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Researchers and companies have released multiple datasets of face deepfakes labeled to indicate different

methods of forgery. Naming these labels is often arbitrary and inconsistent. However, researchers must use

multiple datasets in practical applications to conduct traceability research. The researchers utilize the K-means

clustering method to identify datasets with similar feature values and analyze the feature values using the Calinski

Harabasz Index method. Datasets with the same or similar labels in different deepfake datasets exhibit different

forgery features. The KCE system can solve this problem, which combines multiple deepfake datasets according to

feature similarity. In the model trained based on KCE combined data, the Calinski Harabasz scored 42.3% higher

than the combined data by the same forgery name. It shows that this method improves the generalization ability of

the model.

deepfake  datasets  correlation  traceability  clustering  Calinski Harabasz

1. Introduction

With the rapid development of deep learning-driven facial forgery technologies in recent years, such as deepfakes

, there has been a rise in fraudulent practices within media and financial fields, which has sparked widespread

social concern . Consequently, there is a crucial need for the traceability of forged data.

Deepfake tracking methods based on deep learning-based rely on machine learning algorithms’ power to detect

deepfakes. These methods train deep neural networks on large datasets of real and fake images or videos.

However, the category labels in deepfake datasets fundamentally differ from those in the general computer vision

field. The objective category labels have real-world meaning in typical computer vision datasets like CIFAR,

ImageNet, and MNIST. For instance, the labels for salamander and setosa are assigned by biologists based on the

biological characteristics of these species, or humans can accurately recognize facial expressions such as anger or

happiness, as shown in Figure 1. However, humans cannot classify deepfake pictures visually, and the images can

only be named based on their forgery method. Different producers' names given to the forgery methods are highly

subjective and arbitrary. Many “wild datasets” do not provide forgery method labels. Furthermore, subsequent

operations such as image compression and format conversion may significantly alter the forgery characteristics of

the images. This situation leads some researchers to use only one dataset in their experiments. Dealing with those

with similar or identical names can create challenges for users when multiple datasets are employed.
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Figure 1. The first row shows the common CV dataset, the second row shows the human facial expression

dataset, and the third row shows the deepfake dataset.

Measuring the relevance of each deepfake dataset is crucial. To address this problem, We establish the KCE-

System. It uses the Xception model  as a forgery feature extractor that maps various deepfake images into the

feature space. Then, we use PCA for dimensionality reduction and the K-means method for clustering. We use

these clustered datasets to retrain the Xception model and use the Calinski Harabasz Index  to judge the models'

performance. To improve the credibility of the experimental results, we repeat part of the experiments on The

Frequency in the Face Forgery Network (F3-Net)  and Residual Neural Network (ResNet) . We also combine

these deepfake datasets based on forgery method labels as a control group.

Our experiments prove that some forgery category labels of the same name differ significantly across different

datasets. When the forgery method of the deepfake dataset is unknown, the KCE-System can achieve better

generalization performance by training on merged datasets based on closer feature distances.

2. Deepfake Datasets

Numerous deepfake datasets have been created by researchers and institutions, including FaceForensics++ ,

Celeb-DF , DeepFakeMnist+ , DeepfakeTIMIT , FakeAVCeleb , DeeperForensics-1.0 , ForgeryNet ,

and Patch-wise Face Image Forensics . These datasets cover various forgery methods, have significant data

scales, and are widely used. Please refer to Table 1 for more details.
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Table 1. The standard deepfake datasets. The symbol * represents the number of pictures.

3. Troubles with Current Deepfake Traceability

Methods Based on Spectral Features  are currently the primary deepfake traceability method.

Cumulative upsampling can cause apparent changes in the frequency domain, and minor forgery defects and

compression errors can be well described in this domain. Using this information can identify fake videos. Spectrum-

based methods have certain advantages in generalization because most existing image and video compression

methods are also related to the frequency domain. Methods Based on Generative Adversarial Network Inherent

Traces  are another primary deepfake traceability method. The fake faces generated by generative

adversarial networks have distinct traces and texture information compared to real-world photographs, including

using an Expectation Maximization algorithm to extract local features that model the convolutional generation

process. Use global image textures and methods based on globally consistent fingerprints.

Methods based on frequency domain and model fingerprints provide traceability for different forgery methods.

Although researchers claim high accuracy rates in identifying and tracing related forgery methods, they typically

only use a specific dataset for research. This approach reduces the comprehensiveness of traceability and the

Dataset Real Fake Forgery Method

CelebDFv1 409 795 FaceswapPro

CelebDFv2 590 5639 FaceswapPro

DeeperForensics1.0 50,000 10,000 DeepFake Variational Auto-Encoder (DF-VAE) 

FakeAVCeleb 178 11,833 Faceswap , Faceswap GAN (FSGAN) , Wav2Lip 

DeepFakeMnist+ 10,000 10,000 First Order Motion Model for Image Animation (FOMM) 

DeepfakeTIMIT 320 640 faceswap-GAN 

FaceForensics++ 1000 5000
Faceswap , Deepfakes , Face2Face , FaceShifter ,
NeuralTextures 

DeepFakeDetection 363 3068 Faceswap

ForgeryNet 99,630 121,617

ATVG-Net , BlendFace, DeepFakes, DeepFakes-StarGAN-
Stack, DiscoFaceGAN , FaceShifter , FOMM , FS-
GAN , MaskGAN , MMReplacement, SC-FEGAN ,
StarGAN-BlendFace-Stack, StarGAN2 , StyleGAN2 ,
Talking Head Video 

Patch-wise Face
Image Forensics 

*
25,000

*
25,000

PROGAN , StyleGAN2 
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model’s generalization ability. Therefore, researchers need to consider the similarity and correlation between

samples in each dataset to make full use of these datasets.

However, this presents a significant challenge. Unlike typical computer vision datasets, deepfake datasets’ labels

are based on technical methods and forgery patterns rather than human concepts, making it impossible for

humans to identify and evaluate them. The more severe problem is that the labels of forgery methods used in

various deepfake datasets are entirely arbitrary. Some labels are based on implementation technology, while

others are based on forgery modes. For example, many datasets have the label “DeepFakes.” The irregularity and

ambiguity of these labeling methods make it difficult to fully utilize the forged data of various deepfake datasets.

Some deepfake datasets do not indicate specific forgery methods.

4. The KCE-System

We assume that incorporating datasets that use the same forgery methods will beneficially enhance the model’s

performance. Conversely, merging different datasets or dividing the similar dataset into separate subsets may

adversely affect the model’s performance. Based on the above assumptions, we developed the K-means and

Calinski Harabasz Evaluation System. For the sake of simplicity, we refer to it as the KCE-System for short.

The KCE-System incorporates unsupervised learning. The system divided the deepfake datasets into training sets

and evaluation sets. Then it trains a deepfake recognition model using training sets and extracting high-

dimensional vectors from the middle layer of the model. After dimensionality reduction, the system used the K-

means clustering method to merge various deepfake datasets. Using these datasets, the system then trains the

new Xception, F3-net, and ResNet models. The trained models are then used to extract 2048-dimensional or 512-

dimensional values from the evaluation set as feature values. Finally, the system uses the Calinski Harabasz Index

method on the feature values after dimensionality reduction to evaluate The model’s performance, as shown in

Figure 2. Next, we will introduce several main parts of the system in detail.
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Figure 2. Overview of the KCE-System. The proposed architecture consists of two parts: the cluster section and

the evaluation section.

4.1. Feature Extractor

Theoretically, when a model reaches a high classification accuracy for various categories of deep fake data, the

model can extract the corresponding deepfake feature. The Xception is a traditional CNN model based on

separable convolutions with residual connections. The model has shown high accuracy when detecting deepfake

videos. The training accuracy rate reaches 94%. We use it as the main Feature Extractor. We take out its 2048-

dimensional data as the sample’s feature from the global pooling layer of Xception. The ResNet is an improvement

over the traditional deep neural network architecture that solves the problem of vanishing gradients and allows the

training of much deeper networks. Another notable model in facial forgery detection is the F3-Net. This model

leverages frequency domain analysis and comprises two branches; one learns forgery patterns via Frequency-

aware Image Decomposition, and the other extracts high-level semantics from Local Frequency Statistics. Given

the widespread applicability of the ResNet model in various computer vision fields and the unique position of the

F3-Net in the domain of deepfake detection, we also select these two models as Feature Extractors and test them

on half of the test group. To avoid the interference of the model itself on the experimental results to the greatest

extent.

4.2. Dimensionality Reduction and Clustering

In this field, clustering algorithms, such as K-means , Gaussian Mixture, and DBSCAN  are commonly used.

However, the DBSCAN algorithm is ineffective in controlling the number of clusters formed. In our system, we need

[39] [40]
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to control the number of clusters formed for easy comparison with the data merged by name. The Gaussian

Mixture algorithm is mainly designed for non-spherical clusters, while we focus more on the distance between

categories in feature space, which emphasizes spherical clustering. Therefore, we chose to use the K-means

clustering algorithm in our system.

The K-means algorithm uses Euclidean distance for clustering, but it can fail in high dimensions, so a dimension

reduction method must be used. PCA  and t-SNE  are two methods we utilized for comparison. PCA is stable

but retains less information when reduced to two or three dimensions. When reducing dimensions to 64 using PCA,

the interpretable variance contribution rate can be preserved at 95.2%. From Figure 3, it effectively preserves most

of the information needed for clustering. The t-SNE supports low-dimensional reduction for visual analysis but has

poor stability.

Figure 3. Illustration of dimensionality reduction using PCA. After using PCA to reduce the dimension, use the t-

SNE method to reduce the dimension to two dimensions for display (Different colors indicate different forgery

methods).

4.3 Selection of Evaluation Algorithms

[41] [42]
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Evaluating the performance of models trained with unreliably labeled or unlabeled data is difficult. We can not use

precision and recall because we do not have a way to figure out whether each sample is classified correctly. To

address this issue, we utilize the Calinski Harabasz Index , introduced by Calinski and Harabasz in 1974, as an

effective evaluation method. This index is defined in Equation (1) as the ratio of the sum of between cluster

dispersion and inter-cluster dispersion for all clusters. Therefore, the Calinski Harabasz Index can be used to

evaluate the models, with higher scores indicating that the model performs better on the test datasets.

For a set of data  of size , which has been clustered into  clusters, the Calinski Harabasz score s is defined

as the ratio of the between-cluster dispersion means and the within-cluster dispersion, as shown in Equation (1).

                                    (1)

where  is trace of the between group dispersion matrix and  is the trace of the within-cluster

dispersion matrix defined by:

                       (2)

                        (3)

Here,  represents the set of points in cluster ,  represents the center of cluster ,  represents the center of

, and  represents the number of points in cluster .

When using the Calinski Harabasz Index to evaluate clustering quality, it can be observed that the elbow points of

the Calinski Harabasz Index tend to be around 3 or 4 of cluster number, as depicted in Figure 4. The results

obtained from the Calinski Harabasz Index are consistent with the number of forged method categories in the

actual evaluation set. This suggests that the Calinski Harabasz Index is a valuable method to assess the model’s

ability to identify new categories of deepfakes.

[6]
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Figure 4. Using Calinski Harabasz Index to evaluate its clustering quality, it can be found that its elbow point is

about 3 to 4.

5. Experiment

In this section, we first introduce the overall experimental setup. Our equipment includes four NVIDIA

GeForce2080Ti GPUs. We use PyTorch to train and evaluate models, OpenCV to image data preprocessing, and

Scikit-learn algorithm library for data analysis. We extract 620,000 fake face images from 10 deepfake datasets

and train 40 models, including 32 Xception, 4 F3-net, and 4 ResNet models. The entire data preparation and

experimental process spanned approximately three months.

5.1. Data Dividing and Preprocessing

The researchers select 31 datasets labeled with forgery method names from CelebDF, DeeperForensics1.0,

DeepFakeMnist+, FaceForensics++, ForgeryNet, and FakeAVCeleb; see Table 1 for details. The researchers use
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a random method to divide 31 deepfake categories into two sets, where the training set contains 27 categories,

and the evaluation set contains four categories. The researchers repeat the above division four times to obtain four

sets of training sets and evaluation sets. See Table 2 for details. The researchers extract the frame data of each

category according to the instructions of the relevant dataset and use the face detection model Retinaface  to

intercept the face area. Then, the researchers increase the side length of the area by a factor of 1.25. Finally, the

researchers randomly select 20,000 fake faces of each category and save these images as test data in png format.

Table 2. The table displays four sets of experimental data, each containing four evaluation datasets, with the

remaining 27 datasets designated for training purposes.

[43]

Datasets Synthesis Method Count Group1 Group2 Group3 Group4

CelebDFv1 FaceSwapPRO 20,000     

CelebDFv2 FaceSwapPRO 20,000    evaluate

DeeperForensics DF-VAE 20,000  evaluate   

DeepFakeMnist+ FOMM 20,000     

DeepfakeTIMIT FaceSwap-GAN 20,000   evaluate  

FaceForensics++
DeepFakeDetection

FaceSwap 20,000     

Faceforensics++ DeepFakes 20,000     

Faceforensics++ Face2Face 20,000  evaluate   

Faceforensics++ FaceShifter 20,000 evaluate    

Faceforensics++ FaceSwap 20,000     

Faceforensics++ NeuralTextures 20,000    evaluate

FakeAVCeleb FaceSwap 20,000 evaluate    

FakeAVCeleb FSGAN 20,000     

FakeAVCeleb Wav2Lip 20,000  evaluate   

ForgeryNet ATVG-Net 20,000 evaluate    

ForgeryNet BlendFace 20,000   evaluate  

ForgeryNet DeepFakes 20,000     

ForgeryNet
DeepFakes-
StarGAN-Stack

20,000     
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5.2. Merge Training Data Based on the Category Name

To verify our conjecture that there is large randomness in the naming of the forged methods in the deepfake

dataset, we specially merged the training set data according to the principle of the same or close to the forged

method names and used them as a control group. We use the merging rules see Table 3. The number of training

set categories of the merged four groups are that Group 1, 3, and 4 have 19 categories, and Group 2 has 17.

Table 3. The researchers randomly sample corresponding proportions of data from the merged dataset and

reassemble them into 20,000 images per category.

ForgeryNet DiscoFaceGAN 20,000  evaluate   

ForgeryNet FaceShifter 20,000     

ForgeryNet FOMM 20,000 evaluate    

ForgeryNet FS-GAN 20,000    evaluate

ForgeryNet MaskGAN 20,000     

ForgeryNet MMReplacement 20,000     

ForgeryNet SC-FEGAN 20,000     

ForgeryNet
StarGAN-
BlendFace-Stack

20,000     

ForgeryNet StarGAN2 20,000   evaluate  

ForgeryNet StyleGAN2 20,000     

ForgeryNet Talking_Head_Video 20,000    evaluate

Patch-
wise_Face_Image_Forensics

PROGAN 20,000   evaluate  

Patch-
wise_Face_Image_Forensics

StyleGAN2 20,000     

Rule Number Merge Categories

1 CelebDFv1_FaceSwapPRO, CelebDFv1_FaceSwapPRO

2 DeepFakeMnist+_FOMM, ForgeryNet_FOMM

3
DeepfakeTIMIT_FaceSwap-GAN, DeepFakeDetection_FaceSwap,
FaceForensics++_FaceSwap, FakeAVCeleb_FaceSwap
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5.3. Merge Training Data Based on the Results of K-Means Clustering

One of the purposes of our experiment is to determine the appropriate dimensionality for K-means clustering to

address this type of problem. We need to ensure that we do not lose too many classification features due to

excessive dimensionality reduction, nor do we cause the K-means algorithm to fail due to excessive dimensionality.

We use the PCA algorithm to reduce the Xception model's 2048-dimensional output to 128, 64, and 32 dimensions.

We also reduce it to two dimensions using the t-SNE algorithm. For the F3-net and ResNet models, we only use

the PCA algorithm to reduce the output feature value to 64 dimensions since we only need to verify that our

method applies to these models.

In the previous section, we created training data for the control group based on name mergers. To facilitate

comparison, we ensure that the number of categories of the experimental data for each group is identical.

Therefore, we use the K-means clustering algorithm to cluster these training sets based on the specified number of

clusters. Groups 1, 3, and 4 have 19 clusters, while Group 2 has 17 clusters.

5.4. Experimental Results

The researchers train Xception, F3-net, and ResNet models using training data merged by K-means clustering

results and category names, respectively. For comparison, the researchers also train the same models using the

original training set without merging. To obtain feature vectors for the validation set, we used these models as

feature extractors and applied PCA to reduce them to 64 dimensions. The researchers then calculated the Calinski

Harabasz Index. Please refer to Table 4 for the result.

Table 4. The Calinski Harabasz Index results. Italicized and underlined marks indicate the best result for that group

of tests.

Model
Train Data
Merge by

Group 1 CH Group 2 CH Group 3 CH Group 4 CH Avg CH

Xception
Without
merging

128.02825 117.448499 68.6994684 93.5723306 101.937137

Xception Name 84.0837009 73.8172086 74.579957 61.2651927 73.4365148

4 Faceforensics++_DeepFakes, ForgeryNet_DeepFakes

5 FakeAVCeleb_FSGAN, ForgeryNet_FS-GAN

6
ForgeryNet_DeepFakes-StarGAN-Stack,ForgeryNet_StarGAN-BlendFace-Stack
,ForgeryNet_StarGAN2

7 ForgeryNet_StyleGAN2, Patch-wise_Face_Image_Forensics_STYLEGAN2
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Xception
K-means on
2048D

124.241305 105.070655 76.2218761 84.212058 97.4364735

Xception
K-means on
t-SNE 2D

103.627829 87.1461055 66.6143003 76.5264273 83.4786656

Xception
K-means on
PCA 64D

137.241584 101.192327 85.2535376 94.2137508 104.4753

Xception
K-means on
PCA 128D

101.197038 101.502163 74.8441997 86.6358341 91.0448087

Xception
K-means on
PCA 32D

114.247635 89.1934801 62.3932779 75.9596147 85.4485019

F3-net Name   62.6592813 65.6510862 64.1551837

F3-net
K-means on
PCA 64D

  85.361067 72.018708 78.6898875

ResNet Name   42.895651 47.9716533 45.4336522

ResNet
K-means on
PCA 64D

  49.7529116 54.0786263 51.915769

The Calinski Harabasz Index of the model trained on the data merged by K-means is 42.27% higher than that

pooled by name. Furthermore, these scores are slightly higher than those directly using the original training set,

even though the original set contains more data. At the same time, the Calinski Harabasz Index is also higher at

22.66% and 14.27% in F3-net and ResNet models. These prove an appropriate combination of deepfake datasets

with similar features improves the model’s generalization in the unknown forgery categories.

Compared with the other three groups, the results of Group 2 are different. Furthermore, its Calinski Harabasz

Index is lower than the training results on the original data. Because Group 2 has only 17 categories after the

merger, with fewer training samples than other groups. More information loss can destroy the performance of the

model.

6. Conclusions

The researchers prove the labels of various deepfake datasets contain many randomnesses. If researchers use

more than two deepfake datasets, combining these datasets only based on forgery labels will hurt the model's

performance. We propose K-means and Calinski Harabasz evaluation systems to evaluate the similarity of various

deepfake datasets, laying the foundation for future researchers to use them comprehensively. The generalization

ability of the deepfake recognition model in the face of new samples can be improved by merging datasets with

high forgery feature similarity.
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Our research revealed the arbitrariness of label naming in deepfake datasets and the resulting troubles in the

traceability of forgery methods. There is still a long way to go to solve this problem completely. In addition, different

image compression algorithms and image resolutions significantly impact the fake features of deepfake datasets,

which will seriously interfere with the model’s extraction of fake features from deepfake datasets. We are

committed to conducting further research to address these challenges effectively.

Furthermore, to ensure the healthy development of the field, we appeal to researchers and companies to

standardize the label nomenclature of deepfake datasets.
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