
Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 1/8

Parallel Computing
Subjects: Computer Science, Interdisciplinary Applications

Contributor: Boon Xian Chai , Boris Eisenbart , Mostafa Nikzad , Bronwyn Fox , Yuqi Wang , Kyaw Hlaing Bwar ,

Kaiyu Zhang

Parallel computing, a significant portion of the problems faced by serial computing are gradually becoming

obsolete. In both academic and industrial settings, the technique of parallel computing is often employed by

researchers and industry practitioners alike to hasten the simulation-based optimisation processes.

simulation computational cost optimisation composite liquid composite moulding

1. Introduction

Currently, large-scale composite manufacturing is commonly achieved via liquid composite moulding processes

. The utilisation of numerical process simulation has greatly facilitated the challenging task of LCM process

optimisation, providing ease of solution evaluation at a significantly reduced cost compared to complete reliance on

physical prototyping. Nevertheless, the computational cost of performing such composite moulding simulations is

still considerably expensive at present, given its complexity . As a consequence, the overall computational

cost of simulation-based optimisation can be enormous, as each solution evaluation is essentially a numerical

simulation run that typically requires a long computing time. In fact, within the setting of simulation-based

optimisation, the cost of computing the process simulation accounts for a major portion of the total optimisation

cost associated. Full-scale numerical simulation of the mould-filling process can become progressively cost-

prohibitive to compute as the number of optimisation iterations required increases. Moreover, as more

sophisticated and accurate multi-scale coupled textile-flow models are progressively being developed, the cost of

simulation will further increase in the future, likely by a significant margin compared to contemporary meso-scale

Darcy’s-Law-based flow models . Therefore, the high cost of process simulation, in terms of both the

computational power and computation time required, needs to be addressed promptly as the key bottleneck to the

application of simulation-based optimisation. Principally, the high cost of simulation-based optimisation can be

effectively addressed by either: (i) reducing the total number of solution evaluations required during the

optimisation process, and/or, (ii) reducing the computational cost of the process simulation .

As highlighted in , the felicitous selection of optimisation algorithms with respect to the problem context (i.e.,

mould-filling scenario) can greatly reduce the number of solution evaluations required during the optimisation

process. Aside from the appropriate selection of optimisation algorithms, how one can effectively utilise problem-

specific knowledge and information to streamline the optimisation framework also receives massive attention in the

research community . The inclusion and exploitation of known problem structures and characteristics, process

[1]

[2][3][4]

[5][6][7]

[6][8][9]

[7][10][11][12]

[6][8]

[13]

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 2/8

constraints, and insights of the mould-filling process during algorithm development and implementation can

significantly lessen the resultant optimisation cost.

2. Parallel Computing

In the recent past, computer algorithms have conventionally been developed for serial computing .

Consequently, when solving a problem, only a single task (or instruction) is executed at any moment in time. As a

result, there is an inefficient utilisation of the hardware resources available, where only a part of the potential

computing capability is employed at any particular instance. Nowadays, these superannuated approaches to

algorithm design are being progressively phased out as developments in parallel hardware architecture progress

steadily . Thanks to the rapid advancements in the field of parallel computing, a significant portion of the

problems faced by serial computing are gradually becoming obsolete. In both academic and industrial settings, the

technique of parallel computing is often employed by researchers and industry practitioners alike to hasten the

simulation-based optimisation processes . The streamlining of the simulation-based optimisation process

via parallel computing for LCM process optimisation is no exception . Parallel computing can be understood

as the act of breaking down a larger, complex problem into numerous smaller, independent sub-tasks and

computing them simultaneously across multiple processing units. The individual outputs of these parallel sub-tasks

can then be remerged, upon their completion, back into the original problem framework for completion or further

analysis. The schematic framework of parallel computing is depicted in Figure 1.

Figure 1. The schematic framework of the application of parallel computing to solve a problem.

Parallel computing offers several advantages over conventional serial computing. The apportion of a complex

problem into multiple independent sub-tasks allows the total computational load to be distributed (either evenly or

unevenly) across all available processing units to be computed in parallel simultaneously. Therefore, the

undesirable wastage of unutilised or underutilised (idle) computing power can be minimised, which is particularly

critical in the modern era where multi-core processors are progressively becoming the norm. In addition to the

[14][15][16][17]

[14][17][18]

[7][10][19][20]

[7][20][21]

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 3/8

effective distribution and utilisation of computing power, parallel computing also enables the effective employment

of non-local resources (e.g., on a wide area network or over the internet) when the local resources are inadequate.

Larger problems, too large to fit into a single machine’s memory, can alternatively be solved via parallel computing,

thus alleviating hardware constraints while introducing a massive scale-up of computational potential compared to

that of local serial computing.

Most importantly, parallel computing allows parallelisable algorithms and applications to be computed within a

shorter wall-clock time than serial computing (i.e., faster algorithm execution). While the total computational load

remains unchanged, independent computing tasks can be distributed across multiple processors or computing

machines, drastically compressing the computing time required from start to finish . The computational

time saving is commonly quantified by the speedup, which is defined as the proportion of the cost of solving a

parallelisable problem/algorithm via a single processing unit versus that of solving it parallelly across multiple

processing units. In the context of minimising the cost of simulation-based optimisation problems, studies across

the literature have reported appealing cost reductions ranging around the range of 65% to as high as 92%

. The reduction in computing time attained via parallel computing effectively accelerates the respective project

timeline and compresses the corresponding time to market, giving the users a competitive edge over their

competitors. Last, but not least, parallel computing helps facilitate real-time updating and monitoring of the process

progression while the upcoming computations are performing in the background, bringing concurrency and

flexibility to its users .

There are many strategies for implementing parallel computing in simulation-based optimisation settings, with their

selection dependent on the problem at hand. It is worth noting that the implementation of parallel computing is, to a

certain extent, restricted by the (parallel) hardware architectures alongside that of the algorithm. With respect to the

state-of-the-art technological advancements to date, parallel computing can be executed on multitudes of parallel

architecture hierarchies, ranging from a single computer equipped with multiple processing units (CPUs, GPUs,

cores) to cloud computing and computer clusters (or grids) that host multiple network-connected stand-alone

computers . Currently, there are four broad types of parallelism achievable in parallel computing,

namely: bit-level parallelism, instruction-level parallelism, task parallelism, and data-level parallelism . The

topic of interest here, which is the cost reduction of simulation-based optimisation via parallel computing, mainly

pertains to task parallelism and data-level parallelism. When performing the simulation-based optimisation,

optimisation algorithms that can execute the search process without requiring knowledge of prior solution

evaluations can be parallelised for parallel computing. This generally pertains to algorithms that attempt to solve

the optimisation problem by brute force, with some examples including the exhaustive search and unguided

random search. For this kind of algorithm, the adoption of parallel computing will potentially lead to a maximum

theoretical speedup 𝑆 proportionate to N:

where N can be either:

[15][17][21][22]

[8][22][23]

[24]

[7][14][17][25]

[10][14][18][22]

[14][17][18]

𝑇𝐻𝐸𝑂𝑅𝐸𝑇𝐼𝐶𝐴𝐿

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 4/8

(i)

(ii)

the number of processing units, or

 the size of the problem, depending on the hardware’s parallel architecture. Note, only a minor proportion of all

contemporary algorithms can be decomposed into completely independent pieces, enabling the theoretical

linear speedup.

Besides that, the inherent parallelism of population-based algorithms (i.e., evolutionary algorithms) can also be

exploited. This is so as population-based algorithms typically consider or evaluate multiple candidate solutions

collectively prior to each impending search phase, as depicted in Figure 2. Effective parallelisation is thus possible

as the outputs of the solution evaluation of each candidate solution are distinct from each other, allowing them to

be computed independently. Some notable examples include the genetic algorithm, ant colony optimisation, and

particle swarm optimisation.

Figure 2. The generic search flow diagram of population-based optimisation algorithms.

By performing the independent solution evaluations simultaneously, the search process of the population-based

optimisation algorithms can be expedited significantly. Do note, the maximum performance improvement

achievable is limited by the fraction of parallelisable components within the population-based optimisation

algorithms. The theoretical speedup 𝑆 for the population-based algorithms by parallel computing can be

expressed by the Amdahl’s law , as:

where P is the fraction of the independent tasks within the algorithm that can be executed parallelly (e.g.,

evaluating the individuals within each generation of GA) and N is the number of processing units utilised.

Parallel computing can also be adopted to minimise the computational cost of the statistical modelling and

characterisation for LCM processes via the Monte Carlo simulation approach . These statistical analyses

𝑇𝐻𝐸𝑂𝑅𝐸𝑇𝐼𝐶𝐴𝐿
[14][15][17][22]

[8][14][22]

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 5/8

are critical to combat the issues of process randomness and lack of process repeatability within the LCM

processes . Parallel computing allows the user to perform the parallel computation of stochastic simulations

for statistical modelling purposes and to perform parallel replications of a stochastic simulation for statistical

characterisation purposes. Minimising the computational cost of these stochastic simulations will aid in securing the

process robustness of the mould-filling stage . Additionally, parallel computing can also be extremely

valuable for the development and training of metamodels as the metamodel training data required are generally

independent of one another, allowing parallelism .

While there are many levels of parallelism attainable, not every optimisation algorithm can exploit the merits of

parallel computing in the setting of simulation-based optimisation. The adoption of certain algorithm structures,

which is often dictated by the nature of the problem itself, may prohibit the simultaneous execution of computing

tasks and prevent effective parallelisation . Moreover, the issue of flow dependency is also pertinent to

the adoption of parallel computing in simulation-based optimisation. Flow dependency, also commonly known as

read-after-write (RAW), refers to the scenario where the execution of a task is dependent on the output of its

preceding task . As such, parallel computing is practically ineffectual for single-solution serial

optimisation algorithms that: (i) evaluate only a single candidate solution during each evaluation iteration; and (ii)

require knowledge of prior solution evaluation(s) to guide the following search phase (i.e., the exploration/search

mechanism). For this type of algorithm, as each search phase is dependent on the result of its prior solution

evaluation(s), the upcoming search tasks are forced to remain on hold until the prior solution evaluation is

completed, preventing the effective distribution of computational workload. The generic search flow diagram of

single-solution serial algorithms is depicted in Figure 3.

Figure 3. The generic search flow diagram of single-solution serial algorithms.

In summary, while the adoption of parallel computing has great potential in the application of simulation-based

optimisation, its efficacy and applicability are highly dependent on the degree of achievable parallelism imposed by

the algorithm’s framework and its flow dependencies . Besides that, the application of parallel computing

requires the development and execution of additional auxiliary algorithms to parallelise the existing optimisation

framework (e.g., for task partitioning, task scheduling, task synchronisation, etc.) . Lastly, the framework

of parallel computing can be challenging to construct and implement. The complex operations of data transfer,

memory organisation, communication, and synchronisation between multiple (locally or non-locally) independent

processing units may require a significant effort to maintain smoothly . In particular, issues arising from

network latency and the non-homogeneity in computational power across the independent processing units can

[8][26]

[7][8][27]

[7][8][14]

[8][14][17][24]

[14][15][17][24]

[8][14][17][21]

[14][17][19][22]

[14][15][16][17]

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 6/8

greatly complicate the vital tasks of communication and synchronisation during parallel computing. The overhead

cost of these control operations can also be a deterrent to the adoption of parallel computing, as these fundamental

operations can be computationally demanding to execute as well . A delicate trade-off between the

additional computational cost required versus the computational time saved is thus essential for the effective

application of parallel computing in simulation-based optimisation settings.

References

1. Blythe, A.; Fox, B.; Nikzad, M.; Eisenbart, B.; Chai, B.X. Stiffness Degradation under Cyclic
Loading Using Three-Point Bending of Hybridised Carbon/Glass Fibres with a Polyamide 6,6
Nanofibre Interlayer. J. Compos. Sci. 2022, 6, 270.

2. Blythe, A.; Fox, B.; Nikzad, M.; Eisenbart, B.; Chai, B.X.; Blanchard, P.; Dahl, J. Evaluation of the
Failure Mechanism in Polyamide Nanofibre Veil Toughened Hybrid Carbon/Glass Fibre
Composites. Materials 2022, 15, 8877.

3. Yu, C.; Song, Y.S. Enhancing energy harvesting efficiency of form stable phase change materials
by decreasing surface roughness. J. Energy Storage 2023, 58, 106360.

4. Capricho, J.C.; Liao, T.; Chai, B.X.; Al-Qatatsheh, A.; Vongsvivut, J.; Kingshott, P.; Juodkazis, S.;
Fox, B.L.; Hameed, N. Magnetically Cured Macroradical Epoxy as Antimicrobial Coating. Chem.
Asian J. 2023, 18, e202300237.

5. Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Bwar, K.H.; Wang, J.; Du, Y.; Shevtsov,
S. Application of KNN and ANN Metamodeling for RTM Filling Process Prediction. Materials 2023,
16, 6115.

6. Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. A novel heuristic
optimisation framework for radial injection configuration for the resin transfer moulding process.
Compos. Part A Appl. Sci. Manuf. 2023, 165, 107352.

7. Achim, V.; Ruiz, E. Guiding selection for reduced process development time in RTM. Int. J. Mater.
Form. 2010, 3, 1277–1286.

8. Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. Simulation-based
optimisation for injection configuration design of liquid composite moulding processes: A review.
Compos. Part A Appl. Sci. Manuf. 2021, 149, 106540.

9. Shevtsov, S.; Zhilyaev, I.; Chang, S.H.; Snezhina, N.; Chai, B.X. Modeling Post-Infusion
Application of Controlled External Pressure to a Polymer Composite Part. Int. J. Eng. Res. Mech.
Civ. Eng. (IJERMCE) 2023, 10, 29–37.

[14][16][17][19]

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 7/8

10. Tekin, E.; Sabuncuoglu, I. Simulation optimization: A comprehensive review on theory and
applications. IIE Trans. 2004, 36, 1067–1081.

11. Aguado, J.V.; Borzacchiello, D.; Ghnatios, C.; Lebel, F.; Upadhyay, R.; Binetruy, C.; Chinesta, F. A
Simulation App based on reduced order modeling for manufacturing optimization of composite
outlet guide vanes. Adv. Model. Simul. Eng. Sci. 2017, 4, 1.

12. Park, C.H.; Saouab, A.; Bréard, J.; Riche, R.L. Simple models for mold filling stage in liquid
composite molding and their applications to structure-process coupled optimization. In
Proceedings of the 8th International Conference on Flow Processes in Composite Materials
(FPCM8), Douai, France, 11–13 July 2006; pp. 289–296.

13. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1997, 1, 67–82.

14. Censor, Y.; Zenios, S. Parallel Optimization: Theory, Algorithms, and Applications; Oxford
University Press: Oxford, UK, 1997.

15. Fu, M.C. Handbook of Simulation Optimization; Springer: New York, NY, USA, 2014.

16. Rensink, A.; Cuadrado, J.S. Theory and Practice of Model Transformation. In Proceedings of the
11th International Conference (ICMT 2018), Toulouse, France, 25–26 June 2018.

17. Trobec, R.; Vajteršic, M.; Zinterhof, P. Parallel Computing: Numerics, Applications, and Trends;
Springer Verlag London Limited: London, UK, 2009.

18. Ho, Y.C. An explanation of ordinal optimization: Soft computing for hard problems. Inf. Sci. 1999,
113, 169–192.

19. Fu, M.C. Optimization for simulation: Theory vs Practice. INFORMS J. Comput. 2002, 14, 192–
215.

20. Chebil, N.; Deléglise-Lagardère, M.; Park, C.H. Efficient numerical simulation method for three
dimensional resin flow in laminated preform during liquid composite molding processes. Compos.
Part A Appl. Sci. Manuf. 2019, 125, 105519.

21. Liu, J.; Xie, J.; Chen, L. A hybrid optimization algorithm for gate locations in the liquid composite
molding process. Text. Res. J. 2022, 1, 1–9.

22. Hussein, M.; Eltoukhy, A.E.E.; Darko, A.; Eltawil, A. Simulation-Optimization for the Planning of
Off-Site Construction Projects: A Comparative Study of Recent Swarm Intelligence
Metaheuristics. Sustainability 2021, 13, 13551.

23. Lin, M.Y.; Murphy, M.J.; Hahn, H.T. Resin transfer molding process optimization. Compos. Part A
Appl. Sci. Manuf. 2000, 31, 361–371.

Parallel Computing | Encyclopedia.pub

https://encyclopedia.pub/entry/52677 8/8

24. Spall, J.C. Introduction to Stochastic Search and Optimization; Wiley-Interscience: Hoboken, NJ,
USA, 2005.

25. Šimáček, P.; Advani, S.G. Desirable features in mold filling simulations for Liquid Composite
Molding processes. Polym. Compos. 2004, 25, 355–367.

26. Gokce, A.; Advani, S.G. Vent location optimization using Map-Based Exhaustive Search in Liquid
Composite Molding processes. Mater. Manuf. Process. 2004, 19, 523–548.

27. Li, J.; Zhang, C.; Liang, R.; Wang, B. Robust design of composites manufacturing processes with
process simulation and optimisation methods. Int. J. Prod. Res. 2008, 46, 2087–2104.

Retrieved from https://encyclopedia.pub/entry/history/show/119026

