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Soil health is intimately intertwined with ecosystem services. Climate change negatively impacts ecosystem

functioning, by altering carbon and nitrogen biogeochemical cycles and shifting nutrient bioavailability, thus

hampering food production and exacerbating biodiversity loss. Soil ecosystem services are provided by

belowground biota, and as the most abundant metazoans on Earth, nematodes are key elements of soil food webs

and reliable bioindicators of soil health. 
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1. Introduction

Soil is a complex system and a crucial component of sustainability . Soil health is broadly defined as “the

capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and

animal productivity, maintain or enhance water and air quality, and promote plant and animal health” . In other

words, the concept highlights the ability of soil to perform important agricultural and ecological functions, including

productivity, adaptability to management and inputs, and resilience against biotic and abiotic stressors. It must also

exhibit robust resistance to degradation processes and the ability to rebound from disturbances due to its inherent

resilience, defined by Holling as “a measure of the persistence of systems and of their ability to absorb change and

disturbance and still maintain the same relationships between populations or state variables” . Logically, soil

health and ecosystem services are intimately intertwined. Ecosystem services encompass a wide range of benefits

obtained from ecosystems, including (i) provisioning services (e.g., food and water), (ii) regulating services (e.g.,

natural disaster regulation, pest and pathogen control, and soil conservation), (iii) supporting services (e.g., nutrient

cycling and pedogenesis), and (iv) cultural services (e.g., spiritual and recreational benefits) . Soil is responsible

for net primary production, it sustains plant and animal life, promotes water quality regulation, remediates pollution,

intervenes in nutrient cycling, while providing physical stability and support . Furthermore, it enhances the

environment overall, by moderating climate at local, regional, and global scales . In order to support

sustainability, managing soil health must take into account that (i) improving multiple soil ecosystem services

requires a multifunctional approach; (ii) enhancing one soil service can have favorable effects on some services

but unfavorable outcomes on others; (iii) soil health management must ensure the long-term sustainability of soil

services .
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Climate change has a direct impact on the biological, chemical, and physical properties of soil, as it leads to shifts

in temperature regimes and precipitation patterns . Consequently, carbon (C), nitrogen (N), and hydrology

cycles are likely to suffer the backlash , and the presence of multiple environmental stressors caused by human

footprint were found to hamper soil ecosystem services across biomes . Semiarid tropical regions of the world

are particularly vulnerable, and with soils acting as important C reservoirs, a severe depletion of organic C will

inevitably affect soil health . Moreover, the decomposition of soil organic matter is thermosensitive , and

climate change could lead to organic C-exhausted soils in response to altered C and N biogeochemical cycles and

shifts in nutrient bioavailability, further exacerbating biodiversity loss .

Nematodes are part of the soil microfauna and represent approximately 80% of all multicellular animals of the

terrestrial biosphere . They are highly adaptable and successful animals, having colonized nearly all

ecosystems on the planet . According to their feeding habits, soil-dwelling nematodes can be assigned to

one of five trophic groups: bacterivores, fungivores, herbivores, omnivores, and predators . Nematode families

and genera have been classified into a colonizer–persister scale (c-p), and given a rating from 1 to 5, indicative of

their life strategy . The c-p 1 group is made up of colonizers (r-strategists) like opportunistic bacterial feeders

that rapidly increase in numbers under favorable conditions, exhibiting a short life cycle, high colonization ability,

and tolerance to disturbance . On the other hand, the c-p 5 group consists of persisters (K-strategists), such as

some herbivores, omnivores, and predators, with a low reproduction rate, long life cycle, low colonization ability,

and high sensitivity to disturbance . Due to their rapid and taxon-specific response to environmental changes,

nematodes are valuable bioindicators . Nematofauna diversity is largely influenced by factors such as soil

texture, soil moisture, and food availability . However, the response of nematodes to environmental stress varies

among trophic groups, with those having shorter generation times and/or high fecundity showing a positive

response, while those with longer generation times and/or lower fecundity being more sensitive . Free-living

nematodes (bacterivores, fungivores, omnivores, and predators), widely referred to as beneficial nematodes,

outnumber herbivores in terms of abundance and diversity, and they play critical roles in ecosystem functioning,

occupying key ecological niches in belowground food webs, and are involved in C sequestration, energy transfer,

and nutrient mineralization, increasing their availability to plants and, thus, improving soil fertility . Soil

nematodes directly or indirectly contribute to (i) human well-being, by driving key processes to food production; (ii)

climate regulation, by intervening in the short and long-term fluxes and flows of C in and out of soils; and (iii)

support terrestrial life and diversity, through processes like decomposition, nutrient cycling, and regulation of pests

and pathogens (Figure 1) . Healthy soils typically have a high abundance and diversity of free-living nematodes

in complex food webs with long chains and feedback loops, and a low proportion of herbivores . Indeed, a

nematode community analysis can provide invaluable information on the status of soils: (i) a high ratio of bacterial-

to fungal-feeding nematodes indicates that organic matter is predominantly decomposed by bacteria and that rapid

nutrient cycling is occurring; (ii) a predominance of fungivores indicates that nutrient cycling is relatively slow, as

the decomposition channel is dominated by fungi; (iii) low population densities of omnivores and predators suggest

disturbance, such as excessive fertilizer inputs, tillage, or the presence of pollutants; (iv) high numbers of

omnivores and predators indicate that the system is biologically complex and resilient, and has some natural ability

to suppress plant-parasitic nematodes and other soil-borne pathogens . In agricultural systems, plant-parasitic
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nematodes are problematic, but in a broader ecological context, they are fundamental in shaping aboveground

vegetation communities and contributors to plant performance in natural ecosystems by plant–soil feedbacks 

. Upon feeding on their hosts, herbivorous nematodes alter root exudation patterns, and indirectly modify the

rhizobiome (the microbial diversity attached to and influenced by roots), thus curbing nutrient availability to plants,

especially of N and phosphorous (P), and contributing to plant community dynamics . On the other hand,

while the contributions of beneficial nematodes to plant performance remain largely unknown, they can have

positive effects on plants by stimulating microbe-induced C sequestration, and keeping pests and pathogens at bay

. Nematodes are aquatic animals that require water to move, feed, and reproduce, and climate extremes are

anticipated to shift the structure of nematode communities and their roles in ecosystems . However, the

impacts of climate change on nematode abundance and functional groups have not been consensual, displaying

significant variation across different studies .

Figure 1. Illustrative representation of the main ecosystem services provided by soil-dwelling nematodes.

2. Nematode Community Dynamics under Climate Change

A demographic explosion is driving unprecedented food demand and pushing natural ecosystems to fragmentation.

The effects of anthropogenic activities in natural systems are known to reduce aboveground biodiversity, hindering

ecosystem services and, consequently, their contributions to human well-being , but data of such impacts on

belowground taxa are scarce, perhaps because they are difficult to assess. Nevertheless, nematode community
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structure is a fast and reliable predictor of ecological disturbance, giving us insights into the status of the whole

system.

2.1. Temperature

The soil nematode community structure seems to be particularly susceptible to warming, favoring some groups in

detriment of others, but these negative effects can be limited by aboveground vegetation that counters them to

some extent. Both parameters also affect vegetation, with an anticipated indirect effect on nematode communities

, although these confounding effects are not assessed here. The main effects of increasing temperature on

nematode communities are summarized in Table 1.

Table 1. Effect of increasing temperature on soil nematode communities.

2.2. Water Stress

Drought is a key limitation of soil nematode abundance, even in the short term, and has persistent effects.

Nevertheless, the soil nematode community structure recovers gradually as precipitation increases, even though

these positive effects are not straightforward, and water uptake by plants can further stress an already fragile

system. The main effects of water stress on nematode communities are summarized in Table 2.

Table 2. Effects of water stress on soil nematode communities.
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2.3. Land Use

Land use, with a particular emphasis on the conversion of conventional agriculture to agroecological practices, can

have profound effects on soil nematode communities, highlighting the importance of above- and belowground

biodiversity to withstand environmental stress, by preserving soil food web complexity and crucial ecosystem

functions. Taken together, the above results suggest local anthropogenic effects can outweigh overall effects of

climate change according to land-use type and intensity and may introduce severe confounding effects to

predictive models of soil nematode community response to climate drivers. The main effects of land use on

nematode communities are summarized in Table 3.

Table 3. Effects of different land uses on soil nematode communities.
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This, combined with the anticipated depletion of P in worldwide terrestrial ecosystems, may tip the balance of soil

food webs and aggravate adverse conditions brought about by progressive soil degradation (including acidification)

due to climate effects. The main effects of nutrient enrichment on nematode communities are summarized in Table

4.

Table 4. Effects of nutrient enrichment on soil nematode communities.
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Factor(s) Effects on Soil Nematodes Reference

Long-term N

enrichment

Plant removal dwindled nematode taxon richness and abundance of

bacterivores and herbivores; the abundance of fungivores and omnivores–

predators increased under the same conditions

Long-term N

fertilization

Greater nematode abundance in fertilized plots, while richness, diversity, and

ecological maturity were lower; enriched food web mostly driven by bacterivores

and herbivores, with persisting effects overtime

High N

deposition

Decrease in most nematode trophic groups and community diversity under

understory addition of N compared to canopy addition of N

Short-term N and

P

enrichment under

soil acidification

Nematode variables, including community structure, were largely unaffected by

short-term nutrient enrichment under soil acidification

Long-term

organic

amendments

and mineral

fertilization

Positive effect on the abundance of most functional guilds by organic

amendments, which enhanced the energy transfer among nematode

communities, while increasing the relative allocation of energy flux to

bacterivores and fungivores and decreasing the relative allocation to herbivores

Liming, P, and

zinc inputs

P input significantly increased nematode diversity and genera; bacterivores and

herbivores were the most abundant trophic groups, and predators the least
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2.5. Combined Stressors

In general, the greater the number of disturbances, whether directly or indirectly caused by human activities, the

longer the recovery time for the system and the greater the impact on soil nematode communities, which

compromises their benefits to humankind. Although manipulative studies in experimental units research has been

elucidating the impacts of each independent factor individually, observational studies in actual ecosystems suggest

strong interactive effects among them. It is therefore anticipated that a large sampling effort at appropriate scales,

combined with an in-depth local and remote-sensing characterization of sampled ecosystems can provide key

knowledge that can be translated into management and policies for climate change adaptation and mitigation. The

combined effect of multiple stressors on nematode communities is summarized in Table 5.

Table 5. Effects of multiple factors on soil nematode communities.

483.

60. Gao, D.; Wang, F.; Li, J.; Yu, S.; Li, Z.; Zhao, J. Soil Nematode Communities as Indicators of Soil
Health in Different Land Use Types in Tropical Area. Nematology 2020, 22, 595–610.
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Factor(s) Effects on Soil Nematodes Reference

common; nematode biodiversity was unaffected by liming, and nematode

diversity and maturity were reduced in the absence of liming

Factors Effects on Soil Nematodes Reference

Soil moisture, P

addition, and

aboveground

vegetation

Plant type and water availability had a greater impact on nematode abundance

and community composition; drought was detrimental to the total density of

nematodes and functional guilds; bacterivores, herbivores, and omnivores were

significantly more abundant in soils with legumes

Biotic (microbial

biomass and

competition)

and abiotic

variables

(moisture,

salinity, and

elevation)

Spatial segregation between two competing bacterivore species, with contrasting

responses to abiotic factors: one best adapted to high salinity, lower

temperatures, and low moisture environments, while the other thrives at higher

temperatures, higher soil moisture, and lower salinity
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Factors Effects on Soil Nematodes Reference

Climatic, soil,

and

historical

factors

Current factors, particularly climate, are more influential than historical factors in

shaping nematode diversity patterns on a broader scale

Liming

treatments

Interacting nematode and microbial communities minimally impacted by liming,

with an increase in omnivores and predators, who keep bacterivores under

control; stronger interaction in the presence of an abundant microbial community

Increasing

aridity across

a large spatial

scale

Decline in total and relative nematode abundance of each functional guild under

increasing aridity; taxonomic richness of total nematode community and

functional guilds decreased under moisture scarcity; at the dry end of the aridity

gradient, richness of bacterivores was higher, while herbivores declined steadily;

richness of fungivores and omnivores–predators remained relatively stable up to

a certain point, before dropping steeply

Drought and

fertilization

Drought favored bacterivores and fungivores, and likely had detrimental effects

on higher trophic levels; fertilization caused a prominent increase in bacterivores

and an equally significant drop in fungivores

Elevated CO

and N,

warming, and

drought

Increase in nematode density at elevated N and ambient CO , and ambient N

and elevated CO

Warming and

precipitation

Decrease in nematode abundance, especially of bacterivores and herbivores

(with minor effects on fungivores), under artificial warming, but the nematode

community diversity and functions remained stable; decrease in nematode

abundance, especially of bacterivores and omnivores–predators, under reduced

precipitation, with fungivores and herbivores relatively insensitive to water stress;

increase in nematode abundance and community diversity with water availability
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3. Nematode Contributions to Soil Health

The adaptability of nematodes, as evidenced by frequent shifts in habitat transition, along with their ability to

withstand environmental changes, has significant implications for soil functions on a global scale. Indeed, the ability

of nematode functional guilds to perform ecosystem services depends on the soil condition  that can be

measured according to their metabolic footprints . However, land use (including soil properties), agricultural

management practices, and climate all contribute to shaping nematode communities and, thus, affect nematode

contributions to soil health through modification of their abundance, functional groups, and metabolic footprints,

leading to shifts in ecosystem processes and services . According to the most comprehensive dataset on

abundance and functional group composition reported to date, 4.40 ± 0.643 × 10  nematodes are estimated to

inhabit the topsoil across the globe . Among these, 1.92 ± 0.208 × 10  are bacterivores, 1.25 ± 0.114 × 10

herbivores, 0.64 ± 0.065 × 10  fungivores, 0.39 ± 0.046 × 10  omnivores, and 0.20 ± 0.031 × 10  predators,

amounting to an estimated biomass of 0.3 gigatonnes (Gt) and representing 82% of the total human biomass on

the planet. Nematodes are especially abundant in regions of the world that are more susceptible to the detrimental

effects of climate change, like boreal forests and tundra. During the growing season, soil-dwelling nematodes may

account for a C turnover of 0.14 Gt C per month, and although these are approximations of their metabolic

footprint, this is strong evidence that nematodes are major players in soil C sequestration. Furthermore, they are

direct intervenors in ecosystem services such as litter decomposition, nutrient cycling, and plant nutrient uptake.

Indeed, understanding the susceptibilities and ecological preferences of soil nematodes can help predict changes
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88. Ferris, H. Form and Function: Metabolic Footprints of Nematodes in the Soil Food Web. Eur. J.
Soil. Biol. 2010, 46, 97–104.

89. Zhang, X.; Ferris, H.; Mitchell, J.; Liang, W. Ecosystem Services of the Soil Food Web after Long-
Term Application of Agricultural Management Practices. Soil. Biol. Biochem. 2017, 111, 36–43.

90. Wood, J.R.; Holdaway, R.J.; Orwin, K.H.; Morse, C.; Bonner, K.I.; Davis, C.; Bolstridge, N.; Dickie,
I.A. No Single Driver of Biodiversity: Divergent Responses of Multiple Taxa across Land Use
Types. Ecosphere 2017, 8, e01997.

91. Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and
Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452.
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Factors Effects on Soil Nematodes Reference

Ecological and

edaphic factors

Reduced nematode abundance and diversity with increasing altitude, with

bacterivores consistently the dominant group; nematode diversity was mostly

influenced by temperature and moisture; decrease in nematode abundance with

increasing soil acidity; nematode diversity and richness were directly proportional

to nutrient (N and P) levels

N deposition

under reduced

water

availability

Reduced nematode abundance and diversity under N addition and reduced water

input; synergistic effects of N addition and reduced water input on soil nematode

communities at higher trophic levels; sole addition of N was more detrimental to

the nematode community

Returning

agricultural

residues

Nematode diversity was lower in treatments with conventional chemical NPK

fertilizers; positive correlation between omnivore–predator abundance and

ecosystem multifunctionality and soil fertility
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in ecosystem services. To determine which factors best explain a soil health trait, Martin et al.  explored the

incorporation of nematode communities in the assessment of belowground biota by using an exploratory factor

analysis of permanganate oxidizable C, soil protein, and mineralizable C, based on data from two longstanding

experiments across many different fields. Fungivores were found to be highly integrated with soil biological health

indicators of permanganate oxidizable C and acid phosphatase, suggesting that this functional guild may be

essential for supplying essential ecosystem services, especially C cycling and P mineralization. To determine the

metabolic footprint and soil food web complexity across two ecosystems in Kenya, Karuri  collected soil samples

and assessed the nematode community structure. Nematode functional group abundance differed between the two

systems, with tea fields recording a significantly higher number of c-p 2 nematodes while the c-p 3 category was

greater in the forest. This resulted in a greater predator footprint in the tropical forest, possibly contributing to a

slightly more structured state as indicated by the functional metabolic footprint. Overall, the tropical forest had a

higher abundance of nematode genera compared to the tea field, but the latter yielded a high density of c-p 2

nematodes (mainly bacterivores and fungivores) that are best suited to survive in unfavorable conditions. This

study underlines that the conversion of this natural ecosystem to tea fields affected the nematode community

structure and compromised the food web complexity, with a reduced predator footprint and increased herbivory

disservice. In an attempt to shed light on how microbe-feeding nematodes impact plant performance in low P soils,

Jiang et al.  designed a series of experiments in natural and sterilized soils with wheat. The presence of

nematodes enriched bacterial community structure for certain groups, while also strengthening microbial

connectance. Phosphate-solubilizing bacteria facilitated P cycling and were responsible for these changes in

microbiome structure, but this enhancement varied according to nematode feeding behavior: nematodes that had

weaker feeding intensity were found to support a greater abundance of phosphate-solubilizing bacteria and lead to

better plant performance in comparison to nematodes with greater feeding intensity. Nevertheless, this work

provides insight into how soil nematodes contribute to shaping bacterial communities and increasing P

bioavailability, by interacting with phosphate-solubilizing bacteria, thus enhancing plant performance and providing

key ecosystem services. Likewise, Zheng et al.  conducted a 7-year field experiment to understand how

nematode predation influences P availability and cycling. The addition of nematodes, along with chemical and

organic fertilizers, led to a significant improvement in the nutrient availability in the rhizosphere. This increase in N

availability suggests that nematode predation may have caused shifts in C/N ratios. Nematode feeding on specific

microbial taxa induced changes in the overall community structure. On the whole, these results highlight the

importance of nematode predation in shaping the rhizosphere microbiome community and inducing microbially

mediated mechanisms of competitive interaction, by enhancing P availability in the rhizosphere.

A stable and diverse soil nematode community secures efficient decomposition, leading to more nutrient

mineralization that readily become available to plants, thus reducing the need for fertilizer application. Moreover, a

natural regulation of pests and diseases performed by soil nematodes will reduce our dependence on pesticides.

Ultimately, with reduced farmer intervention and corresponding anthropogenic impact, systems will be less

disturbed and soils healthier.

4. How Nematodes Promote Soil Resilience
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As highly adaptable animals, with diverse roles in ecosystem functioning, the physiological and life history traits of

nematodes make them less susceptible to environmental changes compared to larger fauna higher-up in the food

web. Indeed, these characteristics could prove useful for the resistance and resilience of soils to natural and

anthropogenic changes.

To better comprehend the role of bacterivores in maintaining functional stability of ecosystems under disturbance,

Chen et al.  studied their contributions to promoting soil resistance and resilience under copper and heat stress.

The relative shifts in two dominant bacterivore genera, Acrobeloides and Protorhabditis, responded differently to

disturbance. Protorhabditis exhibited greater resistance and resilience to copper stress compared to Acrobeloides,

while both genera displayed higher resilience only by the end of the experiment under heat stress. Indeed,

bacterivores showed a positive effect on soil resilience under thermal stress starting at 28 days. The increase in

relative abundance of bacterivores did not significantly affect soil resistance in terms of microbiota but it improved

soil resilience to copper stress. The differences in responses of soil function to disturbance highlight the role of

bacteria-feeding nematodes in promoting ecosystem stability under stress. To determine the effects of soil

properties, rainfall, and temperature on soil nematodes, da Silva et al.  analyzed the changes in nematode

community structure under contrasting types of land use in a seasonally dry tropical forest in Brazil. Nematofauna

composition in the secondary forest differed in abundance and richness compared to agricultural systems, being

expectedly higher in the former and lower in the latter, with bacterivores and omnivore–predators more susceptible

to the type of land use. The variation in taxonomic composition among the studied sites was strongly related to soil

properties, monthly mean rainfall, and temperature, which accounted for 65.42% of the total variation. These

results further indicate that anthropogenic activities, expressed by the conversion of native vegetation to cropping

systems, which modify soil characteristics, as well as climate variables, negatively affect the structure and

composition of nematode communities. Nevertheless, changes in nematode community composition and structure

can be reversed by allowing the fields to undergo secondary forest regeneration after abandonment. Seeking to

identify the major ecological predictors of soil invertebrate diversity, Bastida et al.  surveyed 83 locations in six

continents, from polar to arid climates, to study three soil invertebrates: nematodes, arachnids, and rotifers.

Different ecosystem types such as forest, grasslands, and shrublands were included in the survey and nematodes

were the most abundant, accounting for 43% of all taxa surveyed. Aridity was detrimental to the diversity of

nematodes, whereas forest, plant richness, and annual net primary productivity were positively correlated. These

findings exposed potential vulnerabilities of soil invertebrates to climate change in locations where hotter

temperatures may occur in the future. Moreover, deforestation processes and increase in aridity may reduce

nematode diversity, providing evidence of the importance of vegetation and climate for the diversity of soil

invertebrates. Considering an increasing likelihood of extreme climatic events, Majdi et al.  exposed five species

of free-living bacterivorous nematodes to a wide range of temperatures under controlled conditions, and their

population growth rates and body-size distributions were measured. Body size at maturity was inversely

proportional to temperature, mature females were laying a smaller number of eggs at higher temperatures, and a

prevalence of early juvenile stages resulted in reduced body-mass structure with increasing temperature.

Additionally, closely related species like Plectus acuminatus and P. cf. velox had very different thermal tolerance

ranges, with the population growth of most tested species declining between 25 and 30 °C, and A. nanus exhibiting
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the broadest thermal tolerance range. This study demonstrated how thermic stress can induce changes in the

growth and size–structure of bacterivores. To investigate the community-weighted mean body mass of soil

nematodes, Andriuzzi et al.  studied the role of water availability in the body size of these invertebrates across

a gradient of precipitation in North American grasslands, ranging from arid to semiarid and mesic conditions. An

increase in nematode community-weighted mean mass from arid to mesic conditions was observed, but no effects

were reported at the arid site. When grouping community-weighted mean mass by feeding habits, only plant-

parasitic nematodes showed a positive response to water input in semiarid and mesic conditions. This suggests

that aridity acts as a buffer against large-bodied nematodes, limiting community body size shifts in response to

extreme events, either drought or rainfall. Aiming to study the latitudinal variation in soil nematode communities

under climate warming-related range-expanding and native plants, Wilschut et al.  showed that the composition

of soil nematode communities changes across a latitudinal gradient, but not their richness or abundance, with plant

species identity (both range-expanding and native plant species) being the strongest predictor of this shift. These

findings further indicate that this variation is less dependent on soil characteristics, such as pH and soil moisture. In

addition, plant species that expand their range due to climate warming may experience advantages by being free

from nematode herbivory in their new habitat. A plant removal experiment was set up by Wang et al.  to better

understand how dominant vegetation changes impact nematode assemblages. Edaphic properties, especially soil

C and N content, were the primary drivers of nematode community structure and community-weighted mean

biomass, with no observable short-term effects resulting from vegetation removal. However, long-term effects on

nematode assemblages are expectable due to nutrient flow mediated by shifts in vegetation composition. To

characterize and explore the relationship between soil biota and plant diversity and productivity, Bennett et al. 

carried out a long-term experiment. Plant species richness had a positive effect on fungi, including increased

arbuscular mycorrhizal fungi, while reducing plant-parasitic nematodes. Overall, soil biota resistance to disturbance

increased with plant diversity, highlighting the importance of plant species richness for belowground communities.

To evaluate the impacts of various measures of trophic diversity, climate, and soil environmental factors across

three spatial scales, Wu et al.  conducted a field survey on the stability of ecosystems on the Mongolian

Plateau. Soil biota diversity, including α-and β-diversity, positively contributed to ecosystem stability, with soil

nematode diversity and trophic groups associated with higher ecosystem stability. The relatively low abundance of

herbivores may have contributed to enhanced plant performance by increasing root exudation, which stimulated

microbial activity and nutrient availability. The positive association of soil biota diversity with ecosystem stability

was similar to that of plant diversity in some cases. Similarly, an increase in the abundance of higher trophic levels

such as omnivores–predators and microbial-feeding nematodes may have resulted in improved nutrient transfer to

plants, leading to enhanced plant productivity and maintaining ecosystem stability through top–down effects.

Severe anthropogenic impacts often lead to simplified soil food webs, with limited top–down control by omnivores–

predators, ultimately compromising ecosystem functioning and impairing their natural ability to mitigate the effects

of climate change. It is therefore crucial to restore the complexity of soil food webs to enhance soil resilience to

climate change.
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