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The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose,

hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and

prerequisite step for lignocellulose biorefinery. A considerable number of studies have focused on peroxyacetic acid

(PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. 
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1. Introduction

Due to serious environmental issues and global climate change, researchers all over the world are trying their best

to convert the fossil fuel-based society into a bio-economical society, advancing the goal of reaching peak carbon

and realizing carbon neutrality . Although fossil fuels play a critical role in social industrialization, these non-

renewable and unsustainable fuels have negative effects on the environment and humans . Lignocellulose,

such as forest residues (branches, leaves, etc.), agricultural residues (wheat straw, rice straw, etc.), energy crops

(willow, poplar, etc.), and cellulosic waste (e.g., municipal solid waste and food waste) are abundant and cost-

effective renewable resources with an annual production of 15–17 × 10  Mt . Lignocellulose can be upgraded

into biofuels, biochemicals, and biomaterials . Therefore, lignocellulose biorefinery is expected to replace the

traditional petroleum refining, and this will mitigate energy crisis and environmental pollution . The United Nations

Conference on Environment and Development (UNCED) predicts that the utilization of biomass resources may

reach half of the world’s total resource use by 2050 .

However, pretreatment processes are required to destroy the stubborn structure of lignin, resulting in the

improvement of the accessibility of cellulase to cellulose for the downstream utilization . At present, four major

methods of lignocellulose pretreatment are described in the literature . Each method has its own advantages

and disadvantages. For instance, physical pretreatment, such as milling and grinding, can improve the surface

area and porosity of lignocellulose, but the high energy consumption of this pretreatment increases the operational

costs and limits its practical applications . Chemical pretreatment of dilute acids, bases, organic solvents, ionic

liquids, and low eutectic solvents can remove lignin and hemicellulose to improve the enzymatic accessibility of

cellulose, and can also reduce the degree of polymerization (DP) and crystallinity (Crl) of cellulose . However, a

critical issue in chemical pretreatment is that chemical reagents are expensive and prone to corrode equipment.

Physico-chemical pretreatment is a combination of physical and chemical pretreatment; this method can dissolve

lignin and hemicellulose to facilitate the utilization of cellulose . Typical physicochemical pretreatment includes
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steam explosion, liquid hot water, ammonia fiber explosion, ammonia cycle permeation, electrocatalysis,

CO  explosion, and SO  explosion . The drawbacks of physicochemical pretreatment are that it requires high

temperatures and high-pressure reaction conditions. Biological pretreatment uses microbial communities such as

fungi or bacteria to damage the lignocellulosic structure. It is a novel pretreatment method with low energy

consumption and low environmental impact . However, an unsatisfactory aspect is that the low efficiency of

biodegradation pretreatment limits its large-scale industrial applications .

Peroxyacetic acid (PAA), an organic peroxy acid, has been extensively regarded as a disinfectant, strong oxidizer,

preservative, bactericide, and polymerization catalyst . In recent years, PAA has been employed as a strong

oxidant to oxidize the hydroxyl group in the lignin side chain to the carbonyl group, and it will cleave the β-aryl bond

of lignin to reduce the molecular weight and introduce hydrophilic groups . PAA will also oxidize the hydroxyl

group in the lignin side chain to hydroquinone; it is subsequently oxidized to quinone, whose ring opening

generates water-soluble hydroponic acid, maleic acid, and fumaric acid derivatives . Through these reactions,

lignin is depolymerized and the fragments will dissolve in water, leading to effective removal from lignocellulosic

biomass . In addition, the oxidized lignin shows low hydrophobicity and weakens the ability to bind to cellulase.

Therefore, an increasing number of studies have been focusing on PAA pretreatment in lignocellulosic biorefinery.

2. Lignocellulose Structure

Lignocellulose biomass is an abundant, diverse, and inexpensive renewable resource in nature. It has been

universally converted into biofuels, biochemicals, and biomaterials . As shown in  Figure  1, lignocellulose is

mainly composed of cellulose (40–45%), hemicellulose (20–40%), and lignin (10–25%), which are tightly bound

together to form the skeletal framework of plant. The three-dimensional network structure shows that cellulose and

hemicellulose are mainly connected by hydrogen bonds, and lignin and hemicellulose are also linked with chemical

bonds, such as hydrogen bonds, ionic bonds, covalent bonds, and hydrophobic interactions .
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Figure 1. Structural compositions of lignocellulosic biomass.

2.1. Cellulose

Cellulose, the most abundant polymer on Earth, is a linear intercalation (alternating spatial arrangement of side

chains) homopolymer. It consists mainly of β-(l-4) glycosidic bonds linked by alternating arrangements . Due to

its unique structure of ordered bundle arrangement and highly crystalline structure, cellulose is very stable in many

conditions. Cellulose has good biocompatibility and active hydroxyl groups with an atomic O/C of 0.6–0.83 and H/C

of 0.8–1.67 . Cellulose can be valorized into fermented glucose , bioethanol , biomaterials , and

catalyst carrier .

2.2. Hemicellulose

Hemicellulose has a heteropolymer with a relatively lower molecular weight compared to cellulose; it is composed

mainly of pentoses (e.g., xylose and arabinose) and hexoses (e.g., mannose, glucose, and galactose) .

Hemicellulose is bound to various other cell wall components such as fibronectin, cell wall proteins, lignin, and

phenolic compounds through covalent bonds, hydrogen bonds, and hydrophobic interactions . Hemicellulose

has been mainly used to produce fructose and xylitol. Apart from these products, hemicellulose can also be

converted to biofuels , furfural , levulinic acid; and formic acid .

2.3. Lignin

Lignin is a polymer of heterogeneous phenyl propane units in plants and consists of three main monomers:

guaiacol (G), eugenol (S), and p-hydroxyphenyl (H) . These three monomers are chemically linked with the C-C

bond (5-5, β-β, β-1, β-5) and aryl ethers (β-O-4, α-O-4) to yield three corresponding subunits: p-coumaryl alcohol

(pCoumA), pineal alcohol (ConA), and mustard alcohol (SinA) . Due to the heterogeneity and complex

components, lignin shows strong stubborn and anti-barrier effects . To date, lignin has mainly been used in

reinforcing agents , binders , hydrogels , adsorbents , and catalysts . Efficient valorization of lignin

will be a hot topic of research in the near future.

3. Quick Overview of PAA

3.1. Commercial PAA

Commercial PAA products are greatly dependent on the ratio of PAA to hydrogen peroxide

(H O ). Table 1 provides detailed information on part commercial PAA in the literature. Commercial PAA is usually

prepared by mixing H O  and acetic acid (or ethyl acetate), catalyzed with concentrated sulfuric acid. The desired

concentration and yield of PAA are achieved by adjusting the concentration of H O  and the ratio of acetic acid.

However, the chemical production of PAA is characterized by flammability, explosiveness, toxicity, high

temperature, high pressure, and corrosiveness. From the point-of-view of safety and green chemistry, it is very

dangerous to produce commercial PAA in the laboratory.
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Table 1. Detailed information of part commercial PAA products in the literature .

3.2. Chemically Activated PAA

To improve the oxidative ability of commercial PAA, some activators can be added to the PAA system. These

activators include radiation, metal catalysts, and carbon-based materials . For example, the O-O bond in PAA

can be directly broken by UV radiation to generate the radicals R-O  and HO , thus improving disinfection efficiency

and the degradation of organic compounds . UV irradiation has been used to activate PAA to form active

radicals that degrade naproxen (NAP). This process would be impracticable without sufficient UV intensity,

because the penetration of UV light in water is limited . Hu et al. investigated an advanced oxidation technique

based on UV/PAA to degrade steroid estrogens Hu, Li, Zhang, et al. . The metal activators of PAA include metal

ions (Cu , Co , Fe , and Mn )  and metal oxides (ZVCo, Co O , CoFe O , and Co O ) . The

mechanism of PAA activation by chemical activators can be triggered through the generation of organic radicals

CH C(O)O   and CH C(O)OO   (Figure  2); these radicals can degrade organic pollutants by advanced

oxidation. Table 2 summarises the degredation of organic pollutants by chemical activation of PAA as reported in

the literature.

[45][46]

Identity Product Name Supplier and Country PAA(%)H O (%)PAA:H O

Lspez Wofasteril L. Spez
KESLA PHARMA WOLFEN
GmbH (Greppin, Germany)

3 40 0.034

E35 Wofasteril 035
KESLA PHARMA WOLFEN
GmbH (Greppin, Germany)

3.5 10 0.156

SC50 Wofasteril SC50
KESLA PHARMA WOLFEN
GmbH (Greppin, Germany)

5 8 0.28

AC150 Peressigsaure 15% reinst
Applichem GmbHt

(Darmstadt, Germany)
15 24 0.28

E250 Wofasteril E250
KESLA PHARMA WOLFEN
GmbH (Greppin, Germany)

25 30 0.37

S1400
Sigma-Aldrich Peracetic

Acid Solution
Sigma-Aldrich Co. (St.

Louis, MO, USA)
39 6 2.91

E400 Wofasteril E400
KESLA PHARMA WOLFEN
GmbH (Greppin, Germany)

40 12 1.49

S1400 Sigma-Aldrich 32 wt% PAA
Sigma-Aldrich Co. (St.

Louis, MO, USA)
32 5 6.4

/ /
Thermo Fisher Scientific

(New York, NY, USA)
39 / /

VigorOx  WWTII
PAA technical grade

solution (VigorOx  WWTII)
PeroxyChem (Philadelphia,

Pennsylvania, USA)
15 23 0.652

2 2 2 2

®
®
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Figure 2. Free radicals generated by PAA in the presence of the metal ions activators (Cu , Co , Fe , and

Mn ).

Table 2. Degradation of organic pollutants by chemical activation PAA.

2+ 2+ 2+

2+

Compounds
Chemical
Activator
(Catalyst)

Compounds
Concentration

Conditions:
Temperature,
pH, Catalyst

Loading

PAA
Concentration

Degradation
Rate (%) References

Orange G Co O 0.05 mM
25 °C, 7.0,

0.1 g/L
0.5 mM 100

Sulfamethoxazole CoFe O 10 μM
23 °C, 7.0,

0.1 g/L
100 μM 87.3

Bisphenol-A

Co
(II)/Co

(III)
15 μM

22 °C, 4.0,
10 μM,

100 μM

100

Carbamazepine 87.7

Naproxen 100

Sulfamethoxazole 98.5

Sulfamethoxazole Co 10 μM
25 °C, 7.0,

0.8 μM
100 μM 89.4

Naproxen UV 4 μM
20 °C, 7.0,
/no catalyst

20 mg/L 100

Bisphenol-A Fe (II) 15 μM 22 °C, 6.0, 5
μM,

20 μM 87.7

Methylene blue 89.4

3 4
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* ZVCo: zero-valent cobalt.

3.3. Enzymatically Generated PAA

To meet the principle of green chemistry, enzyme-generated PAA has outstanding advantages over commercial

and chemically activated PAA. It is a simple, safe, low-cost, and in-situ PAA production method that avoids hazards

during storage and transportation . Perhydrolases are critical factors for enzyme-generated PAA, and the most

commonly used ones include  Pseudomonas fluorescens esterase  ,  acetyl xylan esterase  , and lipase.

Perhydrolases can catalyze H O  and acetic acid/ethyl acetate for in-situ generation of PAA . Bernhardt et al.

reported that the catalytic domain of perhydrolases was Ser-His-Asp Bernhardt, Hult and Kazlauskas

.  Table  3  summarizes the perhydrolase-producing strains used for enzyme-generated PAA in the literature.

Strains-producing perhydrolases are wild microorganisms (Pseudomonas fluorescens, Candida rugosa, Aspergillus

niger,  Porcine pancreas,  Bacillus subtilis  CICC 20034,  Pichia pastoris) and recombinant strains (Escherichia

coli BL21, Aspergillus ficcum). In comparison with commercial PAA, the advantages of enzyme-generated PAA in

biomass fractionation are: (1) PAA can be generated as needed, thus eliminating storage-related problems of

explosion and stability. (2) Acetyl groups in biomass can be used to generate PAA. (3) PAA will sterilize the

biomass to protect it from microbial contamination in biomass storage and fermentation.

Table 3. Perhydrolases producing strains and enzyme-generated PAA.

Compounds
Chemical
Activator
(Catalyst)

Compounds
Concentration

Conditions:
Temperature,
pH, Catalyst

Loading

PAA
Concentration

Degradation
Rate (%) References

Naproxen 98.2

Sulfamethoxazole ZVCo * 5 μM
25 °C, 7, 0.1

g L
50 μM 99.4

Steroid estrogens UV 50 μg/L
25 °C, 6.01,
/no catalyst

30 mg/L 90

−1
[56]

[50]

[57]

[20] [58]

2 2
[46]

[59]

Perhydrolase Strains

Reagent
Dosage
(EA/GT,
H O )

Conditions:
Temperature, pH,
Enzyme Loading

PAA
Concentration

(mM)
References

Pseudomonas
fluorescens esterase

(PFE)

Pseudomonas
fluorescens

500 mM
EA *, 1.0
M H 0

23 °C, 7.2, 0.5
mg/mL

115

Pseudomonas
fluorescens esterase

(PFE)

Escherichia
coli BL21

500 mM
EA *,
1.0 M
H 0

23 °C, 7.2, 0.5
mg/mL

90

PFE-L29G
Pseudomonas

fluorescens 600 mM
EA *,

500 mM
H 0

37 °C, 7.0, 0.5
mg/mL

60

Wild-type PFE
Pseudomonas

fluorescens 70

Lipase Type VII Candida rugosa 250 mM
GT †,
1.0 M
H 0

25 °C, 7.4, 0.6
mg/mL

0.98

LPL Aspergillus 2.6

2 2

2 2

[20]

2 2

[60]
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* EA: Ethyl acetate; † GT: Glycerol triacetate.
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