cell carcinoma (RCC) is the differentiation between chRCC and benign renal

oncocytoma. These tumor types are histologically and morphologically similar but require different clinical

management. There are a large number of articles in the literature where machine learning has been used for the

differentiation of oncocytoma from chRCC via computed tomography and other radiological methods . In

one publication, Kevin Brennan et al. analyzed DNA methylation in fresh frozen oncocytoma and chRCC samples

and used machine learning to identify differentially methylated cytosine phosphate guanine (CPG) site signatures

that reliably distinguished oncocytoma from chRCC. Surprisingly, oncocytoma was characterized by more

abnormal methylation than chRCC. A total of 79 CpGs were identified with large differences in methylation between

oncocytoma and chRCC. The diagnostic model distinguished oncocytoma from chRCC at 10-fold cross-validation

(AUC = 0.96 (95% CI, 0.88 to 1.00)). The CPG profile also allowed for differentiation between oncocytoma and

other subtypes of RCC, as well as normal tissue, making it a potential diagnostic biomarker for oncocytoma 

(Table 4).

Table 4. AI models for analysis of whole-slide images of chromophobe cell renal cell carcinoma.
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Characteristics Data Technique Results Prognosis Reference

Types of
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