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Ammonia nitrogen is the major oxygen-consuming pollutant in aquatic environments. Exposure to ammonia nitrogen in

the aquatic environment can lead to bioaccumulation in fish, and the ammonia nitrogen concentration is the main

determinant of accumulation. In most aquatic environments, fish are at the top of the food chain and are most vulnerable

to the toxic effects of high levels of ammonia nitrogen exposure. In fish exposed to toxicants, ammonia-induced toxicity is

mainly caused by bioaccumulation in certain tissues. Ammonia nitrogen absorbed in the fish enters the circulatory system

and affects hematological properties. Ammonia nitrogen also breaks balance in antioxidant capacity and causes oxidative

damage. In addition, ammonia nitrogen affects the immune response and causes neurotoxicity because of the physical

and chemical toxicity. 
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1. Introduction

Ammonia nitrogen is the final product of protein catabolism and metabolism. In farming water, ammonia nitrogen is mainly

derived from the decomposition process of organic matter. It is the most common environmental limiting factor in

aquaculture . The ammonia concentration in naturally occurring water is approximately 0–0.2 mg/L, which is at a low

level. However, with the development of culturing systems, the excessive concentration of ammonia nitrogen in farmed

water has become a common environmental problem. Ammonia has the greatest impact on the physiological function of

aquatic organisms. Ammonia can accumulate quickly and reach toxic concentrations . There are two main reasons for

the growth of the mass concentration of ammonia nitrogen in farming water: one is the decomposition of organic matter

containing nitrogen such as feed residues and aquatic animal excreta . High-density farming increases the burden of

these substances, resulting in the accumulation of ammonia nitrogen. The second is industrial wastewater, domestic

sewage discharge, etc. In various regions of fertilization of pesticides agriculture, the massive use of nitrogen fertilizers,

mainly ammonium chloride and urea, entering the farming water with the washout of rainwater and surface runoff .

Ammonia nitrogen is the sum of ammonia present in water in two forms of ionized (NH ) and non-ionic ammonia (NH ),

which is also called total ammonia (TAN) . The equilibrium reaction equation of both is

(1)

Ammonia nitrogen is the main product of fish metabolism, and most fish are sensitive to ammonia . The increase of non-

ionic ammonia in the water environment will inhibit the excretion of ammonia nitrogen in the fish and increase the

concentration of ammonia in their blood and tissues, making the blood less capable of carrying oxygen and disrupting

normal metabolism. Non-ionic ammonia is the main toxic form of physiological stress in fish and is about 300 to 400 times

more toxic than ionized ammonia . Non-ionic ammonia has good lipid solubility and carries no electric charge, making it

more easily fuse with the phospholipid bilayer on the cell membrane, thus diffusing through the cell membrane to the

hemolymph and increasing the concentration of ammonia nitrogen in fish, producing toxic effects . Furthermore, non-

ionic ammonia has good lipid solubility. It can easily diffuse into fish through cell membranes, causing damage to

important organs, including gill tissue, resulting in respiratory difficulties and reduced feeding rate of fish, and inhibiting

their growth and development . The non-ionic ammonia which enters the fish directly affects the metabolism of

enzymes, causing disorders of enzyme metabolism and reducing immunity, stimulating a series of toxic reactions in fish,

such as excitement and convulsions until they die of exhaustion .

We comprehensively analyzed the main toxicological characteristics and physiological reaction processes of fish after

exposure to ammonia (Figure 1). The toxicity of ammonia nitrogen is manifold, and therefore it is necessary to conduct an

overall research and analysis to confirm the adverse effects of ammonia nitrogen on fish. Thus, the aim of this review was
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to summarize changes in ammonia accumulation patterns, oxidative stress, neurotoxicity and changes in immunological

reactions in fish following exposure to ammonia nitrogen.

Figure 1. Toxicological characteristics and physiological response process for fish exposed to ammonia . AMM:

ammonia; COR: cortisol; SOD: superoxide dismutase; CAT: catalase; GSH: glutathione; GST: Glutathione S-transferase;

TBARS: Thiobarbituric reactive substances; MDA: malon dialdehyde; RBC: red blood cell count; Hb: hemoglobin; Ht:

hematocrit; GLU: glucose; AST: aspartate transaminase; ALT: alanine transaminase; ALP: alkaline phosphatase; Ils:

interleukins; TNFs: tumor necrosis factors; FER: feed efficiency ratio; SGR: specific growth—Reprinted from Ref. .

2. Bioaccumulation

The toxicity of ammonia to fish mostly results from bioaccumulation as well as excretion, metabolism and detoxification

mechanisms caused by ammonia nitrogen uptake . In water, ammonia is present as non-ionic ammonia (NH ) and

ionized ammonium (NH ), the latter accounting for a large proportion at normal water pH . Most biofilms are not

permeable to ammonium ions but are permeable to ammonia. Thus, the ammonia toxicity is owing to its non-ionic form

(NH ), which can easily spread through gill membranes . Furthermore, provided there is an outward gradient, the

ammonia can be discharged into water as NH  through gills, and this process is aided by Rhesus (Rh) glycoproteins .

However, under high ambient ammonia (HEA), the external ammonia flux through gills is decreased and the inverse

internal flux of ammonia occurs. Therefore, ammonia levels in blood and tissues increased and acute and chronic toxic

reactions were observed in fish .

Ammonia toxicity to fish has been demonstrated to follow a multifactorial pathogenesis. It is generally considered that

NH  enters the organism through the gills, epidermis, and intestinal mucosa of fish, which increases the blood pH and

reduces oxygen carrying capacity of blood. Long-term exposure to ammonia also damages gill tissue, leading to gill tissue

congestion, gill lamellae bending and adhesion, affecting gill gas exchange, inhibiting the respiratory function of the

organism, leading to fish hypoxia and even death . After ammonia diffuses into the tissues, the ammonia level increases

, damaging the liver and kidney system, resulting in congestion, edema, liver coma and even death .

Ammonia can also damage the central nervous system of fish. Initially, researchers believed that mechanisms of

ammonia poisoning of fish were similar to those of hepatic encephalopathy in mammals . This is because high levels of

non-ionic ammonia (NH ) in the brain synthesize high amounts of glutamine (Gln) catalyzed by glutamine synthetase,

swelling neuroglia and activating the N-methyl-D-aspartate (NMDA) receptor . Under normal conditions, the organism

produces Gln mainly from glutamate (Glu) and NH  to remove excess NH  from the brain. Therefore, increased

concentration of NH  in the brain is often accompanied by an increase in the level of Gln. While the excessive increase in

Gln intracellularly leads to astrocyte swelling , triggering brain edema and promoting the release of Glu into the

intercellular, causing intracranial hypertension and death . In addition, NH  also causes depolarization of the neuronal

surface. Both Glu and depolarized neurons accumulated intercellularly can activate NMDA receptors located on the

neuronal surface. Excessive activation of this receptor promotes NO synthesis and activates Na /K -ATPase .

Activation of Na /K -ATPase accelerates energy depletion in the brain. The excessive amount of NO not only increased

the oxidative stress in the organism, but also tends to produce extremely toxic hydrogen peroxide, which impairs the

mitochondrial respiration, initiates ATP exhaustion and results in cell death . This assumption has been accepted by

most scholars for a long time. In the early 21st century, several studies confirmed that some fish, such as Cyprinus and

mudskipper, accumulate glutamine after ammonia stress at concentrations much greater than those that constitute lethal

concentrations in mammals . The histological data suggested that the skull of fish has more cranial space than
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mammals and they can bear more cranial pressure . Therefore, fish may have different defense mechanisms to

ammonia toxicity than mammals.

Nevertheless, physical stress responses (or pathological processes) could be triggered by the production of metabolites in

adaptive regulation, for example, the oxidative damage and inflammatory hyperinflammation, which could be the real

reason for fish death . Likewise, Hegazi et al. indicated that ammonia nitrogen stress triggers the formation of reactive

oxygen species, which are also mediators of ammonia toxicity . In recent years, with the continuous innovation of

research methods in aquatic animals, new evidence suggests that ammonia toxicity in fish is associated with the over

inflammatory response of the organism . The exact mechanisms of ammonia toxicity to fish need to be further

examined.

3. Hematological Parameters

The inflow of toxic materials to the water environment affects water parameters and leads to alterations in the fish

hematological profile . Toxic exposure can adversely affect the blood oxygen carrying capacity and the blood

electrolyte balance, especially ammonia exposure can induce the accumulation of ammonia in fish circulatory system. As

ammonia has high affinity for blood hemoglobin, it displaces oxygen and influences some hematological properties .

Hematological properties are significant indicators to assess fish health status after exposed to different environmental

stresses and chemical toxicity . Ammonia enters the fish circulatory system and causes metabolic disturbances

and fatal responses, such as oxidative stress, immune response and genetic expression . Exposure to ammonia also

affects the fish circulatory system, particularly hematological indexes such as red blood cell count (RBC), hematocrit (Ht)

and hemoglobin (Hb) . In general, exposure to toxic substances decreases hematological properties like RBC, Ht and

Hb owing to the hemolysis and red blood cells destruction and may cause anemia . Praveena et al. suggested that the

decrease in RBC and the concentration of hemoglobin resulting from toxicity exposure might be attributed to the

destructive effects of toxicity, but the decrease in the concentration of hemoglobin resulted in a potential impairment of

tissue function because of the inadequate oxygen supply to the tissues . Gao et al. observed significant declines in Hb

content, Ht and blood RBC counts after exposure to high concentrations of ammonia in Takifugu rubripes, suggesting that

the fish was anemic by exposure to ammonia . Hoseini et al. revealed that the increase in radicals exposed to

ammonia could lead to attack on RBCs, leading to their destruction . Researches have revealed that the ammonia

toxicity induces the inhibition of hematopoiesis by destroying the production sites of red blood cells . The onset of

anemia symptoms may be due to destruction of red blood cells or injury to hematopoietic tissues after exposure to

ammonia. Serum proteins are considered to be reliable indicators of fish immune status and health . David et al.

attributed the decreased protein content in the toxically exposed fish to the disruption or collapse of cell functions and the

concomitant impairment of protein synthetic mechanisms . Asthana et al. reported that high concentration of ammonia

resulted in the deamination of proteins and increased the degradation of proteins . Ammonia exposure induced a

reduction in hematological properties like RBC, Ht and Hb in fish, which is considered to account for the stress-induced

decline in Hb content and Hb synthesis rate. Thus, it may exert a toxic effect by inducing disturbances in tissue

oxygenation.

Ammonia absorbed in fish diffuses through cell membranes into the blood system and causes accumulation. Therefore,

hematological parameters usually act as sensitive indicators to evaluate the toxicity of ammonia to fish . The effects of

ammonia on fish hematological parameters are shown in Table 1, regarding the route of exposure (freshwater, seawater,

waterborne exposure). The decrease in hematological properties induced by ammonia exposure is manifested by

disruption of RBC and alteration of the small or large red blood cell anemic state. Das et al. reported changes in blood

characteristics (such as RBCs and hemoglobin) of Cirrhinus mrigala after exposure to ammonia . This phenomenon

causes tissue damage due to ammonia toxicity and hemodilution after hemolysis. Iheanacho et al. showed that changes

in RBC content, hematocrit values and hemoglobin concentration reflected the fish defensive mechanisms against stress

induced by exposure to environmental toxicity . Kim et al. revealed that the ammonia exposure greatly decreased the

levels of hematocrit and hemoglobin in juvenile hybrid grouper . These authors considered that fish tissues might be

under hypoxic conditions because of ammonia exposure and may result in the inhibition and depletion of hematopoietic

potential under that condition.

Table 1. Hematological parameters in fish exposed to ammonia.

Exposure
Route

Exposure
Type Fish Specie Ammonia

Concentration
Exposure
Time

Response
Concentration

Response
* Reference

RBC (Billion/mL)
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Exposure
Route

Exposure
Type Fish Specie Ammonia

Concentration
Exposure
Time

Response
Concentration

Response
* Reference

Sea water Waterborne
exposure Takifugu rubripes 5, 50, 100, 150

mg/L
24, 48, 96

h 100, 150 mg/L − Gao et al.
 2021

Freshwater Waterborne
exposure

Cyprinus carpio 106mg/L 24 h 106 mg/L − Hoseini et
al.  2019

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L − Zhang et

al.  2019

Ht (%)

Sea water Waterborne
exposure

Takifugu rubripes 5, 50, 100, 150
mg/L

24, 48, 96
h

50, 100, 150
mg/L − Gao et al.

 2021

Piaractus
mesopotamicus 1, 2, 3 mg/L 96 h 2, 3 mg/L + Edison et

al.  2015

Freshwater Waterborne
exposure

Cyprinus carpio 106 mg/L 24 h 10 6mg/L − Hoseini et
al.  2019

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L − Zhang et

al.  2019

Hb (g/L)

Sea water Waterborne
exposure

Takifugu rubripes 5, 50, 100, 150
mg/L

24, 48, 96
h

50, 100, 150
mg/L − Gao et al.

 2021

Piaractus
mesopotamicus 1, 2, 3 mg/L 96 h 2, 3 mg/L − Edison et

al.  2015

Freshwater Waterborne
exposure

Cyprinus carpio 106 mg/L 24 h 106 mg/L − Hoseini et
al.  2019

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L − Zhang et

al.  2019

Glucose (mg/dL)

Sea water Waterborne
exposure

Takifugu rubripes 5, 50, 100, 150
mg/L

24, 48, 96
h

50, 100, 150
mg/L + Gao et al.

 2021

Litopenaeus
vannamei

0.32, 0.44, 0.60
mg/L

6 h, 12 h,
1 day, 2

days

0.32, 0.44, 0.60
mg/L +

Cui et al.
 2017

Piaractus
mesopotamicus 1, 2, 3 mg/L 96 h 2, 3 mg/L + Edison et

al.  2015

Freshwater Waterborne
exposure

Pelteobagrus
fulvidraco 100 mg/L 24, 48, 72

h 100 mg/L + Zhao et al.
 2021

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L − Zhang et

al.  2019

Cyprinus carpio 0.5 mg/L 24 h 0.5 mg/L +
Mirghaed
et al. 

2019

Total protein (g/dL)

Sea water Waterborne
exposure

Takifugu rubripes 5, 50, 100, 150
mg/L

24, 48, 96
h

50, 100, 150
mg/L − Gao et al.

 2021

Epinephelus
fuscoguttatus ♀ × E.

lanceolatus ♂
1, 2, 4, 8 mg/L 1week, 2

weeks 8 mg/L −
Kim et al.

 2020

Freshwater

Waterborne
exposure

Pelteobagrus
fulvidraco 100 mg/L 24, 48, 72

h 100 mg/L + Zhao et al.
 2021

Inject Ctenopharynodon
idellus 9 μL 96 h 9 μL × Xing et al.

 2016

AST (U/L)
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Exposure
Route

Exposure
Type Fish Specie Ammonia

Concentration
Exposure
Time

Response
Concentration

Response
* Reference

Freshwater Waterborne
exposure

Pelteobagrus
fulvidraco 100 mg/L 24, 48, 72

h 100 mg/L + Zhao et al.
 2021

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L + Zhang et

al.  2019

Cyprinus carpio 106 mg/L 24 h 106 mg/L + Hoseini et
al.  2019

ALT (U/L)

Sea water Waterborne
exposure Takifugu rubripes 5, 50, 100, 150

mg/L
24, 48, 96

h
50, 100, 150

mg/L + Gao et al.
 2021

Freshwater Waterborne
exposure

Pelteobagrus
fulvidraco 100 mg/L 24, 48, 72

h 100 mg/L + Zhao et al.
 2021

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L × Zhang et

al.  2019

Cyprinus carpio 106 mg/L 24 h 106 mg/L + Hoseini et
al.  2019

ALP (U/L)

Freshwater Waterborne
exposure

Pelteobagrus
fulvidraco 100 mg/L 24, 48, 72

h 100 mg/L × Zhao et al.
 2021

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L × Zhang et

al.  2019

Cyprinus carpio 106 mg/L 24 h 106 mg/L + Hoseini et
al.  2019

* +: increase, −: decrease, ×: no effect.

The balance of glucose levels is maintained by balancing the production of glucose and the storage of glucose as

glycogen . Glucose metabolism meets the energy requirements of the organs and tissues, which can mediate the

ammonia response. Zhao et al. reported a significant increase in glucose in juvenile yellow catfish, Pelteobagrus
fulvidraco, exposed to ammonia . Long-term exposure to ammonia results in a dramatic elevation of blood glucose

in Litopenaeus vannamei owing to the impaired glucose metabolism in the liver . Lower glucose levels were critical for

reducing tissue injuries and maintaining low levels of gene expression of pro-inflammatory cytokines in stressful

conditions . Changes in glucose levels in fish caused by ammonia exposure were attributed to stress responses or

disturbances in homeostasis.

Enzyme plasma components including aspartate transaminase (AST), alanine transaminase (ALT) and alkaline

phosphatase (ALP) are recognized as credible and sensitive biological indicators for evaluating damages to the liver and

other fish organs following environmental stress . Plasma ALT and AST levels play important roles in indicating

hepatopancreatic functions and injuries, and can be used as sensitive indicators of hepatocyte integrity . Zhao et al.

revealed that AST and ALT levels were significantly increased in juvenile yellow catfish, Pelteobagrus fulvidraco, exposed

to ammonia, which may be due to damage to cell membranes and liver . Hoseini et al. recorded significant increases in

ALT, AST and ALP of Cyprinus carpio following ammonia exposure, which may be due to damage to cell membranes .

Zhang et al. reported that ALP levels were significantly increased in Megalobrama amblycephala exposed to ammonia .

ALP is an important indicator reflecting liver damage, so the upward trend in ALP in Megalobrama amblycephala is

thought to be attributed to liver damage and stress caused by ammonia exposure. Peyghan et al. reported that ammonia

exposure induced a remarkable increase in ALP in Cyprinus carpio, indicating that hematological parameters were

affected .

Ammonia enters the circulation and disrupts blood proteins participated in lipid metabolism, immune defense, blood

coagulation and molecular transport, when fish are exposed to ammonia . Specifically, ammonia particles may affect

various blood physiologies through chemical and physical interactions in the blood. Various studies have confirmed

changes in various hematological properties following ammonia exposure, and hematological parameters may be a

reliable indicator for assessing fish toxicity.
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4. Oxidative Stress

Oxidative stress is one of the toxicity mechanisms of ammonia nitrogen stress in aquatic animals . It has been shown

that the increase in the concentration of ammonia nitrogen in aquaculture water can result in the production of reactive

oxygen species (ROS) in aquatic animals . ROS combines with unsaturated fatty acids and cholesterol on the cell

membrane to produce lipid peroxidation, which leads to reduced mobility and greater cell membrane permeability.

Disturbance of the distribution of proteins across the cell membrane leads to cell membrane dysfunction and apoptosis 

. In order to counteract antioxidant stress and maintain the balance of the redox state of cells, antioxidant defense

systems have evolved to function at different levels to avoid or repair this damage . The mechanism of oxidative stress

in fish exposed to ammonia is shown in Figure 2. Studies have reported that the activities of antioxidant enzymes can be

elicited in low concentrations of pollutants and disrupted in high concentrations . When physiological antioxidant

system is unable to counteract the increased levels of stress-generated ROS, cellular oxidative stress occurs .

Figure 2. Oxidative stress mechanisms in fish exposed to ammonia . H O : hydrogen peroxide; SOD: superoxide

dismutase; CAT: catalase; GSH: glutathione; GST: Glutathione S-transferase; TBARS: Thiobarbituric reactive substances;

MDA: malon dialdehyde; GPx: glutathione peroxide; GR: glutathione reductase; GSSG: glutathione; NADPH: nicotinamide

adenine dinucleotide phosphate—Reprinted with permission from Ref. . 2021 Jun-Hwan Kim, Young-Bin Yu, Jae-Ho

Choi.

Table 2 shows the responses of antioxidant enzymes in fish exposed to ammonia. The oxidative stress in fish exposed to

ammonia stress is indicated by changes in the production of ROS in fish. One of the main defense strategies to reduce

ROS production is by raising the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT),

and glutathione (GSH) . Antioxidant enzymes are widely present in tissues and are most abundant in

hepatocytes . Under stress, fish can protect the structure and function of cell membranes from peroxides by

converting O  to H O  through SOD, GSH and CAT and by breaking down cytotoxic H O  into oxygen and water .

Table 2. Antioxidant enzyme responses such as SOD, CAT and GST in fish exposed to ammonia.

Exposure
Route

Exposure
Type Fish Specie Ammonia

Concentration
Exposure
Periods

Response
Concentration

Target
Organs

Response
* Reference

SOD (Superoxide dismutase)

Sea water Waterborne
exposure

Dicentrarchus
labrax 20 mg/L 12, 48,

84, 180 h 20 mg/L Blood ×
Sinha et

al. 
2015

Epinephelus
fuscoguttatus ♀ ×
E. lanceolatus ♂

1, 2, 4, 8 mg/L 1week, 2
wk 4, 8 mg/L Liver,

Gill + Kim et al.
 2020

Scophthalmus
maximus 5, 20, 40 mg/L 24, 48, 96

h 20, 40 mg/L Liver +
Jia et al.

 2020

Chlamys farreri 20 mg/L 1, 12, 24
d 20 mg/L Blood +

Wang et
al. 
2012

Takifugu rubripes 5, 50, 100, 150
mg/L

24 h 50, 100, 150
mg/L Gill +

Gao et al.
 2021

48, 96 h 50, 100, 150
mg/L Gill −
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Exposure
Route

Exposure
Type Fish Specie Ammonia

Concentration
Exposure
Periods

Response
Concentration

Target
Organs

Response
* Reference

Freshwater Waterborne
exposure

Carassius auratus 10, 50 mg/L 30 d 10, 50 mg/L Liver − Qi et al. 
2017

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L Liver −

Zhang et
al. 
2019

Cyprinus carpio 106 mg/L 24 h 106 mg/L Blood ×
Hoseini et

al. 
2019

Oreochromis
niloticus 5, 10 mg/L 70 days 5, 10 mg/L Liver,

Muscle +
Hegazi et

al. 
2010

CAT (Catalase)

Sea water Waterborne
exposure

Dicentrarchus
labrax 20 mg/L 12, 48,

84, 180 h 20 mg/L Blood +
Sinha et

al. 
2015

Scophthalmus
maximus 5, 20, 40 mg/L 24, 48, 96

h 20, 40 mg/L Liver + Jia et al.
 2020

Takifugu rubripes 5, 50, 100, 150
mg/L

24 h 50, 100, 150
mg/L Gill +

Gao et al.
 2021

48, 96 h 50, 100, 150
mg/L Gill −

Freshwater Waterborne
exposure

Carassius auratus 10, 50 mg/L 30 days 10, 50 mg/L Liver × Qi et al. 
2017

Megalobrama
amblycephala

5, 10, 15, 20
mg/L 9 weeks 20 mg/L Liver −

Zhang et
al. 
2019

Cyprinus carpio 106 mg/L 24 h 106 mg/L Blood −
Hoseini et

al. 
2019

Corbicula fluminea

10, 25 mg/L 24, 48 h 10 mg/L Digestive
gland +

Zhang et
al. 
2020

10, 25 mg/L 24, 48 h 10 mg/L Gill ×

10, 25 mg/L 24, 48 h 25 mg/L Digestive
gland −

10, 25 mg/L 24, 48 h 25 mg/L Gill +

GST (Glutathione-S-transferase)

Sea water Waterborne
exposure

Dicentrarchus
labrax 20 mg/L 12, 48,

84, 180 h 20 mg/L Blood +
Sinha et

al. 
2015

Takifugu rubripes 5, 50, 100, 150
mg/L

24 h 50, 100, 150
mg/L Gill +

Gao et al.
 2021

48, 96 h 50, 100, 150
mg/L Gill −

Epinephelus
fuscoguttatus♀ × E.

lanceolatus ♂
1, 2, 4, 8 mg/L 1 week 4, 8 mg/L Liver,

Gill +

Kim et al.
 2020

Epinephelus
fuscoguttatus♀ × E.

lanceolatus ♂
1, 2, 4, 8 mg/L 2 weeks 4, 8 mg/L Liver,

Gill −
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Exposure
Route

Exposure
Type Fish Specie Ammonia

Concentration
Exposure
Periods

Response
Concentration

Target
Organs

Response
* Reference

Freshwater Waterborne
exposure

Carassius auratus 10, 50 mg/L 30 days 10, 50 mg/L Liver × Qi et al. 
2017

Paralichthys
orbignyanus 5, 10 mg/L 70 days 5, 10 mg/L Liver,

Muscle +
Hoseini et

al. 
2019

Cyprinus carpio L.

10, 20, 30
mg/L

6, 24, 48
h 30 mg/L Liver +

Li et al.
 2019

10, 20, 30
mg/L

6, 24, 48
h

10, 20, 30
mg/L Gill +

* +: increase, −: decrease, ×: no effect.

SOD is first defense against antioxidant stress . As a primary defense mechanism against antioxidant stress, SOD

transforms superoxide radicals into hydrogen peroxide (H O ). SOD activity in ammonia-exposed fish is usually increased

due to defense mechanisms against ROS production . Changes in SOD concentration appear to be associated with

differences ammonia tolerance of fish. The SOD activity of rainbow trout, carp, goldfish and Dicentrarchus labrax did not

change significantly under ammonia stress . SOD activity decreased significantly in Carassius
auratus and Litopenaeus vannamei . While in Takifugu obscurus and Pelteobagrus vachelli, SOD activity increased

significantly . However, excessive accumulation of free radicals inhibits antioxidant enzyme capacity to scavenge

ROS, and a significant downward trend in SOD activity is observed after a remarkable increase in SOD activity. Kim et al.

found that SOD activity in the liver and gills significantly increased when juvenile hybrid grouper exposure to ammonia.

However, SOD activity in the gills had a downward trend when fish was subjected to high levels of ammonia. . Sun et

al. revealed that when bighead carps were exposed to high concentrations of ammonia, the SOD activity of bighead

carp, Hypophthalmythys nobilis, larvae first increased and then decreased . The SOD activity may be stimulated in

response to excessive ROS production, but then SOD activity declines because they are unable to perform under higher

ammonia concentrations.

Ammonia exposure also leads to reduction in antioxidant enzymes as the energy expended in response to antioxidant

stress. CAT is the major antioxidant enzyme to eliminate H O , a by-product of SOD, thus reducing its toxic effects 

. Xue et al. showed that ammonia exposure can depress normal ROS-mediated oxidative processes and reported a

reduction of CAT activity in Cyprinus carpio following ammonia exposure . Zhang et al. reported that ammonia

exposure decreases SOD and CAT in the digestive gland of Corbicula fluminea after an initial increase. This phenomenon

is thought to be caused by the inhibition of antioxidant enzymes, as the ROS generated in the tissues are not cleared

immediately. The activity of CAT also declined with increasing the concentration of ammonia, which indicated the oxidative

damage and stress . In addition, Wang et al. concluded that the short time increase in antioxidant enzyme activity with

treatment was not sufficient to fully counteract stress-induced cellular damage . In normal conditions, ROS are quickly

removed by the antioxidant defense system. However, stimulated by large amounts of ammonia, excess ROS were

produced, disrupting the cell membrane, forming lipid peroxides and oxidized proteins, and the balance between oxidants

and antioxidants was disrupted. The body’s detoxification function was severely inhibited.

Glutathione S-transferase (GST) functions in the second stage of the fish detoxification metabolism by conjugating to

xenobiotics and clearing them from the cells, and the activity of GST is usually triggered in fish exposed to environmental

toxins . Thus, GST plays a key role in homeostasis and foreign body dissociation, protecting tissues from oxidative

stress of toxicant exposure . Many scholars have reported that ammonia exposure affects GST activity in fish through

the induction of oxidative stress . Maltez et al. suggested that GST activity in Brazilian flounder (Paralichthys
orbignyanus) increased as a result of ammonia exposure and that ROS increased by ammonia exposure stimulated

antioxidant defense . Kim et al. reported that GST activity in juvenile hybrid grouper initially increased significantly and

tended to decrease with higher ammonia exposure concentration and time . Li et al. also reported a significant upward

trend and subsequent downward trend in GST activity in carp following exposure to acute ammonia gas . The decrease

in GST after the initial increase may be caused by excessive ROS production, which is consistent with the changes

observed in SOD activity.

Thiobarbituric reactive substances (TBARS) was used as a measure of lipid peroxidation . It is well known that

oxidative stress is caused by lipid peroxidation, leading to loss of cellular function . TBARS is a sensitive indicator for

estimating lipid peroxidation as its products are produced by peroxidation of membrane lipids . Li et al. reported a

gradual rise in brain TBARS levels in Pelteobagrus fulvidraco exposed to high ammonia. They suggested that elevated
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brain TBARS levels could be an essential factor in the pathogenesis of ammonia toxicity in fish exposed to high

concentrations of ammonia . Almroth et al. suggested that lipid peroxidation in fish occurs during oxidative stress from

environmental toxicants . Aldehydes and ketones scan to crosslink with nucleophilic moieties of proteins, nucleic acids

and aminophospholipids, and greater levels of TBARS result in increased cytotoxicity and accelerated cell and tissue

damage . In particular, as fish contain many highly unsaturated fatty acids (HUFA), TBARS can be used as a biomarker

of oxidative stress .

Excessive ROS production induces oxidative damage when fish were exposed to toxic substances, such as ammonia

nitrogen. Excess ROS may damage cell membranes, form lipid peroxides and oxidize proteins . Usually, MDA is used

as a biomarker of lipid peroxidation because it is an important product of membrane lipid peroxidation following free

radical attack on biological membranes . The changes of MDA content can indirectly reflect the level of disruption of

biofilm system. Li et al. found no significant changes in the MDA content of Cyprinus carpio L. during exposure to 10 mg/L

ammonia water. However, after 48 h of exposure to 30 mg/L ammonia, MDA levels increased significantly . Xue et al.

found that MDA levels had an upward trend when Cyprinus carpio exposed to ammonia . The glutathione redox system

could be triggered by ammonia stress. However, the antioxidant reaction is not sufficient to prevent oxidative damage

caused by increased ammonia concentration. Ammonia exposure has toxic effects on fish through the induction of

oxidative stress and ROS production, and antioxidant enzymes in fish such as SOD, CAT, GST, TBARS and MDA are the

main indicators to reflect oxidative stress caused by ammonia.
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