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Cognitive radio is pivotal in the utilization of an adequate radio spectrum source, with spectrum sensing optimizing

cognitive radio network operations, opportunistic spectrum access and sensing able to boost the efficiency of cognitive

radio networks, and cooperative spectrum sharing together with simultaneous wireless information and power transfer

able increase spectrum and energy efficiency in 6G wireless communication networks and across IoT devices for efficient

data exchange.
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1. Introduction

Cognitive radio has been developed due to spectrum scarcity and diminished exploitation  of allocated spectral

resources by registered users, and should have more extensive spectral awareness that can be attained by taking

advantage of more spectral options available for selection over a wideband spectrum. Cognitive radio technology can

enhance spectrum use and mitigate spectrum scarcity across wireless networks : spectrum sensing assists secondary

users in identifying spectrum holes and accessing the unoccupied spectrum. Intelligent cognitive approaches can improve

5G network spectrum deployment to find a solution to spectrum congestion and thoroughly optimize radio efficiency. In

cognitive radio networks, opportunistic spectrum access is typically harnessed for secondary users to identify primary user

spectrum usage and detect spectrum holes for transiently sharing spectrum resources in data distribution across

unoccupied channels. Access to an ample series of spectrum resources constitutes a main growth determinant for

leveraging large-scale internet of Things (IoT) networks and first-rate mobile broadband services, while the spectrum may

be a hindering element in 5G communication expansion.

Cognitive radio technology can dynamically distribute the unlicensed spectrum  for IoT-connected devices. Diverse

wireless devices can access the primary user licensed spectrum. Cognitive-radio-based IoT networks assist

interconnected devices  in efficiently leveraging spectrum resources. Cognitive radio technology can facilitate

streamlined and opportunistic spectrum band utilization by use of vacant licensed channels , articulating a massive

spectrum that can further coherent extensive implementation for IoT networks. Spectrum sharing across cognitive radio

networks develops dynamic spectrum access, where cognitive radio users can opportunistically use any area of the

spectrum, resulting in coherent IoT deployment and enabling massive IoT device interactions by a media access control

procedure that harnesses the available spectrum resources across cognitive radio-IoT networks.

2. Spectrum Sensing for Cognitive-Radio-Based IoT Networks

Cognitive radio networks reach a compromise  between energy and spectrum sensing efficiency. Spectrum sensing is

pivotal in cognitive radio technology  whose sensing performance is typically assessed as false-alarm and detection

probabilities. Spectrum sensing can optimize spectrum use  across cognitive radio networks. Spectrum-prediction-based

sensing schemes reduce the energy use of the sensing module across cognitive radio networks  by inferring the status

of spectrum before carrying out effective physical sensing. The joint mode of spectrum prediction can surmount local

prediction model issues. Spectrum sensing, the energy-consuming procedure that should be decreased because of

resource limitations , enables cognitive users to distinctively detect unexploited radio spectrum segments and keep

interference to primary users from happening. Cognitive-radio-enabled IoT cellular networks, incorporating heterogeneous

primary user base stations and secondary user devices as IoT smart objects , carry out collective spectrum sensing

and the appropriate spectrum distribution to the soliciting secondary user-IoT devices by use of an intelligent fusion

center. Short-time Fourier transform and convolutional neural network algorithms can assist spectrum sensing in finding a

solution to the spectrum resource scarcity  through signal sample time–frequency domain information.

A cognitive radio network comprises primary and secondary users : the latter sense the spectrum band to swiftly use

the white space, resulting in spectrum efficiency improvement. Long short-term memory networks are satisfactorily
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applicable for time-series data. Reliable spectrum sensing assists cognitive radio networks  in identifying and deploying

unused and underused frequency bands. By employing historical detection data, online learning algorithms integrating the

optimum decision threshold clarify the occurrence or nonappearance of the primary user , boosting the spectrum

sensing performance and reducing the total error probability. Cognitive radio networks detect band vacant spots  by

adequately sensing and distributing the spectrum to the demanding users. Multiobjective brainstorm optimization

algorithms can manage the energy–throughput trade-off in cognitive radio networks and reduce the packet error rate ,

as throughput maximization can lead to high energy consumption. The spectrum sensing performance is improved with

the increased probability of detection. Spectrum sensing and insufficient battery capacity can minimize system

performance across cognitive radio networks , and thus, wireless-powered communication requires energy efficiency

optimization.

Cognitive-radio-based IoT systems  develop on coherent spectrum sensing and sharing. Software-configurable radio

having dynamic spectrum assistance constitutes the intrinsic feature of cognitive radio  whose coaction with wireless

sensor networks makes it possible for the sensor nodes to use and share application data throughout licensed primary

user free channels. Improved operations can be attained with opportunistic spectrum access by reducing the channel

access incompatibilities and control message overhead postponement. The cognitive radio spectrum sensing

performance  necessitates detection accuracy as regards whether primary users are active or not. Secondary user

teamwork can optimize spectrum detection operations throughout cognitive radio networks. As incessant spectrum

sensing significantly decreases the duration of a network encompassing energy-restricted cognitive radio nodes ,

precise approaches as regards predicting spectrum occupancy optimize energy efficiency. Intelligent reflecting surface-

optimized energy detection  is pivotal in spectrum sensing performance across cognitive radio networks.

Spectrum sensing is decisive  in cognitive radio system operations. Matched filtering is typically harnessed for signal

detection across a particular band of spectrum for an identifiable primary user signal. Spectrum sensing aims to increase

the detection operations  of secondary users across cognitive radio networks. All secondary users provide sensing

assessment to the fusion center for the eventual decision in relation to the operations of primary users in cooperative

spectrum sensing. The teamwork among massive volumes of secondary users can generate overhead for the fusion

center. Cooperative spectrum sensing schemes can find a solution to the hidden terminal issue and reduce multipath

fading and shadowing effects , optimizing the sensing performance and throughput across cognitive radio networks.

Increasing the volume of cooperative secondary users results in intensified communication overhead and thus in energy

consumption elevation of cognitive radio networks. Cognitive radio and multiple-access techniques can enhance spectral

efficiency and enable massive connectivity : spectrum sensing accuracy determines spectrum utilization efficiently

through multiple-user cooperative spectrum sensing.

Deep-learning-based cognitive radio technology can be harnessed throughout wireless communication systems ,

increasing energy efficiency for shared spectrum sensing by incorporating reinforcement learning algorithms and graph

neural networks. Energy detection is decisive in terms of time and resource efficiency , but its performance is

unsatisfactory in low-signal-to-noise ratio channel circumstances, due to its marginal hardware complexity and the

nonexistence of inferable licensed user information. Cooperative sensing can mitigate the energy detection sensing

performance issue in IoT networks, but relevant detection cannot be attained in detrimental channel environments by

deploying incompatible IoT applications. Stochastic resonance can elevate spectrum sensing performance in weak signal

detection in cognitive radios. Artificial-intelligence-enabled intelligent radio  can be optimized to smoothly leverage the

insufficient spectrum resources and to exemplarily connect and configure large-scale wireless devices in spectrum

sensing and sharing-based communication systems. Deep- and machine-learning-based automatic modulation

recognition  can carry out spectrum sensing and efficiency across cognitive radio networks and can articulate a lean

network resource management.

3. Clustering Algorithms for Cognitive-Radio-Based IoT Networks

The design and advancement of energy- and spectrum-efficient proposals, such as cognitive radio sensor networks ,

articulate IoT, with clustering optimizing the energy consumption. IoT enabling sensor-based network device connectivity

is subjected to critical data exchange interference  due to unlicensed spectrum overcrowding. Cognitive radio IoT

networks can solve the spectrum scarcity issue, but the sensor nodes use considerable energy throughout dynamic

spectrum sensing and switching. Channel spectrum sensing can optimize energy efficiency across clustered cognitive

radio IoT networks. A cognitive radio sensor network senses event signals and conjointly interconnects in a multihop

mode  across variably operational spectrum bands. Nodes playing a part in cognitive radio sensor networks grasp the

network environment and have autonomous decision making in relation to throughput intensification, discontinuity, and

energy reduction, while clustering algorithms extend the network lifetime.
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Clustering and data aggregation are decisive in IoT-based wireless communication , while energy efficiency can be

attained by cognitive networks. Sensor node insufficient energy and data sharing channel-related operations  affect

energy performance across cognitive radio sensor networks. Unequal clustering can level the energy use among the

clusterheads to extend the network lifetime. Energy- and spectrum-aware unequal clustering surmounts energy and

spectrum for prolonging cognitive radio sensor network lifetime, while enhancing equity by establishing residual energy

stability among the sensor nodes and optimizing the network lifetime by decreasing the energy use. The spectrum holes

can be predicted through the use of deep belief network algorithms. A shared sensing network comprises heterogeneous

nodes intercommunicating  in relation to the specific spectrum sensing output. The secondary user nodes of each

cluster identify the spectrum, leading to incessant power consumption in cognitive radio sensor networks.

Spectrum dynamics and energy use can be assimilated in network-stability-aware clustering  that coherently handles

interactions across cognitive radio sensor networks. Cognitive radio chiefly addresses the streamlined harnessing  of

available spectrum bands. Cognitive radio networks should integrate spectrum management approaches to allocate the

unutilized spectrum band to the cognitive radio users by conforming to a series of sensing-related operations. A

cooperative spectrum sensing strategy with a feature-based cluster classifier can reduce the time to accomplish optimal

cognitive radio communications. Such a classifier assimilates states and transitions across radio frequency settings, in

addition to primary user operations at constant periods to assist the spectrum decision approach. A hybrid strategy

integrating clustering and expected maximization and reinforcement learning algorithms improves system operations with

precise sensing outcomes, and by detecting the optimum spectrum band by use of the hierarchical access model

deploying the interweaving technique, energy use is reduced.

Clustering arranges nodes into groups  so as to improve cognitive radio sensor network connectivity and soundness.

Contingent upon the channel availability, spectrum-aware clustering algorithms cannot generally attain optimal clustering.

Considering diverse relevant factors, to set up the optimal clustering constitutes a difficult task in network operation

enhancement. Weighted clustering metric-based spectrum-aware clustering algorithms can lead to optimal clustering,

concomitantly assessing temporal–spatial correspondence and the confidence level, and unused energy is deployed to

decide on clusterheads and ally member nodes. The clusterhead sensing spectrum significantly diminishes spectrum

sensing energy use and increases data sharing opportunity after clustering. A cluster-based cognitive industrial IoT can

enhance spectrum use by sensing and accessing the inactive spectrum : the clusterheads carry out cooperative

spectrum sensing to obtain convenient spectrum, while the nodes use the nonorthogonal multiple access. Transmission

performance can be optimized by clustering algorithms, while energy balance is determined by clusterhead alternation.

The nonorthogonal multiple access configured for the cluster-based cognitive industrial IoT can efficiently enable the

transmission operation of each node.

A coherent and green machine-learning-based dynamic clustering mechanism integrating power demand and data

volume can assist cognitive IoT networks in terms of intelligent processing, secure delivery, and far-reaching awareness

, leading to energy-efficiency-based real-time implementations and information loss avoidance. Machine learning

techniques and clustering algorithms improve cognitive radio network performance , solving the radio spectrum

underutilization issue efficiently through the use of learning and reasoning capabilities. Bayesian-learning-based intelligent

clustering cooperative spectrum sensing can optimize the performance of cognitive radio networks lacking a primary user,

in serious fading and shadowing circumstances of the sensing channel , while also minimizing the rate loss and shared

overhead. Cognitive radio technology and the reaction–diffusion biological mechanism can configure streamlined

cognitive IoT spectrum allocation and adequate bioinspired algorithm-based clustering performance , enhancing

clustered throughput and decreasing convergence time, communication delay, and computation complexity through

intelligent service provisioning, reliable wireless communication, and automatic network operation.

Cognitive wireless sensor networks can harness the inactive authorized frequency band to find a solution to the spectrum

resource scarcity issue : by leveraging the spectrum hole, spectrum sensing technology can deteriorate the synchronic

interference and improve the entire sensor network performance. As a result of the insufficient battery energy and low

sensor node processing capacity features, the energy efficiency and the spectrum sensing performance have to be

optimized. Particle swarm optimization algorithms can assist cognitive wireless sensor networks by integrating a

cooperative spectrum sensing approach in relation to false alarm and detection probability, enhancing the system

throughput and energy efficiency. Cognitive radio and radar systems leverage dynamic spectrum access techniques to

solve spectrum congestion issues due to increased data traffic : dynamic spectrum access approaches share the radar

and communication system spectrum. Machine-learning-based efficient resource allocation can improve dynamic

clustered IoT network power management and machine-to-machine communication  in terms of spectrum

management.
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Cognitive-radio-network-based real-time high-speed communication systems  require effective resource distribution,

spectrum sensing, ubiquitous computing services, and power use issues. Backtracking search algorithms and cooperative

node selection can decrease computation complexity and energy consumption. Genetic algorithms and dynamic

clustering techniques  are pivotal in conserving energy throughout IoT network planning and designing procedures.

High-energy clusterheads enable optimal data sharing in wireless sensor networks. Cognitive radio technology develops

user communication reliability and the medium by coherent dynamic spectrum exploitation  in terms of spectrum

distribution and channel access, optimizing radio resource use rate. The internet of spectrum devices, through spectrum

data analytics and accurate collective time–frequency spectrum predictions, articulates spectrum-monitoring and

spectrum-utilizing device networks  to facilitate a coherent spectrum distribution and management pattern for 5G

wireless networks, improving the inference performance.

Metaheuristic algorithms and deep-neural-network-based clustering techniques  can improve IoT-related data

clustering reliability and computation times. Intelligent edge computing and deep learning convolutional neural networks

 can assist resource-constrained IoT devices, enhancing communication volume and inference latency through data

analytics. Deep-neural-network-based clustering techniques can maximize wireless sensor network functioning period in

IoT applications : by modifying individual sensor node roles, energy consumption is reduced and the network lifetime is

extended (relevantly, computation and message overheads also decrease). A hybrid delay-aware clustering-based

intelligent data fusion algorithm  can optimize wireless sensor network performance by integrating the single-layer and

multilayer cluster structure upsides. The energy-efficient clustering and the dynamic clusterhead reselection algorithms

can cut down the network delay, energy use, and load balancing while increasing the network lifetime.

4. Energy-Harvesting Technology for Cognitive-Radio-Based IoT Networks

Energy harvesting and cognitive radio technologies can assist wireless sensor networks , extending the operational

activity of the sensor node and mitigating the unlicensed spectrum congestion issue. Carefully distributing and organizing

limited network resources are decisive because of energy-harvesting process unpredictability and primary user behavior

randomness. Cognitive radio and energy-harvesting strategies  are instrumental in spectrum reutilization and lifetime

extension for standard wireless networks. Energy-harvesting cognitive radio networks comprising multiple primary and

secondary users integrate energy and joint cooperation modes. Sensing energy and data manageability  shape the

secondary performance of energy-harvesting cognitive radio networks.

As IoT sensor and devices use a massive volume of power in data transmission , radio frequency energy harvesting

can assist self-sustainable wireless systems whose system rate loss is caused by external interference factors. The

cognitive industrial IoT can increase convenient spectrum resources  by harnessing the spectrum authorized to primary

users with the aim of not discontinuing primary user communications, but increased spectrum sensing and prolonged

operations may use much energy. Wireless energy harvesting can acquire the radio frequency energy of a primary user

signal, and energy-efficient resource distribution in heterogeneous spectrum access modes can optimize the standard

transmission rate of the cognitive industrial IoT and meet energy-saving demands. Cognitive radio techniques can be

harnessed for wireless power transfer, power consumption reduction, and energy harvesting  throughout the sensing,

interaction, and computation elements of IoT nodes. Backscatter communication can facilitate green IoT operations

through collective wireless communication and sensing.

Availability and ultrareliability demands, together with energy-harvesting technology and dynamic spectrum access,

impose specific performance compromises , typifying sustainable and self-sufficient IoT networks, integrating sensing

time, energy availability, transmission diversity, volume of data frame packets, and spectrum accessibility. Energy and

spectrum resource scarcity, energy harvesting and cognitive radio technologies, and wireless devices and system

expansion  shape deep-learning-based IoT network performance. Energy harvesting and cognitive radio technologies

design deep-learning-based IoT networks : spectrally and energy-efficient transmission schemes should be articulated

in large-scale connection and device support. Spectrum reutilization and lifetime extension assist energy-harvesting

cognitive radio networks : the energy provision of a primary transmitter can be reduced while meeting the requirements

of minimal-throughput networks and users.

A deep-Q-learning based algorithm can be deployed across energy-harvested cognitive radio networks with the aim of

optimal resource distribution : primary users’ network channel resources also allocated to secondary users and energy

harvesting enable cognitive radio network nodes to acquire environment energy to achieve operation sustainability. The

amount of environmental energy necessitates dynamic resource distribution to straighten out network and throughput

capacity. A deep-Q-learning-based algorithm can enhance energy-harvested cognitive radio network resource distribution

so it surpasses low quality of service, massive state–space systems, energy and interference limitations, and slow
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convergence. Nonorthogonal multiple access, energy-harvesting technology, and cognitive radio systems can  optimize

the energy and spectral efficiency of the 5G network for IoT wireless sensor communication support. Deep-reinforcement-

learning-based distributed multidimensional resource management algorithms can be decisive in intelligent frequency, the

joint spectrum, and energy and time resource management, and thus decrease secondary sensing user data packet

losses while meeting the limitations on the maximum buffer capacity, transmitting power, charging battery capacity, and

primary and secondary sensing user minimum data rate.

The spectral and energy efficiency of device-to-device communication can be enhanced by employing cognitive radio

systems and radio frequency energy-harvesting technologies  while stabilizing increased data rates and reducing

power use in 5G communication networks. The primary and secondary transmitters interact with receivers across energy-

harvesting amplify-and-forward relays for nonorthogonal multiple-access-based multicast cognitive radio networks ,

attempting to synchronously optimize the network sum-rate, decrease energy use, and fulfill quality-of-service limitations.

A low-complexity solution approach can appropriately find a solution to the power distribution issue over each relay, and

subsequently decide on the relay optimizing the network goal function, while adjusting spectrum and energy efficiencies

and configuring the optimal network sum-rate and lower computational complexity. Cognitive-radio-based nonorthogonal

multiple-access systems can satisfy IoT-driven 5G network requirements : power domain nonorthogonal multiple

access enables multiple users to share orthogonal resource blocks, while cognitive radio technology facilitates

opportunistic bandwidth use, and thus, secondary users can access the licensed spectrum frequency while the operations

performed by primary users are not interrupted.

Nonorthogonal multiple access can enhance 5G cellular network throughput and spectrum efficiency and facilitate

ultrareliable and low-latency communications , articulating spectrum- and energy-efficient transmission schemes across

clustered IoT smart devices and massive system connectivity, while energy-harvesting algorithms and random access

techniques can decrease signaling overhead, energy use, and packet latency. A game-based fair resource allocation

algorithm can enable stable cooperation between primary users and secondary users  across wireless powered

cooperative cognitive radio networks through streamlined resource allocation. Nonorthogonal multiple access can bring

about spectrum efficiency  across wireless networks. In an uplink nonorthogonal multiple-access cognitive system,

secondary users can collectively transfer data, throughout the same spectrum resources, to the cognitive base station,

and uninterrupted interference discontinuation is applied to retrieve secondary-user-transmitted signals. A wireless energy

harvester can extend secondary users’ operations.

Energy-harvesting-powered cognitive machine-to-machine networks can mitigate the intensifying deficient spectrum, as a

result of large-scale smart devices and simultaneous access demand that bring about operational deterioration and

massive energy use , by ensuring the quality of service and leading to green communication through deep-

reinforcement-learning-based algorithms in terms of energy efficiency optimization. The end-to-end throughput can be

assessed and enhanced in wireless-powered cognitive IoT networks through the use of a well-organized deep-neural-

network-based relay selection scheme : multiple energy-harvesting relays are harnessed unselectively to enable data

sharing to multiple users from a source node across energy-harvesting circuit practical nonlinearity, decreasing

computational complexity significantly. Cognitive radio technology and nonorthogonal multiple-access techniques  can

assist energy harvesting in spectral and energy efficiency optimization across IoT networks.

References

1. Aswathy, G.; Gopakumar, K. Sub-Nyquist wideband spectrum sensing techniques for cognitive radio: A review and
proposed techniques. AEU Int. J. Electron. Commun. 2019, 104, 44–57.

2. Ahmed, R.; Chen, Y.; Hassan, B. Deep learning-driven opportunistic spectrum access (OSA) framework for cognitive
5G and beyond 5G (B5G) networks. Ad Hoc Netw. 2021, 123, 102632.

3. Sajid, A.; Khalid, B.; Ali, M.; Mumtaz, S.; Masud, U.; Qamar, F. Securing Cognitive Radio Networks using blockchains.
Future Gener. Comput. Syst. 2020, 108, 816–826.

4. Zhang, J.; Liu, L.; Liu, M.; Yi, Y.; Yang, Q.; Gong, F. MIMO Spectrum Sensing for Cognitive Radio-Based Internet of
Things. IEEE Internet Things J. 2020, 7, 8874–8885.

5. Aloqaily, M.; Salameh, H.B.; Al Ridhawi, I.; Batieha, K.; Ben Othman, J. A multi-stage resource-constrained spectrum
access mechanism for cognitive radio IoT networks: Time-spectrum block utilization. Future Gener. Comput. Syst.
2020, 110, 254–266.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]



6. Eappen, G.; Shankar, T. Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Phys.
Commun. 2020, 40, 101091.

7. Kumar, A.; Thakur, P.; Pandit, S.; Singh, G. Analysis of optimal threshold selection for spectrum sensing in a cognitive
radio network: An energy detection approach. Wirel. Netw. 2019, 25, 3917–3931.

8. Song, Z.; Wang, X.; Liu, Y.; Zhang, Z. Joint Spectrum Resource Allocation in NOMA-Based Cognitive Radio Network
with SWIPT. IEEE Access 2019, 7, 89594–89603.

9. Chauhan, P.; Deka, S.K.; Chatterjee, B.C.; Sarma, N. Cooperative Spectrum Prediction-Driven Sensing for Energy
Constrained Cognitive Radio Networks. IEEE Access 2021, 9, 26107–26118.

10. Ostovar, A.; Bin Zikria, Y.; Kim, H.S.; Ali, R. Optimization of Resource Allocation Model With Energy-Efficient
Cooperative Sensing in Green Cognitive Radio Networks. IEEE Access 2020, 8, 141594–141610.

11. Ahmed, R.; Chen, Y.; Hassan, B.; Du, L. CR-IoTNet: Machine learning based joint spectrum sensing and allocation for
cognitive radio enabled IoT cellular networks. Ad Hoc Netw. 2021, 112, 102390.

12. Chen, Z.; Xu, Y.-Q.; Wang, H.; Guo, D. Deep STFT-CNN for Spectrum Sensing in Cognitive Radio. IEEE Commun.
Lett. 2021, 25, 864–868.

13. Soni, B.; Patel, D.K.; Lopez-Benitez, M. Long Short-Term Memory Based Spectrum Sensing Scheme for Cognitive
Radio Using Primary Activity Statistics. IEEE Access 2020, 8, 97437–97451.

14. Mourougayane, K.; Amgothu, B.; Bhagat, S.; Srikanth, S. A robust multistage spectrum sensing model for cognitive
radio applications. AEU Int. J. Electron. Commun. 2019, 110, 152876.

15. Kockaya, K.; Develi, I. Spectrum sensing in cognitive radio networks: Threshold optimization and analysis. EURASIP J.
Wirel. Commun. Netw. 2020, 2020, 255.

16. Parimala, V.; Devarajan, K. Modified fuzzy C-means and K-means clustering based spectrum sensing using
cooperative spectrum for cognitive radio networks applications. J. Intell. Fuzzy Syst. 2022, 43, 3727–3740.

17. Ramchandran, M.; Ganesh, E.N. MBSO Algorithm for Handling Energy-Throughput Trade-Off In Cognitive Radio
Networks. Comput. J. 2022, 65, 1717–1725.

18. Wang, X.; Na, Z.; Lam, K.-Y.; Liu, X.; Gao, Z.; Li, F.; Wang, L. Energy Efficiency Optimization for NOMA-Based
Cognitive Radio with Energy Harvesting. IEEE Access 2019, 7, 139172–139180.

19. Awin, F.A.; Alginahi, Y.M.; Abdel-Raheem, E.; Tepe, K. Technical Issues on Cognitive Radio-Based Internet of Things
Systems: A Survey. IEEE Access 2019, 7, 97887–97908.

20. Carie, A.; Li, M.; Marapelli, B.; Reddy, P.; Dino, H.; Gohar, M. Cognitive radio assisted WSN with interference aware
AODV routing protocol. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 4033–4042.

21. Wan, R.; Ding, L.; Xiong, N.; Shu, W.; Yang, L. Dynamic dual threshold cooperative spectrum sensing for cognitive
radio under noise power uncertainty. Hum.-Centric Comput. Inf. Sci. 2019, 9, 22.

22. Jin, Z.; Yao, K.; Lee, B.; Cho, J.; Zhang, L.; Chen, Y. Channel Status Learning for Cooperative Spectrum Sensing in
Energy-Restricted Cognitive Radio Networks. IEEE Access 2019, 7, 64946–64954.

23. Wu, W.; Wang, Z.; Yuan, L.; Zhou, F.; Lang, F.; Wang, B.; Wu, Q. IRS-Enhanced Energy Detection for Spectrum
Sensing in Cognitive Radio Networks. IEEE Wirel. Commun. Lett. 2021, 10, 2254–2258.

24. Kabeel, A.A.; Hussein, A.H.; Khalaf, A.A.; Hamed, H.F. A utilization of multiple antenna elements for matched filter
based spectrum sensing performance enhancement in cognitive radio system. AEU Int. J. Electron. Commun. 2019,
107, 98–109.

25. Bhatti, D.M.S.; Ahmed, S.; Chan, A.S.; Saleem, K. Clustering formation in cognitive radio networks using machine
learning. AEU Int. J. Electron. Commun. 2020, 114, 152994.

26. Kerdabadi, M.S.; Ghazizadeh, R.; Farrokhi, H.; Najimi, M. Energy consumption minimization and throughput
improvement in cognitive radio networks by joint optimization of detection threshold, sensing time and user selection.
Wirel. Netw. 2019, 25, 2065–2079.

27. Shi, Z.; Gao, W.; Zhang, S.; Liu, J.; Kato, N. AI-Enhanced Cooperative Spectrum Sensing for Non-Orthogonal Multiple
Access. IEEE Wirel. Commun. 2020, 27, 173–179.

28. He, H.; Jiang, H. Deep Learning Based Energy Efficiency Optimization for Distributed Cooperative Spectrum Sensing.
IEEE Wirel. Commun. 2019, 26, 32–39.

29. Reda, H.T.; Mahmood, A.; Diro, A.; Chilamkurti, N.; Kallam, S. Firefly-inspired stochastic resonance for spectrum
sensing in CR-based IoT communications. Neural Comput. Appl. 2020, 32, 16011–16023.



30. Qin, Z.; Zhou, X.; Zhang, L.; Gao, Y.; Liang, Y.-C.; Li, G.Y. 20 Years of Evolution from Cognitive to Intelligent
Communications. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 6–20.

31. Jdid, B.; Hassan, K.; Dayoub, I.; Lim, W.H.; Mokayef, M. Machine Learning Based Automatic Modulation Recognition
for Wireless Communications: A Comprehensive Survey. IEEE Access 2021, 9, 57851–57873.

32. Prajapat, R.; Yadav, R.N.; Misra, R. Energy-Efficient k-Hop Clustering in Cognitive Radio Sensor Network for Internet of
Things. IEEE Internet Things J. 2021, 8, 13593–13607.

33. Ansere, J.A.; Han, G.; Wang, H.; Choi, C.; Wu, C. A Reliable Energy Efficient Dynamic Spectrum Sensing for Cognitive
Radio IoT Networks. IEEE Internet Things J. 2019, 6, 6748–6759.

34. Stephan, T.; Al-Turjman, F.; Joseph, K.S.; Balusamy, B.; Srivastava, S. Artificial intelligence inspired energy and
spectrum aware cluster based routing protocol for cognitive radio sensor networks. J. Parallel Distrib. Comput. 2020,
142, 90–105.

35. Vimal, S.; Khari, M.; Crespo, R.G.; Kalaivani, L.; Dey, N.; Kaliappan, M. Energy enhancement using Multiobjective Ant
colony optimization with Double Q learning algorithm for IoT based cognitive radio networks. Comput. Commun. 2020,
154, 481–490.

36. Stephan, T.; Al-Turjman, F.; Joseph, K.S.; Balusamy, B. Energy and spectrum aware unequal clustering with deep
learning based primary user classification in cognitive radio sensor networks. Int. J. Mach. Learn. Cybern. 2021, 12,
3261–3294.

37. Mukherjee, A.; Goswami, P.; Yang, L. Distributed Artificial Intelligence Based Cluster Head Power Allocation in
Cognitive Radio Sensor Networks. IEEE Sensors Lett. 2019, 3, 7501004.

38. Zheng, M.; Chen, S.; Liang, W.; Song, M. NSAC: A Novel Clustering Protocol in Cognitive Radio Sensor Networks for
Internet of Things. IEEE Internet Things J. 2019, 6, 5864–5865.

39. Rajaguru, R.; Devi, K.V.; Marichamy, P. A hybrid spectrum sensing approach to select suitable spectrum band for
cognitive users. Comput. Netw. 2020, 180, 107387.

40. Wang, T.; Guan, X.; Wan, X.; Shen, H.; Zhu, X. A Spectrum-Aware Clustering Algorithm Based on Weighted Clustering
Metric in Cognitive Radio Sensor Networks. IEEE Access 2019, 7, 109555–109565.

41. Liu, X.; Zhang, X. NOMA-Based Resource Allocation for Cluster-Based Cognitive Industrial Internet of Things. IEEE
Trans. Ind. Inform. 2020, 16, 5379–5388.

42. Mukherjee, A.; Goswami, P.; Yang, L.; Yan, Z.; Daneshmand, M. Dynamic clustering method based on power demand
and information volume for intelligent and green IoT. Comput. Commun. 2020, 152, 119–125.

43. Khalek, N.A.; Hamouda, W. From Cognitive to Intelligent Secondary Cooperative Networks for the Future Internet:
Design, Advances, and Challenges. IEEE Netw. 2021, 35, 168–175.

44. Liu, X.; Zhang, X.; Ding, H.; Peng, B. Intelligent clustering cooperative spectrum sensing based on Bayesian learning
for cognitive radio network. Ad Hoc Netw. 2019, 94, 101968.

45. Li, J.; Zhao, H.; Hafid, A.S.; Wei, J.; Yin, H.; Ren, B. A Bio-Inspired Solution to Cluster-Based Distributed Spectrum
Allocation in High-Density Cognitive Internet of Things. IEEE Internet Things J. 2019, 6, 9294–9307.

46. Cao, Y.; Pan, H. Energy-Efficient Cooperative Spectrum Sensing Strategy for Cognitive Wireless Sensor Networks
Based on Particle Swarm Optimization. IEEE Access 2020, 8, 214707–214715.

47. Agrawal, S.K.; Samant, A.; Yadav, S.K. Spectrum sensing in cognitive radio networks and metacognition for dynamic
spectrum sharing between radar and communication system: A review. Phys. Commun. 2022, 52, 101673.

48. Hussain, F.; Hussain, R.; Anpalagan, A.; Benslimane, A. A New Block-Based Reinforcement Learning Approach for
Distributed Resource Allocation in Clustered IoT Networks. IEEE Trans. Veh. Technol. 2020, 69, 2891–2904.

49. Shyleshchandra Gudihatti, K.N.; Roopa, M.S.; Tanuja, R.; Manjula, S.H.; Venugopal, K.R. Energy aware resource
allocation and complexity reduction approach for cognitive radio networks using game theory. Phys. Commun. 2020,
42, 101152.

50. Rani, S.; Ahmed, S.H.; Rastogi, R. Dynamic clustering approach based on wireless sensor networks genetic algorithm
for IoT applications. Wirel. Netw. 2020, 26, 2307–2316.

51. Arun, S.; Umamaheswari, G. An Adaptive Learning-Based Attack Detection Technique for Mitigating Primary User
Emulation in Cognitive Radio Networks. Circuits Syst. Signal Process. 2020, 39, 1071–1088.

52. Sun, J.; Wang, J.; Chen, J.; Ding, G.; Lin, F. Clustering Analysis for Internet of Spectrum Devices: Real-World Data
Analytics and Applications. IEEE Internet Things J. 2020, 7, 4485–4496.



53. Tripathi, A.K.; Sharma, K.; Bala, M.; Kumar, A.; Menon, V.G.; Bashir, A.K. A Parallel Military-Dog-Based Algorithm for
Clustering Big Data in Cognitive Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 2134–2142.

54. Naveen, S.; Kounte, M.R.; Ahmed, M.R. Low Latency Deep Learning Inference Model for Distributed Intelligent IoT
Edge Clusters. IEEE Access 2021, 9, 160607–160621.

55. Ghosal, A.; Halder, S.; Das, S.K. Distributed on-demand clustering algorithm for lifetime optimization in wireless sensor
networks. J. Parallel Distrib. Comput. 2020, 141, 129–142.

56. Liu, X.; Zhu, R.; Anjum, A.; Wang, J.; Zhang, H.; Ma, M. Intelligent data fusion algorithm based on hybrid delay-aware
adaptive clustering in wireless sensor networks. Future Gener. Comput. Syst. 2020, 104, 1–14.

57. Deng, X.; Guan, P.; Hei, C.; Li, F.; Liu, J.; Xiong, N. An Intelligent Resource Allocation Scheme in Energy Harvesting
Cognitive Wireless Sensor Networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1900–1912.

58. Zheng, K.; Liu, X.; Zhu, Y.; Chi, K.; Liu, K. Total Throughput Maximization of Cooperative Cognitive Radio Networks
with Energy Harvesting. IEEE Trans. Wirel. Commun. 2020, 19, 533–546.

59. Liu, X.; Xu, B.; Wang, X.; Zheng, K.; Chi, K.; Tian, X. Impacts of Sensing Energy and Data Availability on Throughput of
Energy Harvesting Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2023, 72, 747–759.

60. Rauniyar, A.; Engelstad, P.E.; Osterbo, O.N. Performance Analysis of RF Energy Harvesting and Information
Transmission Based on NOMA with Interfering Signal for IoT Relay Systems. IEEE Sensors J. 2019, 19, 7668–7682.

61. Liu, X.; Hu, S.; Li, M.; Lai, B. Energy-Efficient Resource Allocation for Cognitive Industrial Internet of Things with
Wireless Energy Harvesting. IEEE Trans. Ind. Inform. 2021, 17, 5668–5677.

62. Toro, U.S.; Wu, K.; Leung, V.C.M. Backscatter Wireless Communications and Sensing in Green Internet of Things.
IEEE Trans. Green Commun. Netw. 2022, 6, 37–55.

63. Amini, M.R.; Baidas, M.W. Availability-Reliability-Stability Trade-Offs in Ultra-Reliable Energy-Harvesting Cognitive
Radio IoT Networks. IEEE Access 2020, 8, 82890–82916.

64. Amini, M.R.; Baidas, M.W. Performance Analysis of URLL Energy-Harvesting Cognitive-Radio IoT Networks with Short
Packet and Diversity Transmissions. IEEE Access 2021, 9, 79293–79306.

65. Amini, M.R.; Baidas, M.W. GoodPut, Collision Probability and Network Stability of Energy-Harvesting Cognitive-Radio
IoT Networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1283–1296.

66. Zheng, K.; Ge, H.; Chi, K.; Liu, X. Energy provision minimization of energy-harvesting cognitive radio networks with
minimal throughput demands. Comput. Netw. 2022, 204, 108721.

67. Giri, M.K.; Majumder, S. Deep Q-learning based optimal resource allocation method for energy harvested cognitive
radio networks. Phys. Commun. 2022, 53, 101766.

68. Shi, Z.; Xie, X.; Lu, H.; Yang, H.; Cai, J.; Ding, Z. Deep Reinforcement Learning-Based Multidimensional Resource
Management for Energy Harvesting Cognitive NOMA Communications. IEEE Trans. Commun. 2022, 70, 3110–3125.

69. Waqas, M.; Aslam, S.; Ali, Z.; Sidhu, G.A.S.; Xin, Q.; Jang, J.W. Resource Optimization for Cognitive Radio Based
Device to Device Communication Under an Energy Harvesting Scenario. IEEE Access 2020, 8, 24862–24872.

70. Baidas, M.W.; Amini, M.R. Resource allocation for NOMA-based multicast cognitive radio networks with energy-
harvesting relays. Phys. Commun. 2020, 42, 101166.

71. Salameh, H.B.; Abdel-Razeq, S.; Al-Obiedollah, H. Integration of Cognitive Radio Technology in NOMA-Based B5G
Networks: State of the Art, Challenges, and Enabling Technologies. IEEE Access 2023, 11, 12949–12962.

72. Amini, M.R.; Baidas, M.W. Random-Access NOMA in URLL Energy-Harvesting IoT Networks with Short Packet and
Diversity Transmissions. IEEE Access 2020, 8, 220734–220754.

73. Liu, Z.; Zhao, S.; Yuan, Y.; Yang, Y.; Guan, X. Game-based approach of fair resource allocation in wireless powered
cooperative cognitive radio networks. AEU Int. J. Electron. Commun. 2021, 134, 153699.

74. Giang, H.T.H.; Hoan, T.N.K.; Koo, I. Uplink NOMA-based long-term throughput maximization scheme for cognitive radio
networks: An actor–critic reinforcement learning approach. Wirel. Netw. 2021, 27, 1319–1334.

75. Xu, Y.-H.; Tian, Y.-B.; Searyoh, P.K.; Yu, G.; Yong, Y.-T. Deep Reinforcement Learning-based resource allocation
strategy for Energy Harvesting-Powered Cognitive Machine-to-Machine Networks. Comput. Commun. 2020, 160, 706–
717.

76. Nguyen, T.-V.; Tran, T.-N.; Shim, K.; Huynh-The, T.; An, B. A Deep-Neural-Network-Based Relay Selection Scheme in
Wireless-Powered Cognitive IoT Networks. IEEE Internet Things J. 2021, 8, 7423–7436.

77. Singh, C.K.; Upadhyay, P.K. Overlay Cognitive IoT-Based Full-Duplex Relaying NOMA Systems With Hardware
Imperfections. IEEE Internet Things J. 2022, 9, 6578–6596.



Retrieved from https://encyclopedia.pub/entry/history/show/113390


