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The materials for additive manufacturing (AM) technology have grown substantially over the last few years to fulfill

industrial needs. Despite that, the use of bio-based composites for improved mechanical properties and biodegradation is

still not fully explored. This limits the universal expansion of AM-fabricated products due to the incompatibility of the

products made from petroleum-derived resources. The development of naturally-derived polymers for AM materials is

promising with the increasing number of studies in recent years owing to their biodegradation and biocompatibility.

Cellulose is the most abundant biopolymer that possesses many favorable properties to be incorporated into AM

materials, which have been continuously focused on in recent years. This critical review discusses the development of AM

technologies and materials, cellulose-based polymers, cellulose-based three-dimensional (3D) printing filaments, liquid

deposition modeling of cellulose, and four-dimensional (4D) printing of cellulose-based materials. Cellulose-based AM

material applications and the limitations with future developments are also reviewed.
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1. Introduction

The world population increases by 227,400 people a day, and this situation increases the burden on the earth as the world

population is expected to reach 10.74 billion by 2100, which can be extremely detrimental from an environmental

perspective . Due to the increase in population, intense research has been done to cope with the manufacturing

demands; consequently, unsustainable production from non-renewable resources resulted in significant global pollution

and climate changes. Only 10% of plastics are recycled, 60% is dumped in landfills, and 30% are unaccounted for, which

can be discarded in any part of the environment, thus resulting in environmental issues . By 2050, the plastic industry

may need 20% of the crude oil supply to accommodate plastic production if the trend remains unchanged . The

decrease in fossil fuel resources and the increase in plastic consumption drive the search for alternative resources and

technologies for more sustainable and environmentally friendly plastic production. Sustainable plastic materials should be

produced from renewable resources without damaging the environment, easily recycled, and biodegradable under certain

environmental conditions with low energy consumption. Cellulose as a sustainable material is known to be the most

abundantly available component of biomass that covers up to 50 wt. % of lignocellulosic biomass . Various types of

cellulose can be used to synthesize nanocellulose from the cellulose, such as cellulose nanofibrils (CNF), cellulose

nanocrystals (CNC), and bacterial nanocellulose (BNC). These nanocellulose products vary in terms of properties,

morphology, and crystallinity, depending on the extraction method and biomass used . The utilization of cellulose fiber

as the feedstock for injection molding has now expanded to AM, which is among the coveted industries in the world. 

AM is the process of manufacturing materials layer by layer to fabricate precise three-dimensional (3D) models using data

from computer-aided design (CAD) software . AM has expanded to various industries, including metal, ceramic, and

medical applications, and the current focus of this technique is bioprinting cardiovascular application, which involves 3D-

printed heart valves . Therefore, many naturally derived polymers are used in current studies for the preparation of

scaffolds by 3D printing due to the large potential in biomedical applications, particularly the replacement and

regeneration of cells, tissues, or organs. AM of cellulose-based materials is a promising option due to the renewable

source and low cost of extraction with lower environmental degradation.

2. Polymer-Based Additive Manufacturing

AM technologies are the essential part of the whole 3D printing, bridging the 3D models, materials, and final applications

based on the products needed by the industry. Originally, 3D printers were used to produce one or two fast prototype

models to help developers fix faults and change the product as a fast prototyping solution. Different technologies have

been developed by varying the technique of printing product on the build platform and the materials used for printing. By
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referring to ASTM Standard F2792, the American Society for Testing and Materials (ASTM) has documented 3D printing

technologies into seven categories, namely material extrusion, powder bed fusion, vat photopolymerization, direct energy

deposition, binder jetting, material jetting, and sheet lamination, as shown in Figure 1. 

Figure 1: Additive manufacturing technologies category

Polymer shows a major contribution in AM, whereby parts produced from the polymer are recorded with 51% contribution,

29% metal and polymer, and 19.8% is metal product . Among the many available AM techniques producing 3D-printed

polymers, Fused Deposition Modeling (FDM) is mainly used for fabrication. Due to the feasibility of this technology, it has

been used as part of educational kits, prototypes, visual aids, and presentation models. However, due to the lack of

technical skills and quality of the 3D printer, the end-user tends to produce massive waste from supportive material, failed

products, and broken plastic parts. Thus, modifications are needed to be done to have a biodegradable based polymer in

3D printing industry to enhance the properties and reducing the burden on fossil fuel industry. Table 1 shows the recent

study done to incorporate different types of fillers in commercial 3D printing polylactic acid (PLA) FDM filament.

Table 1: The modification approaches on the biodegradable of PLA

Filler
Filler Fraction
(%)

Composite Tensile
Strength (MPa)

Difference (%) Ref

Modified carbon fiber 34 91.0 +225.0

Carbon fiber 28 61.4 +36.8

Graphene nanoplatelets 10 40.2 +27.2

Rice husk 20 53.0 +18.3

Ceramics 40 43.2 +1.9

3. Cellulose-Based Polymers in 3D Printing Technology

The main principles of both green chemistry and green engineering is focusing on the prevention of new generation

waste. The prevention can be started in this new emerging technology by introducing sustainable and biodegradable

materials in 3D printing applications. As early as possible, the polymer-based material used in the AM should pursue

cradle to cradle design. On top of mechanical properties, the capability of cellulose-based polymer as bio-filler and

hydrogel matrix will be a key to developing sustainable additive manufacturing

3.1 Fused Deposition Modeling Filament

Cellulose particles in micro/nano size can be incorporated in 3D printing filaments to increase the mechanical properties

of the printed products. This is due to the properties of cellulose, especially nanocellulose that possesses high surface

area, high mechanical properties, and shear-thinning properties, thus making cellulose suitable for many applications.
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Table 2 reviews the typical reinforcement of cellulosic materials in commercial thermoplastic filaments for the FDM printing

technique.

Table 2. Recent findings on the cellulose composited in thermoplastic filament for FDM extrusion.

Polymer/

Cellulose

Composition (wt%)

Extrusion
Technique

FDM
Printer

Nozzle
Temp.
(°C)

Nozzle
Diameter
(mm)

Improvements. Ref.

73.5% PLA, 24.5%

PHB, 1% CNC, 1%

dicumyl peroxide

 

Twin-screw

WASP

Delta 2040

Turbo 2

200 0.4

Mechanical

properties and

thermal stability

93% PLA, 7%

Hydroxypropyl

methylcellulose

 

Single-screw Ender-3S 200 0.4
Thermal properties

and contact angle

70% PLA, 25%

recycled PLA, 5%

MCC, 0.5 phr epoxy-

based chain extender

 

Twin-screw
LulzBot

TAZ 6
200 0.5

Tensile strength,

modulus and Izod

impact strength  

95% ABS, 5%

CNC/Silica

nanohybdrids

Twin-screw
S1 Architect

3D
235 0.3

Reduced warping,

tensile strength, and

layer adhesion

]

90% Polycaprolactone,

(PCL), 10% MCC

 

Single-screw Prusa i3 210 0.4
Mechanical strength

and cell proliferation

3.2 Vat Photopolymerization

Apart from FDM, VP has also been extensively improved through the development of liquid photopolymer resin due to the

accuracy of the printed product, even though the method is comparatively longer than the extrusion technique. Research

on the incorporation of fillers in resin is increasing in recent years, and one of the main approaches is cellulose-based

fillers. The purpose of the incorporation is to improve the mechanical properties and thermal stability of the printed

product. The compilation of the recent activity on the addition of cellulose-based polymer in photopolymeric resins is

simplified in Table 3.

Table 3. The compatibility of cellulose-based biopolymer as a filler in photopolymeric resins.
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Cellulose
Composition

3D
Printer

Printing Parameter
Solidification
Method

Potential
Application

Ref.

Polyurethane aryclate,

CNF-rGO, CNF-PEG

Wanhao

Duplicator

D7 Plus

UV light of

wavelength 405 nm
UV curing

Bio based

resin

Polymethyl

methacrylate (PMMA),

CNC-Silver

Nanoparticles (CNC-

AgNPs)

Envision

TEC

Layer thickness 100

μm, 4.4 s exposure

time, UV intensity

2500 μm/cm

UV curing

Dental

restoration

material

CNC, methacrylate

resin
Form 1+ N/A

Photocuring

and heating

Electronic,

engineering

and tissue

engineering

Ethyl cellulose

macromonomerm

resin-based monomer

Creality,

LD 001,
N/A Photocuring

Flexible

electronic

materials

CNC, PEGDA, 1,3-

diglycerolate diacrylate

(DiGlyDA)

DLP 3D

printer

Layer thickness 100

μm, 4.0 s exposure

time, UV intensity 18

mW/cm

 UV curing
Biomedical

application

3.3 Liquid Deposition Modeling

As cellulose solution has the shear-thinning property, the solution can be readily used for ME printing technique, which is

usually known as direct ink writing for liquid deposition modeling (LDM). The product printed with liquid cellulose should

retain the shape after printing; thus, viscosity is essential, which is directly related to the concentration of cellulose and the

shear rate applied. High mechanical strength of the printed part is vital to maintain the printed shape; therefore, increasing

the concentration of cellulose can improve strength and reduce shrinkage, which consequently reduces the accuracy and

smoothness of the printed part. Table 4 reviews the studies done on liquid deposition of cellulose-based materials using

various printing techniques and materials. 

Table 4. Review of cellulose matrix as 3D printing hydrogel using LDM technique.

Cellulose
Composition

3D Printer Printing Parameter
Solidification
Method

Potential
Application

Ref.

Dialdehyde

CNC, gelatin
Bio-Architect

Nozzle 0.21 mm,

Extrusion pressure

100–250 kPa, Print

speed 10–40 mm/s

 

Crosslinking

with Ca

Tissue

engineering
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CNF, Alginate
Regemat3D

Designer

Nozzle 0.58 mm,

Flow speed 3.0

mm/s

 

Crosslinking

with CaCl

Tissue

engineering

Bacterial

CNF, silk

fibroin

(SF)/gelatin

composite

3D Bioplotter

Nozzle 0.41 mm,

Extrusion pressure

1–2 bar, Print speed

3.0

 

Crosslinking

with genipin

Biomedical

applications

CNF,

xylan-

tyramine

3D

bioprinter,

RegenHU,

Switzerland

Nozzle 0.42 mm,

print speed 40 mm/s,

layer height 0.4 mm

 

Crosslinking

with H O

Clothes,

packaging,

health care

products,

furniture

CNF, CMC
Bioscaffolder

3.1

Nozzle 0.25 mm,

Extrusion pressure

260 kPa, print speed

15 mm/s

 

Crosslinking

with

dehyrothermal

treatment

(DHT)

Bone tissue

engineering

4. Cellulose-Based Polymers in 3D Printing Technology

The merging of 3D printing technology and cellulose-based smart materials will be able to fabricate 4D-printed cellulose-

based materials that can change shape over external stimuli. Many types of cellulose that are responsive to various

stimuli reviewed in the previous section are suitable for the production of 4D cellulose materials. As cellulose possesses

many useful properties such as biocompatibility, biodegradability, high mechanical properties, and thermal stability, the

material will be a driving factor for the fabrication of cellulose-based 4D materials for applications in tissue engineering

and medical applications. Table 5 reviews the studies done on 4D-printed cellulose-based materials using LDM technique.

Table 5. Review of 4D printed cellulose based materials using LDM technique.

Cellulose Composition 3D Printer
Printing
Parameter

Solidification
Method

Stimulus
Potential
Application

Ref.

CNF, clay, N-

isopropylacrylamide

 

ABG 10000,

Aerotech

Nozzle

0.15–1.5

mm

UV Curing Water

Tissue

engineering

and soft

robotics

applications

CMC, cellulose fibers,

HEC, clay
Prusa MK2

Nozzle 0.8

mm, layer

height 0.6

mm

Crosslinked with

citric acid
Water

Tissue

engineering

applications  
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HEC, MFC, citric

acid/hydrochloric acid,

lignin

Modified

TEVO

Tarantula i3

Nozzle

0.55–4 mm

Crosslinking using

citric

acid/hydrochloric

acid

Water
Biomedical

application  

MFC, PVA
3D Bioplotter,

EnvisionTEC

Extrusion

pressure

5.0 bar,

print speed

xy 400

mm/min,

print speed

Z 350

mm/min,

layer

thickness

0.67 mm

Crosslink using

glyoxal solution

Heat and

Water

Tissue

engineering

applications

N-isopropylacrylamide,

CMC, sodium alginate,

acrylamide

Custom built

printer

Extrusion

flow rate 1.0

μL/s, print

speed 1.0

mm/s

Irradiation with UV

light, then soaked

in water

Heat

Environmental

monitoring and

medical

applications

5. Summary, Conclusions, and Future Trends

AM is a growing industry, and continuous research is being done to improve the technology and materials available. The

development of materials with composites enables the fabrication of products with better mechanical properties, which

can be fine-tuned according to the demand. AM enables the fabrication of customized products according to customer’s

design requirement and offers design flexibilities. AM plays a vital role in reducing the burden of traditional manufacturing

processes in the fabrication of prototypes and testing the properties of the printed products.

Currently, more sustainable materials are preferred; as most of the AM materials are made from non-renewable

resources, naturally-derived materials are adapted, and new studies are being done to improve interfacial adhesion and

voidance for the application in various fields. Some applications such as wound healing or drug delivery cannot adapt AM

until natural polymers are adopted as they are biocompatible. The proof of concept and in vivo studies are being

continuously done in order to use natural-based materials for AM so that the applications can be broadened, where the

materials will be the future trend of material development.

Cellulose, which is mainly derived from lignocellulosic biomass, possesses various useful properties; hence, more studies

should be done to incorporate cellulose in AM. The potential of cellulose materials in AM is yet to be fully tapped, even

though major developments can be seen in recent years with studies being conducted for various applications. Surface

grafting of cellulose can nullify the hydrophilicity of cellulose, and hence voidance and interfacial adhesion can be

improved. Further research should be carried out continuously to improve the mechanical properties so that AM-fabricated

products will have better mechanical properties than traditionally-manufactured products. The increment of cellulose

percentage in 3D printing filaments is also essential to improve the biodegradability of filaments and reduce the burden on

petroleum resources, as well as to protect the environment as petroleum-based materials emit unpleasant odors.
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Liquid deposition modeling of cellulose materials should also be further studied as the rheological properties of cellulose

and cellulose derivatives favor the extrusion process. A high concentration of cellulose should be incorporated due to its

high mechanical properties, and the structure of the printed part can be maintained after printing. Studies have shown that

in vivo 3D-printed BC was able to cure diabetic wounds within four months, and many more studies should be done to

present further proof. Cellulose materials can be synthesized with the desired properties according to the needs of

applications and incorporated in AM for various types of applications with the developing technology.

4D printing of bio-based materials is a newer technology compared to other AM-based technologies. Cellulose-based 4D

printing materials are majorly developed based on water and heat stimuli. Further studies should be done on other

stimulus-responsive cellulose-based materials for 4D printing, as vast cellulose smart materials are available and

developed continuously. The development of cellulose-based 4D printing will contribute majorly in tissue engineering and

drug delivery application, which can also change the prospect of the healthcare industry in the treatment of patients by

using AM technologies.
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