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Nitrergic enteric neurons are key players of the descending inhibitory reflex of intestinal peristalsis, therefore loss

or damage of these neurons can contribute to developing gastrointestinal motility disturbances suffered by patients

worldwide. There is accumulating evidence that the vulnerability of nitrergic enteric neurons to neuropathy is strictly

region-specific and that the two main enteric plexuses display different nitrergic neuronal damage. Alterations both

in the proportion of the nitrergic subpopulation and in the total number of enteric neurons suggest that modification

of the neurochemical character or neuronal death occurs in the investigated gut segments. 
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1. Introduction

In the gastrointestinal (GI) tract, as in most other organ systems, nitric oxide (NO) plays a defining role in regulating

several functions in both physiological and pathological states. NO contributes to the maintenance of GI mucosal

integrity and circulation, regulation of secretion, smooth muscle function or mucosal inflammation . NO,

produced by neuronal NO synthase (nNOS), is one of the main inhibitory neurotransmitters in GI smooth muscle 

.

The involvement of nNOS and NO pathways in enteric neuropathies was well-described in a variety of disorders,

like esophageal or internal anal sphincter achalasia, hypertrophic pyloric stenosis, gastroparesis, Chagas’, or

Hirschsprung’s disease . Enteric neurons reside in two ganglionated plexuses of the enteric nervous
system (ENS). The myenteric plexus is situated between the longitudinal and circular muscle layers
of the gut tube and regulates the motility of these smooth muscles. The submucous plexus is
embedded in the GI submucosal layer and coordinates the absorption, secretion and circulation of
the gut wall . The enteric ganglia contains enteric glia cells and neurons, connected by
interganglionic segments. The number of enteric neurons is equal to the number of spinal cord
neurons in the same species .

Intrinsic primary sensory neurons, interneurons and motoneurons are all present in the ENS,
therefore the enteric neurons are able to form local reflex circuits in the intestinal wall and can work
autonomously from the central nervous system . At the same time, the ENS bidirectionally
communicates with the central nervous system , and several data support the intimate
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connection of ENS and gut microbiota, therefore these three systems make a microbiota–gut–brain
axis .
The neurochemical phenotype of enteric neurons is critical to their function . The neurochemical composition

of the ENS is much more diverse than the sympathetic and parasympathetic divisions of the autonomic nervous

system. From this point of view, the ENS is similar to the central nervous system, since the whole range of the

classical and other neurotransmitters are present in enteric neurons .

2. Nitrergic Enteric Neurons

NO can be synthesized by nNOS, endothelial NOS (eNOS) and inducible NOS (iNOS) in the different cell types in

the body. In the ENS, the major inhibitory non-adrenergic, non-cholinergic (NANC) neurotransmitter is endogenous

NO . In enteric neurons, nNOS is the predominant form that produces NO in a physiological state 

, but all three isoforms of the NOS are present in mRNA and protein levels in the enteric neurons. Different

pathological states might affect the role of the NOS isoforms in the ENS .

The proportion of the nitrergic subpopulation when compared to the total neuronal cell number is shown to be

different in the two enteric plexuses. The nitrergic neurons account for only a few percent of all neurons in the

submucous plexus , while the proportion of the nitrergic myenteric neurons (Figure 1) is significant (23–52%)

depending on the ivestigated species. This massive proportion of the nitrergic myenteric neurons can be explained

by the function of this neuronal population. Most of the nitrergic myenteric neurons are inhibitory interneurons or

inhibitory motoneurons innervating the muscle layers of the alimentary tract .
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Figure 1. Representative fluorescent micrograph of myenteric neurons from the duodenum of a control rat after

nNOS (green)-HuCD (red) double-labelling. Stars indicate neurons that are labelled for HuCD only, arrows point to

neurons that are double-labelled for both nNOS and HuCD. Scale bar: 50 µm.

3. Pathophysiology of Nitrergic Enteric Neurons

3.1. Type 1 Diabetes

It is well established that NOS-containing myenteric neurons are curiously susceptible to diabetic injuries 

and impaired nitrergic innervation is accompanied by motility dysfunction . Moreover, the nitrergic neurons

located in different gut segments display strictly region-specific responsiveness to the diabetic state and also to

immediate insulin replacement . In the jejunum, ileum and colon of diabetic rats, both the nitrergic and total

number of myenteric neurons were decreased assuming diabetes-related cell loss in these segments. However, in

the duodenum of diabetic rats, the decreased number of nitrergic neurons was not accompanied by changes in the

total number of myenteric neurons, presuming region-specific neurochemical modification of neurons here .

Several other studies confirm diabetes-associated decreases of nitrergic myenteric neurons. nNOS neurons are

reduced in the antrum and jejunum in spontaneously diabetic Bio-breeding rats , in the ileum of diabetic dogs
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, and in the human appendix , and reduced nNOS protein and mRNA expression were observed in the

stomach of mice  with P2×7 receptor-mediated diabetic damage of nitrergic neurons . Besides nitrergic

neuronal damage, the diabetic animals represented delayed gastric emptying  and faster small intestinal and

colonic transit compared to controls .

In the submucous plexus, the proportion of nNOS-immunoreactive neurons was doubled in the ileum
and tripled in the colon, but not in the duodenum of diabetic rats, while the total neuronal number
remained unchanged, suggesting neurochemical adaptation of submucous neurons . These
results emphasize that the diabetic state affects the two enteric plexuses differentially.

In addition, in the microenvironment of enteric neurons, the number of eNOS-labelling gold particles was increased

in the capillary endothelium of different gut segments , suggesting that the microvessels supplying to the

myenteric ganglia are targets of diabetic damage in a regional manner and may contribute to developing

neuropathy in diabetes.

Sex dependency on the diabetic nitrergic dysfunction was also observed ; females seem to have greater

vulnerability to diabetes-related gastric impairments than males . A decreased level of tetrahydrobiopterin, a

major cofactor for NO synthesis, contributes to delayed gastric emptying, reduced pyloric nitrergic relaxation and

nNOS-α protein expression in female diabetic rats .

NOS-containing neurons go through a two-phase degeneration process. The decrease in axonal nNOS expression

as the hallmark of the first phase is reversible, however, causing irreversible changes, as apoptotic loss of nitrergic

neurons occurs in the second one . In addition, progressive accumulation of advanced glycation end products

(AGEs) during diabetes seems to enhance this apoptotic process . AGEs significantly reduce the expression of

nNOS and NO release in myenteric neurons via their receptor . Prevention of AGE formation by certain drugs

precedes the decrease of nNOS in diabetic rats  and may also help to protect against nitrergic nerve

dysfunction. Furthermore, the endogenous antioxidant defense of the gut can also be protective for nitrergic

myenteric neurons. An extensive increase in the ratio of nNOS-immunoreactive neurons colocalizing with heme

oxygenases was revealed in the ileum and colon of diabetic rats, though the nitrergic neuronal number decreased

, suggesting that those NOS neurons which do not colocalize with heme oxygenases are the most damaged by

diabetes .

3.2. Chronic Alcohol Consumption

The impact of chronic ethanol intake on NOS-immunoreactive myenteric neurons in various gut regions has been

investigated in our laboratory for more than a decade. The number of nNOS-immunoreactive neurons was

significantly reduced in all investigated intestinal regions after 8 weeks of ethanol consumption . Since the total

neuronal number in the myenteric ganglia remained unchanged, the alteration in the number of nNOS-

immunoreactive neurons means that ethanol treatment specifically affected nNOS production, damaging NO

pathways in the ENS and disturbing gastrointestinal motility . A decreased number of nNOS-immunoreactive

neurons was also described in the murine jejunum after alcohol intake, but because it is accompanied by an
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increased proportion of iNOS-immunoreactive neurons , the number of NO-producing neurons remained

constant. This data proposed a compensatory mechanism to restore the NOS balance. However, using bio-imaging

of individual myenteric neurons, the basal NO synthesis was significantly enhanced after chronic alcohol

consumption. Bio-imaging recordings also strengthened the elevated NO synthesis in the enteric glial cells, smooth

muscle cells and endothelial cells, indicating a general increase in NO production in the intestinal wall . In

cultures, NO facilitates the protective effects of neuronal growth factors and helps with developing neurons to resist

alcohol toxicity by activating the NO-cGMP-PKG-NFkappaB signalling pathway .

Similarly, electron microscopic study of the distribution of different NOS enzymes after ethanol treatment revealed

opposite changes in the quantity of nNOS- and eNOS-labelling gold particles not only in the myenteric ganglia, but

also in their close microenvironment . While the number of nNOS labels has fallen by more than half, eNOS

labels almost doubled in the duodenal ganglia, suggesting possible functional plasticity between NOS isoforms that

might help to maintain the optimum NO level during chronic alcohol consumption. Moreover, gut segment-specific

rearrangement of NOS isoforms in the various subcellular compartments was detected in rats after ethanol

treatment .

3.3. Intestinal Inflammation

Although impairments of enteric neurons in different inflammatory diseases have been widely studied 

, there are numerous open questions and no consensus on how the ENS is affected in these inflammatory

disorders. Intestinal inflammation affects not only the density of enteric neurons but also their function .

Extensive damage of myenteric neurons as a distinct early event was demonstrated in the inflamed colonic

segment in different rat models despite the sustained inflammatory processes . The rapid influx of activated

immune cells after the onset of colitis accompanied elevated NO production from enhanced iNOS expression,

which can be cytotoxic to enteric neurons. The immune-cell-mediated neuronal loss could be blocked by iNOS

inhibitors . Glial cells can also enhance iNOS activity during inflammation . Brown et al.  observed the

enhancement of glial NO levels and increased immunoreactivity of nitrated proteins (another marker of NO

concentration) colocalized with glial fibrillar acidic protein 48 h after the induction of colitis. Elevated nitric oxide

facilitates the release of glial adenosine triphosphate and assists with neuronal loss .

Among the different subpopulations of enteric neurons, the vasoactive intestinal polypeptide (VIP)-positive and

nitrergic neurons display contrary responses to gut inflammation. In the inflamed colonic regions, the number of

NOS neurons increased and the percentage of VIP neurons was unchanged in the myenteric plexus of paediatric

patients with Crohn’s disease . However, in the submucous ganglia, an increased number of VIP-

immunoreactive neurons was observed, while the number of NOS neurons was too low for quantification . The

regulation of nNOS expression seems different in models of Crohn’s disease and ulcerative colitis. In 2,4,6-

trinitrobenzenesulfonic acid-induced Crohn’s disease, decreased nNOS protein and mRNA level was measured,

but nNOS levels were not altered in experimentally-induced ulcerative colitis . The proportion of nNOS-

immunoreactive myenteric neurons was decreased in a stress-induced rat model of irritable bowel syndrome with

diarrhea  contributing to the motility dysfunction characteristic for this disease.
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The activity of NOS and the generation of NO were elevated in colonic mucosal biopsies  as well as rectal NO

levels were markedly enhanced in active ulcerative colitis and Crohn’s disease . Moreover, an increased number

of mucosal nitrergic nerve fibers was revealed in the duodenum, jejunum and descending colon of dogs with

irritable bowel disease, and this increment was proportional to the state of the disease ranging from mild to severe

.

3.4. Ischaemic Injuries

The deleterious effects of intestinal ischemia/reperfusion (I/R) injury on enteric neurons was also revealed in

several studies. Alterations in neuronal structures or even neuronal loss were demonstrated in humans  and

animal models  with I/R.

However, evidence showed that the NOS-containing enteric neuronal subpopulation is more susceptible to severe

enteric neuropathies , like I/R, suggesting that NO from nitrergic neurons contributes to neuronal damage.

However, NO also has a neuroprotective effect: I/R resulted in more serious damage in nNOS knock out mice, than

in their wild-type counterparts .

Swelling and distortion of nitrergic neuronal dendrites and increased relative cell profile area of NOS neurons was

observed following I/R in the ischaemic intestinal region . Moreover, protein nitrosylation and translocation

of Hu protein (enteric neuronal marker) from the cytoplasm to the nuclei was also demonstrated shortly after the

onset of I/R .

4. Conclusions

Several studies have suggested that nitrergic myenteric neurons are especially susceptible to the development of

neuropathy in diseases of the digestive tract . Although more than 20 years have passed since the

biological properties of NO were discovered , many questions remain unanswered concerning the role of NO

in neurons both in the gut and the brain . To answer these questions, future studies will be required to

investigate not only the ENS, but the microenvironment of the enteric ganglia, the microcirculation and neuro-

immune interactions of the gut, the bidirectional communication in the gut–brain axis, and even the interactions

among the microbiota, the GI tract and the brain in health and disease.
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