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Cognitive radio is pivotal in the utilization of an adequate radio spectrum source, with spectrum sensing optimizing
cognitive radio network operations, opportunistic spectrum access and sensing able to boost the efficiency of
cognitive radio networks, and cooperative spectrum sharing together with simultaneous wireless information and
power transfer able increase spectrum and energy efficiency in 6G wireless communication networks and across

loT devices for efficient data exchange.

cognitive radio internet-of-things networks spectrum sensing clustering

energy harvesting

| 1. Introduction

Cognitive radio has been developed due to spectrum scarcity and diminished exploitation [! of allocated spectral
resources by registered users, and should have more extensive spectral awareness that can be attained by taking
advantage of more spectral options available for selection over a wideband spectrum. Cognitive radio technology
can enhance spectrum use and mitigate spectrum scarcity across wireless networks [2: spectrum sensing assists
secondary users in identifying spectrum holes and accessing the unoccupied spectrum. Intelligent cognitive
approaches can improve 5G network spectrum deployment to find a solution to spectrum congestion and
thoroughly optimize radio efficiency. In cognitive radio networks, opportunistic spectrum access is typically
harnessed for secondary users to identify primary user spectrum usage and detect spectrum holes for transiently
sharing spectrum resources in data distribution across unoccupied channels. Access to an ample series of
spectrum resources constitutes a main growth determinant for leveraging large-scale internet of Things (loT)
networks and first-rate mobile broadband services, while the spectrum may be a hindering element in 5G

communication expansion.

Cognitive radio technology can dynamically distribute the unlicensed spectrum [ for loT-connected devices.
Diverse wireless devices can access the primary user licensed spectrum. Cognitive-radio-based loT networks
assist interconnected devices @ in efficiently leveraging spectrum resources. Cognitive radio technology can
facilitate streamlined and opportunistic spectrum band utilization by use of vacant licensed channels !, articulating
a massive spectrum that can further coherent extensive implementation for IoT networks. Spectrum sharing across
cognitive radio networks develops dynamic spectrum access, where cognitive radio users can opportunistically use

any area of the spectrum, resulting in coherent loT deployment and enabling massive 10T device interactions by a
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media access control procedure that harnesses the available spectrum resources across cognitive radio-loT

networks.

2. Spectrum Sensing for Cognitive-Radio-Based loT
Networks

Cognitive radio networks reach a compromise ¢ between energy and spectrum sensing efficiency. Spectrum
sensing is pivotal in cognitive radio technology [ whose sensing performance is typically assessed as false-alarm
and detection probabilities. Spectrum sensing can optimize spectrum use B across cognitive radio networks.
Spectrum-prediction-based sensing schemes reduce the energy use of the sensing module across cognitive radio
networks & by inferring the status of spectrum before carrying out effective physical sensing. The joint mode of
spectrum prediction can surmount local prediction model issues. Spectrum sensing, the energy-consuming
procedure that should be decreased because of resource limitations 19, enables cognitive users to distinctively
detect unexploited radio spectrum segments and keep interference to primary users from happening. Cognitive-
radio-enabled IoT cellular networks, incorporating heterogeneous primary user base stations and secondary user
devices as loT smart objects (111, carry out collective spectrum sensing and the appropriate spectrum distribution to
the soliciting secondary user-l10T devices by use of an intelligent fusion center. Short-time Fourier transform and
convolutional neural network algorithms can assist spectrum sensing in finding a solution to the spectrum resource

scarcity 22 through signal sample time—frequency domain information.

A cognitive radio network comprises primary and secondary users 13: the latter sense the spectrum band to swiftly
use the white space, resulting in spectrum efficiency improvement. Long short-term memory networks are
satisfactorily applicable for time-series data. Reliable spectrum sensing assists cognitive radio networks 14 in
identifying and deploying unused and underused frequency bands. By employing historical detection data, online
learning algorithms integrating the optimum decision threshold clarify the occurrence or nonappearance of the
primary user 13, boosting the spectrum sensing performance and reducing the total error probability. Cognitive
radio networks detect band vacant spots 28] by adequately sensing and distributing the spectrum to the demanding
users. Multiobjective brainstorm optimization algorithms can manage the energy—throughput trade-off in cognitive
radio networks and reduce the packet error rate 17, as throughput maximization can lead to high energy
consumption. The spectrum sensing performance is improved with the increased probability of detection. Spectrum
sensing and insufficient battery capacity can minimize system performance across cognitive radio networks 18],

and thus, wireless-powered communication requires energy efficiency optimization.

Cognitive-radio-based 10T systems 19 develop on coherent spectrum sensing and sharing. Software-configurable
radio having dynamic spectrum assistance constitutes the intrinsic feature of cognitive radio 2% whose coaction
with wireless sensor networks makes it possible for the sensor nodes to use and share application data throughout
licensed primary user free channels. Improved operations can be attained with opportunistic spectrum access by
reducing the channel access incompatibilities and control message overhead postponement. The cognitive radio
spectrum sensing performance 21 necessitates detection accuracy as regards whether primary users are active or

not. Secondary user teamwork can optimize spectrum detection operations throughout cognitive radio networks. As
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incessant spectrum sensing significantly decreases the duration of a network encompassing energy-restricted
cognitive radio nodes 22, precise approaches as regards predicting spectrum occupancy optimize energy
efficiency. Intelligent reflecting surface-optimized energy detection 23 is pivotal in spectrum sensing performance

across cognitive radio networks.

Spectrum sensing is decisive 241 in cognitive radio system operations. Matched filtering is typically harnessed for
signal detection across a particular band of spectrum for an identifiable primary user signal. Spectrum sensing
aims to increase the detection operations [22! of secondary users across cognitive radio networks. All secondary
users provide sensing assessment to the fusion center for the eventual decision in relation to the operations of
primary users in cooperative spectrum sensing. The teamwork among massive volumes of secondary users can
generate overhead for the fusion center. Cooperative spectrum sensing schemes can find a solution to the hidden
terminal issue and reduce multipath fading and shadowing effects 28, optimizing the sensing performance and
throughput across cognitive radio networks. Increasing the volume of cooperative secondary users results in
intensified communication overhead and thus in energy consumption elevation of cognitive radio networks.
Cognitive radio and multiple-access techniques can enhance spectral efficiency and enable massive connectivity
[27]: spectrum sensing accuracy determines spectrum utilization efficiently through multiple-user cooperative

spectrum sensing.

Deep-learning-based cognitive radio technology can be harnessed throughout wireless communication systems
(28] increasing energy efficiency for shared spectrum sensing by incorporating reinforcement learning algorithms
and graph neural networks. Energy detection is decisive in terms of time and resource efficiency 22, but its
performance is unsatisfactory in low-signal-to-noise ratio channel circumstances, due to its marginal hardware
complexity and the nonexistence of inferable licensed user information. Cooperative sensing can mitigate the
energy detection sensing performance issue in 10T networks, but relevant detection cannot be attained in
detrimental channel environments by deploying incompatible I0T applications. Stochastic resonance can elevate
spectrum sensing performance in weak signal detection in cognitive radios. Artificial-intelligence-enabled intelligent
radio 2% can be optimized to smoothly leverage the insufficient spectrum resources and to exemplarily connect and
configure large-scale wireless devices in spectrum sensing and sharing-based communication systems. Deep- and
machine-learning-based automatic modulation recognition Bl can carry out spectrum sensing and efficiency

across cognitive radio networks and can articulate a lean network resource management.

3. Clustering Algorithms for Cognitive-Radio-Based loT
Networks

The design and advancement of energy- and spectrum-efficient proposals, such as cognitive radio sensor
networks B2, articulate 10T, with clustering optimizing the energy consumption. loT enabling sensor-based network
device connectivity is subjected to critical data exchange interference 3 due to unlicensed spectrum
overcrowding. Cognitive radio 10T networks can solve the spectrum scarcity issue, but the sensor nodes use
considerable energy throughout dynamic spectrum sensing and switching. Channel spectrum sensing can optimize

energy efficiency across clustered cognitive radio loT networks. A cognitive radio sensor network senses event
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signals and conjointly interconnects in a multihop mode 4! across variably operational spectrum bands. Nodes
playing a part in cognitive radio sensor networks grasp the network environment and have autonomous decision
making in relation to throughput intensification, discontinuity, and energy reduction, while clustering algorithms

extend the network lifetime.

Clustering and data aggregation are decisive in loT-based wireless communication 22, while energy efficiency can
be attained by cognitive networks. Sensor node insufficient energy and data sharing channel-related operations 8
affect energy performance across cognitive radio sensor networks. Unequal clustering can level the energy use
among the clusterheads to extend the network lifetime. Energy- and spectrum-aware unequal clustering surmounts
energy and spectrum for prolonging cognitive radio sensor network lifetime, while enhancing equity by establishing
residual energy stability among the sensor nodes and optimizing the network lifetime by decreasing the energy
use. The spectrum holes can be predicted through the use of deep belief network algorithms. A shared sensing
network comprises heterogeneous nodes intercommunicating B2 in relation to the specific spectrum sensing
output. The secondary user nodes of each cluster identify the spectrum, leading to incessant power consumption in

cognitive radio sensor networks.

Spectrum dynamics and energy use can be assimilated in network-stability-aware clustering 28 that coherently
handles interactions across cognitive radio sensor networks. Cognitive radio chiefly addresses the streamlined
harnessing B2 of available spectrum bands. Cognitive radio networks should integrate spectrum management
approaches to allocate the unutilized spectrum band to the cognitive radio users by conforming to a series of
sensing-related operations. A cooperative spectrum sensing strategy with a feature-based cluster classifier can
reduce the time to accomplish optimal cognitive radio communications. Such a classifier assimilates states and
transitions across radio frequency settings, in addition to primary user operations at constant periods to assist the
spectrum decision approach. A hybrid strategy integrating clustering and expected maximization and reinforcement
learning algorithms improves system operations with precise sensing outcomes, and by detecting the optimum
spectrum band by use of the hierarchical access model deploying the interweaving technique, energy use is

reduced.

Clustering arranges nodes into groups % so as to improve cognitive radio sensor network connectivity and
soundness. Contingent upon the channel availability, spectrum-aware clustering algorithms cannot generally attain
optimal clustering. Considering diverse relevant factors, to set up the optimal clustering constitutes a difficult task in
network operation enhancement. Weighted clustering metric-based spectrum-aware clustering algorithms can lead
to optimal clustering, concomitantly assessing temporal-spatial correspondence and the confidence level, and
unused energy is deployed to decide on clusterheads and ally member nodes. The clusterhead sensing spectrum
significantly diminishes spectrum sensing energy use and increases data sharing opportunity after clustering. A
cluster-based cognitive industrial 10T can enhance spectrum use by sensing and accessing the inactive spectrum
[41: the clusterheads carry out cooperative spectrum sensing to obtain convenient spectrum, while the nodes use
the nonorthogonal multiple access. Transmission performance can be optimized by clustering algorithms, while
energy balance is determined by clusterhead alternation. The nonorthogonal multiple access configured for the

cluster-based cognitive industrial 10T can efficiently enable the transmission operation of each node.
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A coherent and green machine-learning-based dynamic clustering mechanism integrating power demand and data
volume can assist cognitive 10T networks in terms of intelligent processing, secure delivery, and far-reaching
awareness 42 leading to energy-efficiency-based real-time implementations and information loss avoidance.
Machine learning techniques and clustering algorithms improve cognitive radio network performance 3l solving
the radio spectrum underutilization issue efficiently through the use of learning and reasoning capabilities.
Bayesian-learning-based intelligent clustering cooperative spectrum sensing can optimize the performance of
cognitive radio networks lacking a primary user, in serious fading and shadowing circumstances of the sensing
channel 4] while also minimizing the rate loss and shared overhead. Cognitive radio technology and the reaction—
diffusion biological mechanism can configure streamlined cognitive 0T spectrum allocation and adequate
bioinspired algorithm-based clustering performance [©8 enhancing clustered throughput and decreasing
convergence time, communication delay, and computation complexity through intelligent service provisioning,

reliable wireless communication, and automatic network operation.

Cognitive wireless sensor networks can harness the inactive authorized frequency band to find a solution to the
spectrum resource scarcity issue “€: by leveraging the spectrum hole, spectrum sensing technology can
deteriorate the synchronic interference and improve the entire sensor network performance. As a result of the
insufficient battery energy and low sensor node processing capacity features, the energy efficiency and the
spectrum sensing performance have to be optimized. Particle swarm optimization algorithms can assist cognitive
wireless sensor networks by integrating a cooperative spectrum sensing approach in relation to false alarm and
detection probability, enhancing the system throughput and energy efficiency. Cognitive radio and radar systems
leverage dynamic spectrum access techniques to solve spectrum congestion issues due to increased data traffic
[47l: dynamic spectrum access approaches share the radar and communication system spectrum. Machine-
learning-based efficient resource allocation can improve dynamic clustered IoT network power management and

machine-to-machine communication 8l in terms of spectrum management.

Cognitive-radio-network-based real-time high-speed communication systems [“2 require effective resource
distribution, spectrum sensing, ubiquitous computing services, and power use issues. Backtracking search
algorithms and cooperative node selection can decrease computation complexity and energy consumption.
Genetic algorithms and dynamic clustering techniques 29 are pivotal in conserving energy throughout loT network
planning and designing procedures. High-energy clusterheads enable optimal data sharing in wireless sensor
networks. Cognitive radio technology develops user communication reliability and the medium by coherent
dynamic spectrum exploitation 21l in terms of spectrum distribution and channel access, optimizing radio resource
use rate. The internet of spectrum devices, through spectrum data analytics and accurate collective time—
frequency spectrum predictions, articulates spectrum-monitoring and spectrum-utilizing device networks 22 to
facilitate a coherent spectrum distribution and management pattern for 5G wireless networks, improving the

inference performance.

Metaheuristic algorithms and deep-neural-network-based clustering techniques B8l can improve loT-related data
clustering reliability and computation times. Intelligent edge computing and deep learning convolutional neural

networks 4 can assist resource-constrained 0T devices, enhancing communication volume and inference latency
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through data analytics. Deep-neural-network-based clustering techniques can maximize wireless sensor network
functioning period in IoT applications B2: by modifying individual sensor node roles, energy consumption is
reduced and the network lifetime is extended (relevantly, computation and message overheads also decrease). A
hybrid delay-aware clustering-based intelligent data fusion algorithm 8 can optimize wireless sensor network
performance by integrating the single-layer and multilayer cluster structure upsides. The energy-efficient clustering
and the dynamic clusterhead reselection algorithms can cut down the network delay, energy use, and load

balancing while increasing the network lifetime.

4. Energy-Harvesting Technology for Cognitive-Radio-Based
IoT Networks

Energy harvesting and cognitive radio technologies can assist wireless sensor networks B2, extending the
operational activity of the sensor node and mitigating the unlicensed spectrum congestion issue. Carefully
distributing and organizing limited network resources are decisive because of energy-harvesting process
unpredictability and primary user behavior randomness. Cognitive radio and energy-harvesting strategies 8 are
instrumental in spectrum reutilization and lifetime extension for standard wireless networks. Energy-harvesting
cognitive radio networks comprising multiple primary and secondary users integrate energy and joint cooperation
modes. Sensing energy and data manageability 22 shape the secondary performance of energy-harvesting

cognitive radio networks.

As loT sensor and devices use a massive volume of power in data transmission 89 radio frequency energy
harvesting can assist self-sustainable wireless systems whose system rate loss is caused by external interference
factors. The cognitive industrial 10T can increase convenient spectrum resources 8 by harnessing the spectrum
authorized to primary users with the aim of not discontinuing primary user communications, but increased spectrum
sensing and prolonged operations may use much energy. Wireless energy harvesting can acquire the radio
frequency energy of a primary user signal, and energy-efficient resource distribution in heterogeneous spectrum
access modes can optimize the standard transmission rate of the cognitive industrial IoT and meet energy-saving
demands. Cognitive radio techniques can be harnessed for wireless power transfer, power consumption reduction,
and energy harvesting 82 throughout the sensing, interaction, and computation elements of 10T nodes.
Backscatter communication can facilitate green I0T operations through collective wireless communication and

sensing.

Availability and ultrareliability demands, together with energy-harvesting technology and dynamic spectrum access,
impose specific performance compromises 3 typifying sustainable and self-sufficient 10T networks, integrating
sensing time, energy availability, transmission diversity, volume of data frame packets, and spectrum accessibility.
Energy and spectrum resource scarcity, energy harvesting and cognitive radio technologies, and wireless devices
and system expansion (64 shape deep-learning-based IoT network performance. Energy harvesting and cognitive
radio technologies design deep-learning-based IoT networks [63: spectrally and energy-efficient transmission

schemes should be articulated in large-scale connection and device support. Spectrum reutilization and lifetime
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extension assist energy-harvesting cognitive radio networks [€8l: the energy provision of a primary transmitter can

be reduced while meeting the requirements of minimal-throughput networks and users.

A deep-Q-learning based algorithm can be deployed across energy-harvested cognitive radio networks with the
aim of optimal resource distribution ©7: primary users’ network channel resources also allocated to secondary
users and energy harvesting enable cognitive radio network nodes to acquire environment energy to achieve
operation sustainability. The amount of environmental energy necessitates dynamic resource distribution to
straighten out network and throughput capacity. A deep-Q-learning-based algorithm can enhance energy-harvested
cognitive radio network resource distribution so it surpasses low quality of service, massive state—space systems,
energy and interference limitations, and slow convergence. Nonorthogonal multiple access, energy-harvesting
technology, and cognitive radio systems can 88 optimize the energy and spectral efficiency of the 5G network for
IoT wireless sensor communication support. Deep-reinforcement-learning-based distributed multidimensional
resource management algorithms can be decisive in intelligent frequency, the joint spectrum, and energy and time
resource management, and thus decrease secondary sensing user data packet losses while meeting the
limitations on the maximum buffer capacity, transmitting power, charging battery capacity, and primary and

secondary sensing user minimum data rate.

The spectral and energy efficiency of device-to-device communication can be enhanced by employing cognitive
radio systems and radio frequency energy-harvesting technologies 2 while stabilizing increased data rates and
reducing power use in 5G communication networks. The primary and secondary transmitters interact with receivers
across energy-harvesting amplify-and-forward relays for nonorthogonal multiple-access-based multicast cognitive
radio networks 9, attempting to synchronously optimize the network sum-rate, decrease energy use, and fulffill
guality-of-service limitations. A low-complexity solution approach can appropriately find a solution to the power
distribution issue over each relay, and subsequently decide on the relay optimizing the network goal function, while
adjusting spectrum and energy efficiencies and configuring the optimal network sum-rate and lower computational
complexity. Cognitive-radio-based nonorthogonal multiple-access systems can satisfy loT-driven 5G network
requirements L: power domain nonorthogonal multiple access enables multiple users to share orthogonal
resource blocks, while cognitive radio technology facilitates opportunistic bandwidth use, and thus, secondary
users can access the licensed spectrum frequency while the operations performed by primary users are not

interrupted.

Nonorthogonal multiple access can enhance 5G cellular network throughput and spectrum efficiency and facilitate
ultrareliable and low-latency communications 2 articulating spectrum- and energy-efficient transmission schemes
across clustered loT smart devices and massive system connectivity, while energy-harvesting algorithms and
random access techniques can decrease signaling overhead, energy use, and packet latency. A game-based fair
resource allocation algorithm can enable stable cooperation between primary users and secondary users 3]
across wireless powered cooperative cognitive radio networks through streamlined resource allocation.
Nonorthogonal multiple access can bring about spectrum efficiency 4 across wireless networks. In an uplink
nonorthogonal multiple-access cognitive system, secondary users can collectively transfer data, throughout the

same spectrum resources, to the cognitive base station, and uninterrupted interference discontinuation is applied
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to retrieve secondary-user-transmitted signals. A wireless energy harvester can extend secondary users’
operations.

Energy-harvesting-powered cognitive machine-to-machine networks can mitigate the intensifying deficient
spectrum, as a result of large-scale smart devices and simultaneous access demand that bring about operational
deterioration and massive energy use 2, by ensuring the quality of service and leading to green communication
through deep-reinforcement-learning-based algorithms in terms of energy efficiency optimization. The end-to-end
throughput can be assessed and enhanced in wireless-powered cognitive 0T networks through the use of a well-
organized deep-neural-network-based relay selection scheme [Z8: multiple energy-harvesting relays are harnessed
unselectively to enable data sharing to multiple users from a source node across energy-harvesting circuit practical
nonlinearity, decreasing computational complexity significantly. Cognitive radio technology and nonorthogonal
multiple-access techniques X4 can assist energy harvesting in spectral and energy efficiency optimization across
0T networks.
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